Geintra

Departamento de electronica Universidad de Alcala

Líneas de investigación

Accede a información sobre la estructura de la actividad investigadora de Geintra.

Trabaja con nosotros

Accede a nuestra oferta actual de becas, tesis doctorales, contratos y trabajos fin de carrera.

Contacta con el grupo

Si desea contactar con nosotros, puede usar varios medios.

    Fast heuristic method to detect people in frontal depth images

    TitleFast heuristic method to detect people in frontal depth images
    Publication TypeJournal Article
    Año de publicación2021
    AutoresLuna, CA, Losada-Gutiérrez, C, Fuentes-Jiménez, D, Mazo, M
    Idioma de publicaciónEnglish
    JournalExpert Systems with Applications
    Volumen168
    Páginas114483
    Fecha de publicación04/2021
    Palabras clave3D People detection, Depth camera, Feature extraction, Frontal Depth images, Head biometric classification
    ISSN0957-4174
    URLhttps://www.sciencedirect.com/science/article/pii/S0957417420311301
    DOIhttps://doi.org/10.1016/j.eswa.2020.114483
    Abstract

    This paper presents a new method for detecting people using only depth images captured by a camera in a frontal position. The approach is based on first detecting all the objects present in the scene and determining their average depth (distance to the camera). Next, for each object, a 3D Region of Interest (ROI) is processed around it in order to determine if the characteristics of the object correspond to the biometric characteristics of a human head. The results obtained using three public datasets captured by three depth sensors with different spatial resolutions and different operation principle (structured light, active stereo vision and Time of Flight) are presented. These results demonstrate that our method can run in realtime using a low-cost CPU platform with a high accuracy, being the processing times smaller than 1 ms per frame for a 512 × 424 image resolution with a precision of 99.26% and smaller than 4 ms per frame for a 1280 × 720 image resolution with a precision of 99.77%.