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ABSTRACT:

Nowadays, the use of speech technology to operate with electronic and informatic
systems is getting more and more frequent and its usefulness indisputable. Given that
speech is the most natural way in which humans interact with their environment, there
is a clear tendency to make use of this technology as the mean to communicate with
devices.

Automatic speech recognition systems are already able to properly understand rea-
sonably complex human commands. Nevertheless, there are certain accoustic conditions
under which the error rates commited by them are still too high. Particularly, the cap-
ture of distant speech in reverberant accoustic environments is specially conflictive for
this type of systems which usually show lower performances than expected. At the same
time, this distant speech acquisition is of high importance since it allows a more natural
way to interact, without neccesarily having to carry intrusive, close-talk microphones,
and it is present in multiple and common situations, such as those given in a digital
home or a conference room.

This present Master Thesis intends to design, implement and evaluate from scratch
an accurate and complete tool to estimate the speaker localization in these reverberant
accoustic environments. This localization application is crucial to improve the results
of the mentioned recognition systems since it can be used to exploit the spatial filtering
ability of an array, which allows the speech signal from one talker to be enhanced as the
signals from other talkers as well as undesired sources and noise are supressed.

After a detailed theoretical study, a robust localization system was implemented ba-
sed on the Steered Response Power (SRP) of an array when focused at different locations.
In turn, this scheme lies itself on a more basic localization algorithm able to estimate
the Direction of Arrival (DOA) of the given speech by computing the Generalized Cross
Correlation (GCC) between microphone pairs. Finally, an exhaustive evaluation of the
results obtained by the system was carried out in order to check the validity of its out-
comes, hint the possible improvement techniques, get some general conclusions about its
performance and suggest future lines of investigation.

KEY WORDS:

Automatic speech recognition, speaker localization, Generalized Cross Correlation
(GCC), Steered Response Power (SRP), beamforming, spatial filtering, microphone array.



RESUMEN:

Actualmente, cada vez es más frecuente el uso de la tecnología del habla en el manejo
de sistemas electrónicos e informáticos. Existe una clara tendencia a usar esta tecnología
como el principal medio de comunicación con dispositivos, dado que el habla es la forma
más natural que poseen los humanos para interactuar con su entorno.

Los sistemas de reconocimiento automático de voz son ya capaces de comprender cor-
rectamente mandatos humanos razonablemente complejos. Sin embargo, existen ciertas
condiciones acústicas bajo las cuales las tasas de error cometidas por estos sistemas son
aún demasiado elevadas. En concreto, la captura de habla lejana en entornos acústicos
reverberantes es especialmente conflictiva para estas técnicas que a menudo presentan
un rendimiento por debajo de lo deseado. Al mismo tiempo, esta adquisición de habla
lejana es especialmente importante ya que permite una comunicación más natural, libre
de molestos e intrusivos micrófonos de habla cercana, y está presente en múltiples y fre-
cuentes situaciones como las que se dan en el interior de una casa domótica o en un aula
de conferencias.

El presente Proyecto va a abordar el diseño, implementación y evaluación desde cero
de una completa y precisa herramienta de estimación de la posición en estos entornos
acústicos reverberantes. Esta aplicación será muy importante a la hora de mejorar los
resultados de los mencionados sistemas de reconocimiento ya que puede ser usada para
explotar la habilidad que los arrays de micrófonos tienen para filtrar espacialmente, cen-
trándose en un determinado punto de manera que se realce el habla de un hablante en
concreto mientras que el resto de señales de ruido y de otros hablantes son evitadas.

Tras un detallado estudio teórico, se ha implementado un sistema de localización ro-
busto basado en el Método de la respuesta en potencia (SRP) de un array cuando éste se
apunta a distintas localizaciones. A su vez, este esquema se basa en una técnica de loca-
lización más básica, capaz de estimar la dirección de llegada (DOA) del habla mediante
el cálculo de la correlación cruzada generalizada (GCC) entre pares de micrófonos. Por
último, se realizó una exhaustiva evaluación de los resultados obtenidos con este sistema
de manera que se pudiera comprobar la validez de los mismos, dar alguna pista sobre las
posibles técnicas de mejora, obtener ciertas conclusiones generales sobre su rendimiento
y apuntar a futuras líneas de investigación que pudieran mejorar el trabajo realizado en
este Proyecto.
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Chapter 1

Introduction

This introductory chapter will offer both a general view of the objectives aimed to be

achieved in this Master Thesis and a justification of the Thesis itself within the research

environment and the international state of the art in which it was performed.

1.1 Presentation

Nowadays, speech technology use is becoming increasingly popular in all kind of envi-

ronments. Speech is the natural human way of comunication and, hence, using it as the

direct mechanism to interact with machines has become an attractive field of research in

order to get more supportive and less burdensome computing and communication ser-

vices [OM06]. More and more applications accesible to the final user are being developed:

speech dialing in mobile phones, dictating programs, domotic applications, automatic re-

cording of meetings, etc. Not only this is a more efficient way to solve some problems,

but also, sometimes, the only possible alternative to do so: for instance, applications de-

signed for deaf people or to be run in reduced devices that do not allow easy dialing.

Within this context, the automatic speech recognizing systems have improved largely

in the last few years and are already able to perform reasonably complex tasks. However,

it is important to point out that the performance of these speech recognizing systems is

severely affected by the accoustic conditions of the environment in which the speech

was captured. In particular, those applications using distant microphones to capture

speech, for instance in meeting, car, home or lecture scenarios, suffer from high error

rates since both the tough reverberant accoustic conditions and the low signal to noise

ratio negatively affect to the performance ([MG02], [WK02]). Lots of efforts have been

devoted in order to improve automatic speech recognition on these environments. Using

close-talk microphones to capture the speech would offer a solution, however, a non-
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intrusive mechanism would be desirable: the speaker could freely move without carrying

a microphone and, still, the speech recognition system would equally work. The use of

microphone arrays in this task ([Sel03], [Her05]) has been proposed as a way to improve

speech quality captured by distant microphones.

This Master Thesis aims at getting an automatic speaker localization system with

reasonable accuracy within reverberant accoustic environments. Properly localizing the

place where the speaker talks allows to "point" the microphone array to that exact place

by using beamforming, therefore getting a much cleaner speech signal, free of most of

the noise and reverberations, that can be used to get better automatic speech recognition

rates [RF07].

The objectives followed during this Master Thesis are:

• Design and implementation of speaker localization techniques in accoustic rever-

berant environments

This Master Thesis is one of the first research works in localization techniques wi-

thin the Speech Technology Group at Technical University of Madrid and it there-

fore aims not only at being fully compatible with the speech recognition systems

developed within the Group but also at improving them so that they can fully ope-

rate within noisy, reverberant environments.

The system developed must be flexible, that is to say, all its key parameters should

be easily modified so that they can be quickly adapted to the different experiment

conditions and situations. Moreover, the system should be designed in such a way

that allows future extensions, improvements and additional localization techniques

to be implemented, it must aim at being as robust and efficient as possible and it

must tend to perform in real-time rates.

Also, this Master Thesis must provide a complete description and documentation

of the sytems involved and software developed so that it can be later on easily used.

• Evaluation of the developed algorithms

After the conclusion of this Master Thesis, it must be possible to make some state-

ments and conclusions about the validity of the localization algorithms implemen-

ted as well as the improvement techniques used. In order to do so an extensive

experimentation corpus must be carried out using different databases and environ-

ments. Specifically, this evaluation must concentrate on measuring the localization

improvement or worsening of the different techniques considered and the different

accoustic conditions as well as how big their impact is in each case. The statistical

reliability of the results obtained will also be taken into account in order to fairly

consider the experiments performed.
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Both in the design and implementation Section as well as in the evaluation one, a

detailed validation of the results obtained will be done in order to compare it to the

objectives exposed above and check wether they have been fulfilled in a satisfactory way

or not and why.

Finally, it is important to point out that all the tools used to edit, develop, compile

and debug the code written, along with all the graphic generators and text processors

used during this Master Thesis writing belong to the free software movement 1. Also

some propietary programs such as Matlab were used in specific cases in order to check

the validity of the results obtained by the open source code developed.

1.2 Motivation

As comented above, this Master Thesis constitutes one of the first research projects car-

ried out within the Speech Technology Department (GTH) at the Technical University of

Madrid (UPM) in the field of speech localization within reverberant environments. It is

based in a previous, basic research work developed at the group, [MH06], in which some

simple techniques about Direction of Arrival (DOA) determination had already been de-

veloped.

The Speech Technology Department (GTH) has at the moment reliable, high quality

speech recognizing systems which are expected to work in future projects not only just

with close-talk speech but also within highly reverberant environments such as a confe-

rence room or a digital home. Within this context, this current Master Thesis has been de-

veloped in close collaboration with the Thesis "Design, implementation and evaluation

of techniques for speech signal improvement in reverberant environments: application

in automatic speech recognition systems", [RF07], which has partly used the information

about the speaker localization given by this Thesis in order to improve the performance

of the automatic speech recognition systems working in reverberant environments.

The importance of this current Master Thesis within the research context in which it

was carried out was therefore to be the first in implementing some advanced localiza-

tion techniques able to make accurate estimates about the speaker position. Also, the

laboratory at the Speech Technology Department was equiped with speech acquisition

hardware during the development of this Master Thesis. This fact allowed this Master

Thesis to be the first in the Group to succesfully provide localization estimates related to

real life conditions recorded at its laboratory. What is more, an extensive experimentation

1More information about free software philosophy can be found here: www.fsf.org/philosophy/free-
sw.html
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was carried out, both under real and simulated databases, in order to check the validity

of its results and suggest techniques and future lines to improve its performance. This

Thesis is also intended to serve as basis to future research projects as it is thus provided

with a complete documentation depicting its way of operation.

Regarding the international context, there is plenty of research activity currently being

developed about the topic. The most relevant works about the issue has been taken as

reference and the most common localization techniques depicted in the state-of-the-art

have been implemented. The testing process has also been done according to internatio-

nal evaluation standards so that our results could be directly comparable to those of dif-

ferent research projects. At the same time, the algorithms implemented here have been

tested not only with the database recorded at this research Group but also with some

other public available databases used in different, international, renowned projects. Fu-

ture research works about the topic could extend this Master Thesis and add as many

new techniques and algorithms as it may appear in the close future.

1.3 Structure

This Master Thesis is organized in 4 chapters:

In the firt chapter (the present one), an introduction to the Master Thesis is done.

This introduction offers an overview of the context in which it was developed, both in

the research group where it was carried out, the Speech Technology Group (GTH) at the

Technical University of Madrid (UPM), and in the international research scene about the

topic. It also explains the aim of the Thesis as well as its justification and details a brief

explanation about its contents distribution in order to achieve a more accesible, clearer

reading proccess.

In the second chapter there is a general description about the state of the art in speaker

localization techniques within reverberant environments. This chapter also provides the

basic theoretical background about the algorithms taken into account.

In the third chapter, an extensive evaluation of the implemented algorithms is carried

out. There is an exhautive description of the experiments performed: the databases used,

the multiple strategies and improvements followed, the different conditions under which

they were performed and the results and conclusions they led to.

The fourth chapter summarizes the conclusions we got to based on the experiments

realized.

The fifth chapter introduces the future lines of research work within the speaker loca-

lization field.
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Then, the bibliography used in this Master Thesis is detailed.

Finally, a serie of appendix show the implementation details of the different algo-

rithms and tools developed as well as a documentation about them. Also, some issues

regarding the speech frames windowing process as well as the speed of sound issues

used in this Master Thesis are explained in detail.



Chapter 2

Theoretical review

2.1 Introduction

In this chapter we will introduce and explain the key aspects developed in this Master

Thesis in order to achieve a proper speech recognizing technology in acoustic reverberant

environments using microphone arrays. We will particularly concentrate on the condi-

tions in these reverberant environments as well as on those techniques aimed at localizing

and enhancing the speech signals captured on them.

Speech recorded in real environments by distant microphones is dramatically degra-

ded by factors like noise and reverberation. In the case of applications relaying in close-

talk microphones, the influence of these two factors is relatively low which permits the

development of succesful human to machine communication systems. But whenever si-

gnals are collected in real environments where the microphones are located further away

from the sources of interest, the influence of these degradations dramatically degrade

the performance of the developed systems. The alternatives for the design of a robust

localization system in reverberant rooms are depicted in the following Sections.

2.2 Sound wave propagation

Throughout this Thesis, sound will be assumed to propagate in spherical waves accor-

ding to the solution derived from the linear wave equation in [AM01]. More realistic

radiation patterns of the human head have been described in [MS94]. However, the ap-

plication of these complicated models is beyond the scope of this Thesis.

With this framework, we will now deploy a model describing how the speech pro-

pagation affects the signal received at a microphone array assuming the realistic acoustic
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conditions given in a small room environment. We have to take into account three main

factors affecting the speech signal propagation: attenuation, noise and reverberation.

2.2.1 Effect of attenuation, noise and reverberation

When propagating in spherical wavefronts, the signal amplitude decays at a rate propor-

tional to the distance travelled from the source as described in [AM01]. This produces a

fall in the signal SNR ratio and may even lead the speech power to drop behind the level

of the noise if the capturing microphone is placed too far-away.

Apart from attenuation, in any propagation environment there is always the addi-

tion of some acoustic noise. As explained in [AG07] pp. 9-10, acoustic noise refers to

the overall undesired sound events, that is, any accumulation of external disturbances

to the target information received at a microphone. For instance, in the case of auto-

matic speech recognition in a conference room, everything but the target speaker will

be considered noise althought their features can significally diverge. In general, we can

grossly classify noises in two kinds: First, the non-directional ones, mainly refering to the

background noise that is often considered to be spatially white. As referred in [PSO97],

this kind of noise reduces the SNR but, instead, does not significally bias the direct-path

component of the dominant accoustic source. On the contrary, the second type of noises,

the directional ones (for instance the speech produced by some other people eventually

talking in the room or the stationary noises coming from concrete positions in space such

as computer fans or air-conditioning systems), they do act as competitive sources to the

uttered signal and introduce ambiguity in the localization estimates.

Finally, the propagation of acoustic signals in closed spaces is generally multi-path,

that is, the sound wave reaches its target following different, multiple ways, see Figure

2.2. Therefore, apart form the direct path contribution, the recorded signal will contain

several delayed, attenuated and distorted copies of the original speech due to reflec-

tions and diffractions with the objects and boundaries present in the environment. This

multi-path phenomena is commonly known as reverberation. The room reverberation is

characterized by the room impulse response, basically characterized in Figure 2.1, and

its importance depends on two main factors: the size of the room, controlling the time

amount that the reverberation persists, and the surfaces in that room, controlling how

much energy is lost in each reflection and, thus, how many reflections and multi-paths

may persist.

Thus, reverberation causes reflections of the signal to come in the recording micro-

phone from paths and directions different to that of the original signal. This effect, de-

pending on the strength of the reflections (being the early reflections the most limitting
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Figure 2.1: Instance of a room impulse response. Three parts can be distinguished: the direct
wave, the early reflections and the late reflections

ones), can therefore mislead the localization results.

2.2.2 Direct path propagation

Under simple acoustic conditions, see [Dib00] p. 9, and in free space propagation, where

sound waves are not interfered by objects such as walls, furniture or people, the signal

received at a fixed microphone is linearly related to the originally uttered speech as ex-

pressed in the next equation. Although this assumption is not realistic in our small-room

environments, it accurately describes the direct-path propagation of sound from source

to receiver even in the presence of reverberation.

xdirect(r, t) =
a

r
· s(t −

r

c
) =

a

r
· s(t − τ) (2.1)

where xdirect(r, t) is the signal captured at the microphone, s(t− r
c
) is the original speech,

a is the sound wave amplitude, r is the distance from the source, c is the sound speed

and τ is the time delay between transmitter and receiver.

2.2.3 The room impulse response and the multi-path model

As described in [Dib00] pp. 9-13, when propagating within a room limitted by sound-

reflecting surfaces, the uttered signal is modified according to the room accoustics. This

effect has extensively been modeled by the linear systems theory: a relationship between
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Figure 2.2: Sound propagation inside a room

the original and received signals can be stated in terms of convolution of s(t) with the

room impulse response, h(t):

x(~rm, ~rs, t) = s(t) ∗ h(~rm, ~rs, t) (2.2)

where s(t) is the source signal, ~rs is the source location, x(t) is the received signal and ~rm

is the location of the receiver microphone indexed by m.

The room impulse response characterizes all acoustic paths from the source to the re-

ceiver, including the direct-path one, and, as we can note, is highly dependent on the

source and receiver locations. What is more, h(t) varies with any environment change

and temperature and it is very difficult to estimate in practical situations.

A more useful model can then be used that reflects the propagation of a direct-path

sound plus the sumation of different reflected sounds as follows:

x(~rm, ~rs, t) ≃
a

r
· s(t − τm) + s(t) ∗ u(~rm, ~rs, t) (2.3)

In this equation, the reflected sounds are modeled as a filtered version of the original

signal and u(t) represents the impulse response characterizing all the acoustic paths but

the direct one.

h(~rm, ~rs, t) ≃
a

r
· δ(t − τm) + u(~rm, ~rs, t) (2.4)

This new model contains thus as much information as the room impulse response but it

expresses it in terms of an interesting, easily measurable parameter: the time delay τm.
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In addition, a complete knowledge of u(t) is not necessary for the model to be useful,

although partial knowledge of it, indicating us for instance the reverberation maximum

duration or the stronger multi-paths, may be of great help in methods trying to estimate

τm.

2.2.4 Microphone signal model

We can now finally formulate the expression of the signal present at the receiving mi-

crophone indexed m when capturing a source signal uttered in an acoustic reverberant

environment. According to the last model and taking into account the presence of an

additive noise, ν(t):

xm(t) ≃
a

rm
s(t − τm) + s(t) ∗ um(~rs, t) + νm(t) (2.5)

For simplicity, let ν̃m(t) be a new noise term including the reverberant noise plus the

acoustic, original one:

ν̃m(t) = s(t) ∗ um(~rs, t) + νm(t) (2.6)

And, therefore, the microphone signal can be expressed as follows:

xm(t) ≃
a

rm
s(t − τm) + ν̃m(t) (2.7)

Since most of the localization techniques rely on the direct-path component to make

their estimations, it is convenient to use this formulation as it clearly reflects the recei-

ved signal as a delayed and scaled version of the original one plus a noise component

containing all the acoustic noise and reverberation components.

2.2.5 Far-field vs. near-field

As referred at the beginning of Section 2.2, speech signals propagate through spherical

wavefronts. However, when the distance from the source to the microphone array, r,

is much larger than the physical length of the array, R, the waves arriving to the array

“seem” to be planar as the curvature of the propagating spherical wave is too small with

respect to the array’s size. This is called the far-field condition and, according to [AM01]

it must satisfy the following inequation:
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|r| >
2R2

λ
(2.8)

Whenever this condition is not satisfied we say to work in near-field conditions. Table

2.1 shows examples of the distances that are considered to be the limits for the far-field

assumption at different frequencies for two different microphone arrays: a linear array

of 33 elements equispaced 20 mm and a linear array of 4 elements equispaced 200 mm

which will be later used in this Master Thesis experimentation.

R = 660 mm R = 800 mm

500 Hz 1.26 m 1.85 m

1 KHz 2.52 m 3.71 m

2 KHz 5.05 m 7.42 m

4 KHz 10.11 m 14.84 m

8 KHz 20.20 m 29.68 m

16 KHz 40.40 m 59.36 m

20 KHz 50.50 m 74.20 m

Table 2.1: Far-field limits for a linear array of 33 equispaced 20 mm and a linear array of 4 elements

equispaced 200 mm.

This distinction turns out to be of importance when trying to compute time delay

differences between microphones signals.

In the far-field situation depicted in Figure 2.3, the speech signal takes τ0 seconds to

get to microphone 0, x0, and τ1 seconds to get to microphone 1, x1. It is clear to see that

the wavefront needs to travel an extra distance, d′, in order to get to get to x0 compared

to x1. Then, the time delay difference between the two microphones signals will be:

∆τ = τ0 − τ1 =
d′

c
=

d · sinθ

c
(2.9)

where c is the speed of sound and θ is the signal Direction Of Arrival (DOA) to the array.

The previous equation gives us a simple way to determine the DOA of a speech source

given its signal in two different elements of a microphone pair under a far-field assump-

tion and set some basics about source localization: For instance, if we are able to measure

the time delay difference between two microphones, ∆τ , it will be easy to determine the

direction in space, θ, where the source is located. However, this far-field assumption is

not always feasible, as demonstrated in Table 2.1, and there can be cases in which it will

be necessary to work under near-field conditions such as in Figure 2.4.

Under this near-field situation, the time delay difference between the microphones
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Figure 2.3: Microphone array in far-field situation
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Figure 2.4: Microphone array in near-field situation
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will be as follows:

∆τ = τ0 − τ1 =
d′

c
=

d0 − d1

c
(2.10)

where di represents the euclidean distance from the source to microphone i.

In this near-field situation is not possible to straight-ahead infer the DOA of the

speech source with respect to the array (in fact it does not exist such thing since the

source is so close that its DOA varies with respect to every element of the array).

2.3 Microphone arrays

A microphone array consists on a set of sensors located at specific spatial locations. They

have been widely used within the speech signal processing field as they allow effective

speaker localization tasks as well as enhancing and quality improvement of the captu-

red audio signals in comparison to the results that one single microphone would obtain,

[Pro06]. Their ability to perform spatial filtering, ([BW01], [VB88]), it is specially inter-

esting to develop applications that can separate the audio source of interest from other

undesired, interfering signals.

There is an extensive introduction about microphone arrays in [AM01]. We will here

concentrate just on the aspects related to the speech signal processing. In general, a mi-

crophone array can be considered as the sampled version of a continous sensor being the

same size as the array. The effective length, L, of an uniform sensor array is the length of

the continous aperture which it samples, that is:

L = Nd where N is the number of elements in the array and d is the inter-microphone

distance.

The actual physical length of the array, as given by the distance between the first and

the last microphone, is however d(N − 1).

Generally, we will consider a linear array of equispaced elements. The joint response

of all its elements can be modeled as the sumation of each individual element response.

Then, its directivity pattern can be expressed as follows according to [AM01]:

D(f, θ, φ) =

N−1

2
∑

n=−
N−1

2

ωn(f)ej 2π
λ

sin θ cos φ·nd (2.11)

where N is the number of elements, ωn(f) is the complex weight for element n and d is

the inter microphone distance.
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If we just concentrate on the horizontal directivity pattern (θ = π/2):

D(f, φ) =

N−1

2
∑

n=−
N−1

2

ωn(f)ej 2π
λ

nd cos φ =

N−1

2
∑

n=−
N−1

2

ωn(f)ej 2πf
c

nd cos φ (2.12)

Now, as we can see in equation 2.12, the directivity pattern for a linear, equally spaced

array of identical sensors depends upon three main factors:

• the number of elements in the array, N .

• the inter-element spacing, d.

• the frequency, f .

If we plot some instances of linear arrays directivity patterns in different scenarios we

can appreciate several interesting features:

• If we keep L and f fixed and just vary the number of elements, N , we can appre-

ciate in Figure 2.5 that the level of the side lobes descends and, thus, the overall

directivity increases.

• If we keep N and f fixed and just vary the effective length, L = Nd, we can appre-

ciate in Figure 2.6 that the main lobe width decreases, and the directivity increases

likewise, as L (and thus the inter-microphone distance) is made longer.

• If we keep N and L fixed and just vary the frequency, f , we can appreciate in Figure

2.7 that as the frequency increases, the beam width will decrease, and the directivity

increase likewise.

It is often interesting to have a constant beam width. Let’s recall that the beam width

is given by, [AM01]:

2λ
L

= 2c
Lf

= 2c
Nd·f

Therefore, the main lobe width is inversilly proportional to the product (Nd·f). Given

that N is fixed in most of the applications, we must ensure that the product fd remains

relatively constant in order to get a constant beam width.

When designing speech recognition systems in reverberant environments, it will be

interesting that the microphone array capturing the audio is as directive as possible so

that we can spatially filter the undesired signals as much as possible. However, the spea-

ker position is not known a priori and must be estimated based on localization techniques
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Figure 2.5: Directivity pattern for varying number of sensors (f=1KHz, L=0.5m)

Figure 2.6: Directivity pattern for varying array effective length (f=1KHz, N=5)
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Figure 2.7: Directivity pattern for varying frequency (400Hz<f<3000Hz, N=5, d=0.1m)

that may output slighty biased locations. When pointing too accurately to this biased es-

timates we will also be filtering the audio source and get in consequence poor results.

Therefore, there is an important trade-off between high directivity and speech recogni-

tion results as pointed out in [RF07].

2.3.1 Spatial aliasing

According to Nyquist principle, in order to avoid frequency aliasing when sampling an

analog signal, the sampling frequency must be higher than two times the maximum fre-

quency component present in that signal. This principle can also be applied to equispa-

ced microphone arrays (which are spatially sampled version of a continous aperture) in

terms of spatial aliasing, [AM01]:

fs =
1

Ts
≥ 2 · fmax:fxs =

1

d
≥ 2 · fxmax (2.13)

where fxmax is the highest spatial frequency component and fxs is the spatial sampling

frequency expressed in samples per meter and given by:

fxs =
sin θ cos φ

λ
:fxmax =

1

λmin
(2.14)
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Figure 2.8: Array directivity pattern withouth (a) and with (b) spatial aliasing

And consequently:

d <
λmin

2
(2.15)

where λmin is the minimum wavelength in the signal of interest and d is the inter-

microphone distance that must be respected in order to avoid spatial aliasing, that is, the

appearance of grating lobes at undesired directions of space as depicted in Figure 2.8.

2.3.2 Beamforming

Let’s assume far-field conditions and consider the horizontal directivity pattern of a li-

near array depicted in Figure 2.5 for instance. As we can see, the maximum gain is offered

to signals coming from direction φ = 90o. Beamforming is the technique that allow us to

steer our array directivity pattern to a different spatial direction, see Figure 2.9.

Let’s recall equation 2.11 in page 15 and focus on the complex weight parameter ap-

plied to each microphone, ωn(f). As described in [Zio95], this set of values can be shaped

according to different types of functions, called amplitude windows, in order to control

the main lobe width and the secondary lobes power of the directivity pattern.

In all the Figures displayed up to now, we had assumed equally weighted sensors

when calculating the directivity pattern, assuming N sensors:

ωn(f) = 1
N

In general, complex weighting can be expressed as follows:
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Figure 2.9: Unsteered and steered directivity patterns (φ′=45 degrees,f=1KHz,N=10,d=0.15m)

ωn(f) = an(f)ejϕn(f)

where an(f) and ϕn(f) are the real amplitude and phase weights respectively. By mo-

difying the amplitude weights, an(f), we can modify the shape of the directivity pattern,

while modifying the phase weights, ϕn(f), can control the angular location of the main

lobe. Beamforming techniques determine these phase weights in order to get the desired

steering of the array directivity as follows. Modifying equation 2.11:

D(f, θ, φ) =

N−1

2
∑

n=−
N−1

2

an(f)ej 2π
λ

sin θ cos φnd+ϕn(f) (2.16)

If we use the phase weights, ϕn(f):

ϕn(f) = −2π
sin θ′ cos φ′

λ
nd (2.17)

the directivity patterns steers to the θ′ and φ′ directions. It is important to note that,

since we are not modifying the amplitude weights but just the phase ones, the only dif-

ference between the unsteered and steered patterns is the direction the point to and not

their shape and levels which remain equal as seen in Figure 2.9.
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2.3.2.1 Delay-and-sum beamformer

Delay-and-sum beamforming is the simplest of all beamforming techniques. It makes use

of the time delay property describe above to improve the quality of the signal acquired.

Equation 2.18 describes the scheme applied to a N elements equispaced array:

y[n] =

N−1
∑

m=0

amxm[n − τm] (2.18)

where y[n] is the beamformer overall signal, xm[n] is the signal captured by micro-

phone m and an is the weight given to microphone m, generally set to be 1/N for every

microphone. τm is the delay associated to microphone m and it is given in sample units,

that is, the delay in seconds multiplied by the sampling frequency.

Improvements in the overall signal captured by a delay and sum beamformer are

achieved because the desired signal, coming from the direct path, sum in phase increa-

sing their power. Meanwhile, undesired signals and noise coming from different direc-

tions sum out of phase and decrease their power.

Since delaying a signal in the time domain is equivalent to multiplying by an expo-

nential in the frequency domain, signal y[n] can also be obtained by first multiplying the

FFT transforms of the microphone signals by the proper exponentials and later perform

the IFFT transform as shown in Figure 2.10. This operation can be interpreted as applying

phase weights, ejϕn(f), whose value corresponds to [AM01]:

ϕn(f) = 2πfτn = 2πf
(n − 1)d sin θ′f

c
(2.19)

Let’s recall that, as seen in Section 2.2.5 in page 11, under far-field conditions, the time

delay in the signal between two adjacent microphones in an equispaced linear array is

given by:

τ =
d sin θ

c

2.3.2.2 Filter-and-sum beamformer

The filter-and-sum beamforming algorithm is considered to be a generalization of the

delay-and-sum beamformer as it simply consists on adding a pre-filter to each micro-

phone channel.

Hence, the overall signal obtained by a filter-and-sum algorithm can be expressed as,

[Sel03]:
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Figure 2.10: Frequency domain block diagram of a delay-and-sum beamformer

Figure 2.11: Frequency domain block diagram of a filter-and-sum beamformer

y[n] =

N−1
∑

m=0

P−1
∑

p=0

hm[p] · xm[n − p − τm] (2.20)

where hm[p] is the filter associated to microphone m.

Once again, we can translate this operation into the frequency domain according to

the diagram shown in Figure 2.11.

It is important to note that, depending on the filter chosen, not only the phase but also

the amplitude weights of a filter-and-sum beamformer can vary.

2.3.2.3 Constant Directivity Beamforming (CDB)

Human speech frequency range covers a band ranging from 20 Hz to 20 KHz. This spec-

tra is significally wide since it covers different frequency octaves. As we saw in Figure

2.7 in page 18, an array directivity pattern, and particularly its beamwidth, are highly

dependent on the frequency of the input signal. Specifically, the main lobe width is in-

versally proportional to the product fd.



23 Chapter 2. Theoretical review

Figure 2.12: Geometry of a CDB array of 25 elements (adapted from [AM01])

Hence, using this type of arrays for spatial filtering applications working with human

speech does not output optimal results: The undesired signals coming from undesired

directions will in fact be attenuated at high frequency bands, where the main lobe is

more precise, but this attenuation will be lower and lower as the frequency decreases and

the main lobe gets wider, therefore leading to strong interferences at the low frequency

ranges.

In order to solve this problem, it was suggested to design a Constant Directivity

Beamforming (CDB) array, see Figure 2.12. This type of arrays offers a constant direc-

tivity pattern through wide frequency bands, see Figure 2.13. The technique to get such

behaviour, depicted in [AM01], consists on using arrays whose elements are able to form

different equispaced sub-arrays, each of them having a different inter-microphone dis-

tance, d, and therefore being suited to deal with different frequency bands. The responses

of these sub-arrays are later on combined through an appropiate pass-band filtering to

achieve the desired result.

2.4 Localization algorithms

As exposed above in Section 2.2 in page 7, those situations with the speaker standing in

a close room far-away from the receiver microphone are subject to poor signal to noise

ratio and reverberation effects. Making use of a microphone array is an efficient way to

attenuate these phenomena as seen in Section 2.3 in page 15. In general, the speaker will

not stay static and it will be necessary to track its localization around the room in order

to take advantage of the microphone array characteristics: Centering the array reception

pattern around the source localization in order to avoid undesired noise, audio sources

and reverberations.
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Figure 2.13: Directivity pattern of a CDB array as a function of frequency (adapted from [AM01])

The primary goal of a speech localization system is accuracy. In general, and accor-

ding to [BW01] p. 157, the system estimates precision is dependent mainly on:

• The quantity and quality of the microphones involved.

• The microphone placement relative to each other and the speech sources to be ana-

lyzed.

• The ambient noise and reverberation levels.

• The number of active sources and their spectral content.

The systems results generally improve then with the number of microphones in the

array, particularly with adverse acoustic conditions. Arrays with a large number of mi-

crophones (up to 512, [HFSF96]) have been built. However, when acoustic conditions

are reasonable and microphone placement is proper, source localization can be perfor-

med adequately using a lower number (as low as 4 elements for instance). Performance

is then fully dependent on the array geometry and its optimal design is often strongly

related to the environment acoustic conditions and geometry as well as to the specific

application conditions.

Apart from accuracy, this systems are asked to work with certain speed, adapted to

real-time conditions, so that the localization can be effective and properly adapt to the

source movements in time. Hence, the localization estimates must be updated at a rate

frequent enough.
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Several algorithmic approaches are available for speech source localization, this Sec-

tion summarizes the main ones and makes some comments on the general merits and

drawbacks of each one. There are mainly three possible methods for audio source locali-

zation:

• those employing Time Difference of Arrival (TDOA) information.

• schemes using high-resolution spectral estimation concepts.

• approaches based on maximizing the Steered Response Power (SRP).

2.4.1 Based on Time Delay Estimation (TDE)

This first localization strategy is based on a two-steps procedure.

• First, the Time Difference Of Arrival (TDOA) of the speech signals relative to pairs

of spatially separated microphones is performed. According to [OS94], there are

three different TDOA estimation techniques:

The normalized Cross Correlation (CC).

The Crosspower-Spectrum Phase (CSP) analysis, so-called the Generalized Cross-

Correlation (GCC).

The Least Mean Squared (LMS) adaptive filters.

Comparison among these three techniques carried out in [OS94] demonstrated that

GCC methods, based on the basic CC, show the best properties for the estimation

of the wavefront arrival direction. This Master Thesis will mainly concentrate on

these two techniques depicted in Sections 2.4.1.1 and 2.4.1.2 respectively.

• Secondly, once the TDOA is known, we can make use of it along with the infor-

mation about the spatial microphone positions in order to generate the hyperbolic

curves that represent the geometrical places where the speaker is likely to be accor-

ding to the given TDOA obtained. An extensive study about this hyperbolic curves

can be found at [MH06] pp. 31-43. These hyperbolic curves are then intersected

in some optimal sense in order to arrive to a source location estimate. A number

of variations of this principle have been developed, [Var02] pp. 24-27, [PSO97] are

examples. They differ considerably in the method of derivation of the source co-

ordinates as well as in the extent of their applicability (2D vs. 3D, near-field vs.

far-field, etc.). An instance of one of these derivations is depicted in Section 2.4.1.4.

These TDOA-based localization procedures main advantage is their simplicity and

low-computational cost. Nevertheless, their utility in realistic, acoustic environments is



26 Chapter 2. Theoretical review

limited since their performance has shown to clearly decrease in high noise or reverbe-

ration scenarios. What is more they are not suited for multi-source localization and the

position estimate they output generally consists on a Direction Of Arrival (DOA) estima-

tion rather than an exact spatial localization. Steered-Beamformer strategies are compu-

tationally more intensive, but tend to offer more robust localizations as seen in [BW01]

pp. 164-178.

2.4.1.1 The normalized Cross Correlation (CC)

As explained above, a way of localizing an acoustic source consists on finding an estima-

tion of the time delay, τ , so-called Time Difference of Arrival (TDOA), between the speech

signals captured by a pair of spatially separated microphones in an array. The equations

of these speech signals, arriving to microphones i and j from the acoustic source, can be

expressed as follows:

{

xi(t) = αi · s(t) + ni(t)

xj(t) = αj · s(t + τij) + nj(t)
(2.21)

where s(t) is the uttered signal, ni and nj are the noises captures by each microphone,

αi and αj are the attenuations and τij the time delay between signals due to the distance

difference between the source and the two microphones.

The most common way to determine the time delay difference, τij , given the signals

xi(t) and xj(t), requires to compute the Cross Correlation (CC) function, cxixj
(τ),that

analyzes the similitude between two different signals, for every time delay, τ :

cxixj
(τ) = E[xi(t) · xj(t − τ)] (2.22)

Given the equation 2.21, expression 2.22 ends up being:

cxixj
(τ) = αiαj · csisj

(τ − τij) + cninj
(τ) (2.23)

where csisj
(τ) represents the autocorrelation of the source signal s(n) at lag τ .

τij could be theoretically derived just by maximizing cxixj
(τ) function with respect to

τ . However, due to the finite observation time, this function can only be estimated for a

given temporal window of length T . We denote this estimate as ĉxixj
(τ):

ĉxixj
(τ) =

1

T

∫ T
2

−
T
2

xi(t) · xj(t − τ)dt (2.24)
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And the TDOA estimation, τ̂ij , can be derived from it as follows:

τ̂ij = arg maxτ ĉxixj
(τ) (2.25)

An alternative way to compute the CC function can be found by applying the Discrete

Correlation Theorem, [OS89], to equation 2.22, resulting:

cxixj
(τ) ≡ DFT (xi(t)) · DFT ′(xj(t)) (2.26)

where DFT (x) is the Discrete Fourier Transform of x(t) and "’" denotes the signal com-

plex conjugate.

DFT can be efficiently computed using the Fast Fourier Transform (FFT) algorithm.

Then, according to equation 2.26, the CC expression when using FFTs looks as follows:

cxixj
(τ) = Re[IFFT (FFT (xi) · FFT ′(xj))](τ) (2.27)

where Re[] denotes the real part of a complex function.

The Cross Correlation turns out to be a good technique to estimate the time delay

when signals are just affected by uncorrelated noise sources. Nevertheless, it can easily

fail in presence of strong reverberation since the signal will be strongly correlated to

its replicas, therefore leading to other peaks placed at wrong lags that may mislead the

estimates.

2.4.1.2 The Generalized Cross Correlation (GCC)

There is a more general version of expresion 2.22 called Generalized Cross Correlation

(GCC) (see [KC76]) that consists on prefiltering the signals before computing its corre-

lation in order to improve, [OS94], the results offered by the common cross correlation.

GCC function, c
(g)
xixj(τ), is given by the following expression:

c(g)
xixj

(τ) = E[(hi(t) ∗ xi(t)) · (hj(t − τ) ∗ xj(t − τ))] (2.28)

The Fourier transform of the cross correlation function is known as the Cross-Power

Spectrum (CSP) and denoted as C
(g)
xixj (ω):

C(g)
xixj

(ω) =

∫

∞

−∞

cxixj
(τ)e−jωτdτ (2.29)
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By substituting equation 2.29 into equation 2.28 and applying the convolution pro-

perty of Fourier transforms, the Cross-Power Spectrum can be expressed in terms of the

Fourier transforms as follows:

C(g)
xixj

(ω) = (Hi(ω)Xi(ω)) · (H ′

j(ω)X ′

j(ω)) (2.30)

If we define the frequency dependent weighting function, Φxixj
(ω) = Hi(ω) · H ′

j(ω),

and apply the inverse Fourier transform to equation 2.30 we get the GCC function as:

c(g)
xixj

(τ) =
1

2π

∫

∞

−∞

Φxixj
(ω)Xi(ω)X ′

j(ω)e−jωτdω (2.31)

Ideally, with an appropiate weighting function, c
(g)
xixj(τ) should exhibit a peak which

corresponds to the exact TDOA between microphones i and j. The TDOA estimate, once

again, is the time lag that maximizes c
(g)
xixj (τ):

τ̂ij = arg maxτ c(g)
xixj

(τ) (2.32)

Note that finding τ̂ij requires a simple, low-cost, one-dimensional search. In gene-

ral, function c
(g)
xixj (τ) will hold several maxima. The amplitudes and time lags of these

maxima will depend on a serie of factors including the levels of noise and reverberation,

the separation distance between microphones and the choice of the weighting function

Φxixj
(ω).

Several different prefilter functions, Φxixj
(ω), have been proposed. An extensive de-

finition and discussion of them can be found in [KC76]:

• The Roth Processor, has the desirable effect of suppressing those frequency regions

where the noise power spectrum is large and the estimation is more likely to be in

error.

ΦRoth
xixj

(ω) =
1

Cxixi
(ω)

(2.33)

• The Smoothed Coherence Transform (SCOT), improves the results got by Roth by weigh-

ting the signals according to their SNR characteristics.

ΦSCOT
xixj

(ω) =
1

√

Cxixi
(ω)Cxjxj

(ω)
(2.34)

• The Maximum Likelihood (ML) Estimator, imposes to know the spectral properties of
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the source signal, S(ω) and the noise, N(ω) that, in practice, must be estimated.

ΦML
xixj

(ω) =
|S(ω)|

|Ni(ω)||Nj(ω)|
· (1 +

|S(ω)|

|Ni(ω)|
+

|S(ω)|

|Nj(ω)|
)−1 (2.35)

• The Phase Transform (PHAT),

Expression in equation 2.23, page 26, can be rewritten in the following way:

cxixj
(τ) = αiαj · csisj

(τ) ∗ δ(t − τij) + cninj
(τ) (2.36)

where ∗ denotes convolution.

For uncorrelated noises cninj
(τ) = 0 and expression 2.36 can be interpreted as a

delta function placed at the proper time lag but spread or "smeared" by the Fourier

transform of the source signal spectrum. However, if s(t) were a white noise source,

then its Fourier transform would be a delta function and no spreading would take

place.

Therefore choosing a pre-whitening filter seems to be an optimal strategy. Accor-

ding to this scheme, the PHAT weighting function has been defined to be:

ΦPHAT
xixj

(ω) =
1

|Cxixj
(ω)|

=
1

|Xi(ω)X ′

j(ω)|
(2.37)

By placing equal emphasis on each frequency, the PHAT weighting is sub-optimal

under reverberation-free conditions, see [BS97], yet performs considerably better

than other prefilters in realistic environments. One apparent defect of the PHAT

is to weight the signal as the inverse of its modulus. Thus, errors are accentuated

where signal power is smallest. A bandpass weight has been proposed, see [Dib00]

p. 46, in conjunction with PHAT in order to emphasize only the frequency bands

where most of the speech energy lies.

In conclusion, the GCC-PHAT is the method showing more interesting results. It

has been shown to be effective in real situations, see [PSO97], and it will be the scheme

implemented in this Master Thesis.

2.4.1.3 GCC-PHAT implementation

There are some practical details we must take into account when implementing the algo-

rithm depicted above. First of all, as hinted in Section 2.4.1.1 in page 26, we cannot take

infinite observation time but just a certain temporal window in order to analyze the si-

gnals. Secondly, our analysis will not use the original, analog signals but digital, discrete

versions of them got after a sampling proccess.
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Given this, the discrete-time microphone signals will be denoted x1[n]...xM [n]. Any

source localization technique will start by segmenting these signals into blocks and, ge-

nerally, applying the Discrete Fourier Transform (DFT) to each of them afterwards. Each

block of data is usually windowed with a tapered window prior to the DFT application

in order to improve the signal spectral representation as this mainly eliminates the ef-

fects caused by the discontinuities at the ends of the blocks. Consecutive data blocks

usually overlap in the time-domain to let the data placed at the end of one block, which

is supressed by the tapered window, to be centered in the next one, giving all data an

equal weight in the analysis. Any source localization algorithm will operate on the DFT

of each data block to produce a location estimate (under the assumptiion that the source

location is stationary for the duration of each block). Since each block advances in time,

the algorithms are able to track moving speakers. The rate at which location estimates

are produced depends on the advance of the data blocks, so-called the frame shift, and the

latency of each estimate depends on the frame size.

Now, the expressions for the discrete-time microphone signals x1[n]...xM [n] and their

DFTs when segmented into blocks of length N are:

xm,b[n] = w[n] · x[bA + n] for n = 0...N − 1 (2.38)

where xm,b[n] is the windowed data of the m-th microphone and the b-th block. A is

the frame shift, a constant, positive integer that defines the block advance. The blocks

overlap when A < N , a typicall set is A = N
2 . w[n] is the window function, a typical

chose is the Hanning window, see appendix B in page 175.

The K-point Discrete Fourier Transform (DFT) of the previous block, xm,b[n], can be

expressed as follows:

Xm,b[k] =
N−1
∑

n=0

xm,b[n]e−jk 2π
K

n for k = 0...K − 1 (2.39)

Note that the DFT length is K and K ≥ N . Hence, the signal data block needs to be

zero-padded to increase its length before the K-points DFT is performed. Generally, K

will be chosen to be a multiple of 2 in order to allow quick computations of the DFTs via

the Fast Fourier Transform (FFT) algorithm.

Now, the expression of a DFT-based GCC-PHAT function between microphones i and

j in the data block b, ĉij,b(τ̂), can be defined by substituting in equation 2.31, page 28, the

Fourier transforms for the DFT blocks previously defined:
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ĉij,b(τ̂) =
1

K

K−1
∑

k=0

Φij[k]Xi,b[k]X ′

j,b[k]ejk 2π
K

τ̂ =
1

K

K−1
∑

k=0

Φij [k]Cij,b[k]ejk 2π
K

τ̂ (2.40)

where Φij[k] is the discrete version of the frequency weighting function Φij(ω) and ωk =
2πk
K

is the DFT frequency index.

Taking into account the theorem in equation 2.26 in page 27:

ĉij,b(τ̂ ) = Re[IFFT (Φij [k]Xi,b[k]X ′

j,b[k])](τ̂ ) = Re[IFFT (
Xi,b[k]X ′

j,b[k]

|Xi,b[k]||Xj,b[k]|
)](τ̂ ) (2.41)

This expression shows us how to implement the GCC-PHAT function based on the

FFT of the signals captured by a microphone pair. The TDOA estimate between those

two microphones can be found by searching the lag at which this GCC-PHAT function,

ĉij,b(τ̂ ), is maximum.

The separation distance between the microphones, d, physically limits the range of

valid time delays. The largest TDOA (Time Difference Of Arrival) possible is then that

of d
c
, where c is the sound speed. Therefore τǫ[−d

c
, d

c
]. However, there is a important

remark to do about the possible values of τ in the case of a DFT-based, discrete version

of the GCC-PHAT function. While τ is a continous variable in equation 2.31 in page 28,

equation 2.40 is discrete and all its values are sampled in practice. Therefore, there will

be an inherent loose of precision when translating the real-unit time delays in seconds, τ ,

to discrete-unit time delays in samples, τ̂ , as shown in the next expression:

τ̂ = round(τ [sec] · fs[sec
−1]) (2.42)

Assuming far-field conditions and according to equation 2.9 in page 12, equation 2.42

can be rewritten as:

τ̂ = round(
d · sinθ

c
· fs) (2.43)

As we can see, the imprecision committed depends upon four different factors:

• The intermicrophone distance, d. The longer it is, the smaller the imprecision should

be. Experimental results about this statement can be found in the experimental cor-

pus of this Master Thesis in Section 3.4 in page 71.
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• The sampling frequency, fs. The higher it is, the smaller the imprecision should be.

A technique that artificially increases the sampling frequency by an interpolation

process that adds zeros to the FFTs was proposed by [Var02] pp. 60-68 with the

objective of achieving sub-sample resolution. Experimental results about this state-

ment can be found in the experimental corpus of this Master Thesis in Section 3.5.1

in page 73.

• The Direction Of Arrival (DOA), θ. The more tilted it is, the smaller the imprecision.

The particular case when θ = 0 makes τ = 0 and no rounding imprecision is com-

mitted. Experimental results about this statement can be found in the experimental

corpus of this Master Thesis in Section 3.7 in page 120.

• The rounding function. We can think of different rounding functions. The objective

will be to evaluate the discrete GCC functions in such a way that the values obtai-

ned resemble the continous GCC functions as much as possible. In other words, the

objective is to emulate as precisely as possible those continous values of the GCC

functions that are not present in their discrete versions (since they are located at

lags placed in between the gaps left by the discrete, finite set of time delays compu-

ted by the IFFT). More details about these schemes can be found at Section 2.4.3.3

in page 37.

2.4.1.4 A source location method based on TDOA

Once the Time Difference Of Arrival (TDOA) has been estimated thanks to the imple-

mentation of some of the previous methods, preferably GCC-PHAT, we can make use of

this data, all toguether with the array geometry information, in order to ouput a proper

speaker localization estimate. Various methods to do so have been proposed.Here, we

will just show one of them: a simple 2D version proposed by Varma in [Var02] pp. 24-27.

Designed to work under far-field conditions, it makes a position estimate based on a Least

Mean Square (LMS) method.

As seen in Figure 2.3 in page 13, the TDOA, τij between the signals captured by two

microphones i and j can be expressed as follows:

dijsinθ = −cτij (2.44)

First we make a TDOA estimation via the GCC-PHAT method for every possible mi-

crophone pair combination of the array. Then, this estimates are stored in a vector τ .

Likewise, we can also store all the microphone pair distances in another vector d, which

transforms equation 2.44 into:
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d · sinθ = −c · τ (2.45)

Expression 2.45 represents an equation system, just with one unknown parameter, the

DOA (θ), that can be solved to get a θ estimation via the Least Mean Square (LMS) method

as follows:

θ̂ = arc sin[(dT · d)−1dT (−cτ)] (2.46)

It is important to note that this method does not provide an estimate of the exact

spatial source position but rather a Direction Of Arrival (DOA) estimation. Nevertheless,

this θ estimate is equally valid when trying to steer our array to the proper direction

where the speaker lies.

2.4.2 Based on Spectral-Estimation-Based Sub-Spaces

These methods aim at getting an estimate of the signal power distribution so that they

can detect the energy peaks present on it. In order to do so, they make use of an Eigen

Value Descomposition (EVD) of the cross correlation matrix to divide it into two sub-

spaces: One containing the speech signal and the other containing the noise signal. Both

the source and the noise are supposed to be stationary and their positions fixed. An

instance of this type of methods is the so-called MUSIC (MUltiple SIgnal Classification),

more details can be found at [Sch86].

These methods are specially suited for multi-source scenarios and are able to distin-

guish close sources more accurately than SRP schemes since the algorithm outputs sharp

peaks at the correct directions. However, these techniques have been designed for narrow

band sources and their extent to broad band signals such as speech is complex and hea-

vily accentuates the computational load. In addition, they tend to be less robust to source

and sensor modeling errors than conventional beamforming methods such as SRP. Pri-

marly for these reasons, localization methods based on these high-resolution strategies

will not be considered further in this Master Thesis.

2.4.3 Based on Steered Response Power (SRP)

Many digital signal processing techniques rely on the ability of microphone arrays to fo-

cus to particular locations or directions in space. These techniques make use of some type

of beamforming which can be applied either to source signal capture or to source locali-

zation. If the source position is known, the beamformer can be focused to it in order to
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output an enhanced version of the signal, see [RF07]. If the source location is not known,

the beamformer can be used to scan, or steer the array, over a set of spatial locations in

a predefined search space. When used this way, the output of the beamformer is known

as the steered response. After this, a Maximum Likelihood (ML) estimator searches for a

maximum peak in the output power that should coincide with the speaker location.

The simplest type of steered response is obtained using the output of a delay-and-sum

beamformer, see Section 2.3.2.1 in page 21. Different time shifts, designed to match to the

source signal propagation delays, are applied to the array signals. These signals are then

time-aligned and summed toguether to form a single output signal. More general and

sophisticated beamformers apply filters to the array signals as well as this time aligment,

see Section 2.3.2.2 in page 21. When beamforming techniques are applied to voice capture

applications, these filters must aim not only at suppresing undesired background noise

and unwanted sources, but also at not significally distorting the desired signal. However,

when beamforming techniques are used just for source localization, these filters need

only to boost the power of the desired source signal in the beamformer output. With this

need in mind, we will make use of Phase Transform (PHAT) filters, see Section 2.4.1.2 in

page 27, that have demonstrated to be useful in terms of TDOA estimation although they

obviously distort the input signals. This way, we will get a steered response useful for

localization purposes but not for voice capture. In Section 2.4.1 in page 25, it was stated

that the GCC technique for TDOA estimation did not output estimates robust enough

under high noise and reverberation. It has been hypothesized, see [Dib00] pp. 83-84,

that the incorporation of multiple microphone signals may improve the performance of

this pairwise technique. Given this background, a robust technique was proposed, see

[BW01] pp. 164-178, that makes the Steered Response Power (SRP) equivalent to the

sum of all possible combinations of pairwise phase transforms. This technique has been

named SRP-PHAT and its robustness lies on the fact that exploits the spatial microphone

redundancy by averaging all possible pairwise GCC-PHAT crossings.

SRP methods offer better and more robust localization results than TDOA-based ones,

[Var02] pp. 122-123. They have also been successfully extended to the case of multiple

signal sources, [WK83]. It is mainly because of these two reasons that we decided to rely

on this algorithm as the principle source localization method in this Master Thesis. Its

main shortcoming is their high computational load that particularly increases with the

growing number of microphones in the array as well as with the increase in the set of

spatial locations where to steer to.
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2.4.3.1 The SRP-PHAT algorithm

As seen in Section 2.3.2.2 and Figure 2.11 in page 21, the output of a M-element filter-

and-sum beamformer can be defined in the frequency domain as:

Y (ω, q) =

M
∑

n=1

Wn(ω)Xn(ω)ejω∆n (2.47)

where ∆n is the appropiate steering delay in microphone n for focusing the array to the

spatial location q and Xn(ω) and Wn(ω) are the Fourier transforms of the n-th micro-

phone signal and its associated filter.

This is equivalent to the time-domain beamformer that can be used as a mean for

source localization by steering the array to a set of specific spatial points of interest and

analizing the power of the output signal in each one of them. When the focus corresponds

to the location of the source, the SRP should reach a global maximum. The expression for

the Steered Response Power for a spatial location q can be expressed as the output power

of the filter-and-sum beamformer:

P (q) =

∫

∞

−∞

|Y (ω)|2dω =

∫

∞

−∞

Y (ω)Y ′(ω)dω (2.48)

And the correct localization estimate, q̂s, is found as:

q̂s = arg maxq P (q) (2.49)

However, this power function may in practice peak at a number of incorrect locations

as well due to either strong reflective conditions or the effect of the array geometry and

signal conditions, therefore misleading the localization results. Choosing the appropiate

filters can help to minimize these effects. As seen, the strategy followed by the Phase

Transform (PHAT) of weigthing each frequency component equally has proved to be

advantageous for practical situations. Joining the advantages of the steered beamformer

for source location with the robustness offered by the PHAT weighting, labelled as SRP-

PHAT, was first proposed by [Dib00] pp. 80-82 and can be expressed as follows:

P (q) =
M
∑

i=1

M
∑

j=1

∫

∞

−∞

Φij(ω)Xi(ω)X ′

j(ω)ejω(∆j−∆i) (2.50)

where:

• Φij(ω) = Wi(ω)W ′

j(ω) =
1

|Xi(ω)X ′

j(ω)|
⇔ Wn(ω) =

1

|Xn(ω)|
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are the desired SRP-PHAT filters.

• τij = ∆j − ∆i

is the Time Difference of Arrival (TDOA) between the i-th and the j-th microphones

for the sound waves coming from location q.

2.4.3.2 SRP in terms of GCC

This section shows that the SRP of an M elements array is equivalent to the sum of the

Generalized Cross Correlations (GCCs) of all the possible combinations of microphone

pairs:

(

M
2

)

=
M !

2! · (M − 2)!
=

M(M − 1)

2

This way, the SRP is able to make spatial averaging by integrating the data coming

from multiple microphones. Hence, as the number of microphones increase SRP natu-

rally extends the robustness of the GCC method. It is important to note also that the SRP

of a 2 elements array will be equivalent to the GCC of these two elements.

If we combine the SRP expression in equation 2.50 with the GCC of two microphone

signals in equation 2.31 in page 28, a time-domain version of the Steered Response Power

can now be expressed as a function of the Generalized Cross Correlations summation:

P (q) = P (∆1...∆M ) = 2π
M
∑

i=1

M
∑

j=1

cij(∆j − ∆i) = 2π
M
∑

i=1

M
∑

j=1

cij(τij) (2.51)

where ∆1...∆M are the appropiate steering delays able to focus the array on location q

and cij(τij) is the GCC-PHAT of the signals from microphones i and j.

This is then the sum of all possible pairwise GCC permutations which are time-shifted

by the differences in the steering delays. Included in this sumation is the sum of the M

autocorrelations, which is the GCC evaluated at a lag of zero. These terms contribute

only a DC offset to the Steered Response Power since they are independent of the stee-

ring delays. Also, equation 2.51 includes both permutations of each crossing. However,

summing a GCC combination plus its "time-flipped" permutation is equivalent to scaling

one permutation by two since the associated differences in the steering delays are oppo-

site for each permutation:
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cij(∆j − ∆i) = cji(∆i − ∆j) =:cij(∆j − ∆i) + cji(∆i − ∆j) = 2cij(∆j − ∆i)

This way, it has been shown that the SRP, within a scale factor and a constant offset,

is equivalent to the summation of all possible mic pair GCC combinations (instead of

permutations therefore saving computational load by a factor of 2).

2.4.3.3 SRP-PHAT implementation

In this Section we will present the different methods and strategies that were implemen-

ted in this Master Thesis to get a working SRP-PHAT algorithm.

As presented in section 2.4.1.3 in page 29 for GCC-PHAT, SRP-PHAT can also be im-

plemented using the same block-processing scheme that employs time-limited, overlap-

ped, windowed DFTs as estimates of the microphone signals spectra: The array signals

are segmented in time into short blocks and the steered response algorithm is computed

for each one of them. The block DFTs are denoted by Xm,b[k] where m is the microphone

index and b the block index.

Equation 2.51 defines the steered response as the summation of GCC functions. If we

substitute these GCCs by their implementation from equation 2.40 in page 31 we get an

estimate of the steered response power at the block b, P̂b:

P̂b(∆̂1...∆̂M ) = 2π

M
∑

i=1

M
∑

j=1

ĉij,b(τ̂ij) = 2π

M
∑

i=1

M
∑

j=1

1

K

K−1
∑

k=0

Φij[k]Xi,b[k]X ′

j,b[k]ejk 2π
K

τ̂ij (2.52)

And according to equation 2.41 in page 31, we can express 2.52 in FFT terms:

P̂b(∆̂1...∆̂M ) =

M
∑

i=1

M
∑

j=1

Re[IFFT (
Xi,b[k]X ′

j,b[k]

|Xi,b[k]||Xj,b[k]|
)](τ̂ij) (2.53)

Equation 2.52 shows us a time-domain implementation of the Steered Response Po-

wer (TSRP) got with a speech block captured by an M elements array when focusing at

the spatial location which defines the time delays set ∆1...∆M . However, although these

steering delays are continous in equation 2.51 they must be sampled in practice in equa-

tion 2.52. This fact introduces an important unaccuracy effect: Due to the discretization

process, the summated GCC functions will be evaluated at discrete time lags, in samples,

which are slightly shifted with respect to the real TDOAs between the microphone pairs.

In Section 2.4.1.3 in page 29 it was explained how the inter-microphone distance, the
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sampling frequency and the DOA angle had an influence on this effect. Now, we will

here present some of rounding techniques applied in this Master Thesis implementation

when evaluating the discrete GCC functions. They have been thought so that the infor-

mation in between the samples of the discrete GCC functions can be predicted based on

the sampled values of them that we keep.

• No rounding

τ̂ij = ceil(τij)

where ceil is a function returning the closer integer towards zero. This is the sim-

plest, and the less smart way to choose which time delay in the IFFT-discretized

GCC function we must evaluate.

• Interpolation

τ̂ij = (1 − α) · ceil(τij) + α · floor(τij)

where alpha = |τij − ceil(τij)| and floor is a function returning the closer integer

towards ±∞. This is a more smart way to act since it tries to predict, by interpola-

tion, the missing continous value based on the weighted information given by the

two neighbouring, discretized lags.

• Rounding

τ̂ij = round(τij)

where round is a function simply returning the closest integer. It can be seen as a

simpler, more abrupt interpolation technique based on a step-function.

Some experimental results about these rounding techniques can be found in the ex-

perimental corpus of this Master Thesis in Section 3.5.1 in page 73.

Hence, the time-domain implementation of the SRP algorithm (TSRP) implies a loss

of precision when evaluating the sampled GCC functions. We then searched for an al-

ternative implementation with no loss of accuracy, in other words, a SRP version where

we could make use of the real time delays without having to discretize them. Equation

2.50 in page 35 presents a frequency-domain version of the SRP algorithm (FSRP). With

this method, the TDOA shifts between two microphones in TSRP are substituted in the

frequency domain by multiplications of the GCC functions by complex exponentials eva-

luated at the proper time lags, with the difference that, this time, we can make use of the

real time delays in real units without having to discretize them as it was neccessary in the

TSRP implementation.

Experimental results evaluating the performance and computational load of these

two different implementations, TSRP and FSRP, can be found in Sections 3.5.1 and 3.8

in pages 73 and 123 respectively. During the experimentation, it was also demonstrated
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the theoretical equivalence between the two implementation methods: TSRP and FSRP.

FSRP was performed with a forced rounding conversion of the TDOA units as it must be

done in TSRP. The results yielded then by the two strategies were totally equivalent.

2.4.4 Additional estrategies

This Master Thesis aimed at improving the results obtained just by applying the baseline

SRP-PHAT technique depicted above. It is because of this reason that some new tech-

niques were incorporated to the main algorithm in order to rise its performance. We will

depict them in the following sections.

2.4.4.1 Coarse to fine search

As explained in the introduction to SRP algorithms in Section 2.4.3 in page 33, their main

drawback consists on their typically high computational cost. In [Var02] pp. 74-75, Varma

demonstrates that the SRP-PHAT method requires a number of evaluations several or-

ders of magnitude higher than the GCC-PHAT method when computing a localization

estimate.

Recently, new efficient search algorithms have been proposed in order to take advan-

tage of the robustness and accuracy of the SRP-PHAT methods without suffering their

computational expense. In this sense, Zotkin and Duraiswami proposed in [RDD01] and

[ZD04] a hierarchical search of the Steered Power Response in various levels, from the

coarser to the finer one. In order to do so, they make use of the space-frequency rela-

tionship of sound. Higher frequencies correspond to small wavelenghts that can explore

the space in a finer way, while low frequencies correspond to big wavelenghts that in-

tegrate big areas of space. Zotkin and Duraiswami performed some experiments with

their array configuration in order to get to a relationship between the spatial energy peak

width and the source frequency. The results, depicted in Figure 2.14, threw the following

relationship:

b ≃
2λ

5
where b is the beamformer peak width. (2.54)

From the previous equation and Figure 2.14, we can rapidly infere that using just

low-frequency bands of our signal let us explore and integrate the energy coming from

wide areas of space (since the peak width consequently defined is wider). Therefore,

we will be able to cover the whole search area by just evaluating a few and highly spa-

ced spatial points. On the contrary, as we increase the frequency band that we use in

localization tasks, we are able to evaluate regions every time smaller and smaller. This
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Figure 2.14: Zotkin and Duraiswami beamformer peak width as a function of frequency

way, the evaluation of a high number of spatial locations is not neccessary to get to high

accuracy/finesse levels.

Eventually, we decided to add this new technique to our algorithm and evaluate how

it worked. In the first step, we can select an appropiate, relatively low cut-off frequency

that will define a small number of gross search areas according to the frequency-spatial

relatioship showed above. Once we have selected the gross area containing the strongest

speech energy, we further divide it into 8 equispaced cubes, called octrees, and explore

them themselves with a cut-off frequency twice as big as the previous one (since the areas

to explore have become twice as small). We can continue like this until we get to search

areas as fine and precise as desired. However, the computational time implied in order

to get to these fine levels should not be here a drawback since we are discarding from

the beginning large areas of space and just concentrate on accurately exploring those

(smaller) ones which are more likely to contain the speaker according to the previous

algorithm steps.

The evaluation and experimental results about this technique can be found in the

experimental corpus of this Master Thesis in Section 3.9.1 in page 129.

2.4.4.2 Signal to noise ratio considerations

It is also important to take into account some signal to noise ratio considerations as hin-

ted by DiBiase in [Dib00] pp. 28-34. It is advantageous to discard those speech blocks

where there are pauses or very low-power speech as they result in poor localization es-
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timates. To avoid this effect it is first important to make use of a good Voice Activity

Detector (VAD), see Section 2.6 in page 47, that will discard those speechless frames from

being processed. Nevertheless, even within speech frames, the noise can sometimes be

powerful enough as to corrupt the localization estimates. In this sense, we incorpored

DiBiase’s idea to our system by implementing SNR masks.

In order to do so in our implementation, we first neet to make an estimate of the

noise power present in the recording thanks to a measurement performed during the

first, speechless moments of the recording. Based on this information, we will define a

power threshold. Whenever any speech sample in the FFT transforms holds a power

lying behind this threshold, we will directly not take it into account in our localization

calculations. There can be two different kind of thresholds we can make us of:

• Fixed threshold, we define it by measuring the noise power present in an initial spee-

chless frame and then averaging it over all frequencies. This fixes the minimum

bound to which compare our speech samples, if their value is not a certain dB level

above this bound they will not be taken into account.

• Adaptive threshold, this threshold is again determined by the initial measurement of

a speechless frame, with the difference that, this time, we will store the different

noise power values present at each of the frequency components considered. This

way, we can form a frequency-dependent noise power mask to which compare the

power spectrum of our speech frames. Now, we will only discard a sample in the

FFT transform of the frame when its power value lies behind the corresponding

noise value located at the same corresponding frequency.

2.4.4.3 Estimation of localization confidence

During the development of this work it was suggested that, in order to improve the

algorithm performance, we could somehow try to match known set-up conditions of our

system to the confidence on the estimates that it may yield given these conditions. In

other words, any kind of a priori information about how the reliability of our estimations

is related to the prior experimental conditions can be used to improve our localization

results by designing techniques that put more emphasis on those conditions which yield

the best results.

There are several initial parameters that can affect the final position estimates: the mi-

crophones geometry, the signal frequency bands, the speech spectral content (log energy

in bands), the Signal to Noise Ratio (SNR), etc. Measuring the effect each one of them

has on our estimations accuracy and designing a scheme that puts the stress on those

favorable conditions and "hides" those negative ones is the base of this strategy.



42 Chapter 2. Theoretical review

We can think of two main schemes that can be used for this emphasizing strategy:

• A weighting function, that can be used to filter the contributions of a certain parame-

ter based on how much reliability we can put on it. Reliable frequency or spectral

bands, array configurations, etc. will "weight" more at the moment of deciding an

estimate than those which are not favorable a priori.

• A Neural Network (NN), is a much more powerful tool that can be designed ac-

cording to MuMe, an environment for neural computing described in [Jab94]. The

resulting NN can be trained with a set of input parameters, selected because of their

influence on the estimates accuracy. After the training phase, the NN sorts out itself

the appropiate weighting that it must apply to the different parameters depending

on their value so that the system overall estimates are as precise as possible.

For instance, in Section 2.4.1.3 in page 29, it was demonstrated that longer inter-

microphone distances imply smaller imprecissions when evaluating the discrete GCC

functions. We could then think of a weigthing function to emphasize the contributions

coming from those microphone pairs which are more distant. Section 3.9.3 in page 137

presents an evaluation of the experimental results about this insight.

2.4.4.4 Interpolation techniques

As introduced in Section 2.4.1.3 in page 29, when working with digital signals, we must

assume that the delay between signals is an integer number of samples. However, this is

not often the case and most of the time delays among signals will lie in between integer

sample delays. The imprecission commited depends upon a number of factors. Equation

2.42 in page 31 stated that the higher the recording sampling frequency is, the smaller the

imprecission committed when evaluating the GCC functions at the incorrect delay.

Nevertheless, the sampling frequency of a recording is usually fixed and there is no

possibility to vary it. A technique was suggested by Varma in [Var02] pp. 60-68 in order to

achieve sub-sample resolution within the integer delay values in samples of the discrete

GCC functions. It consisted on the interpolation of the discrete GCC-PHAT functions by

performing frequency domain zero-padding. Examples of this can be found in Figures

2.15 and 2.16. The zero-padding is done in the middle of the DFT and the number of

zeros padded is such that the lenght of the DFT is doubled. Notice that zero-padding

in the frequency domain is equivalent to interpolation in the time-domain. In effect, by

zero-padding the DFT we have decreased the discrete frequency step by a factor of 2,

thus artificially increasing the sampling frequency by the same factor.
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Figure 2.15: Discrete sinusoid (left) and the magnitude of its DFT (right). (Taken from Varma ??)

Figure 2.16: Interpolated discrete sinusoid (left) and the magnitude of its zero-padded DFT.(Taken
from Varma ??)
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Section 3.5.1 in page 73 presents an evaluation of the experimental results about this

technique.

2.4.4.5 Filtering techniques

As suggested in Section 2.4.4.3, it can be interesting to perform the localization algorithm

just with certain frequency bands in order to see which effect the different frequency com-

ponents have on the final localization estimates. With this aim, we will apply different

low-pass, high-pass and pass-band filters to check their influence on our algorithm.

This kind of technique was already slighty pointed out by DiBiase in [Dib00] p. 46.

He suggested that the use of a bandpass weighting could be used in conjunction with the

PHAT prefiltering in order to emphasize those frequency bands where most of the speech

energy lies. He also proposed to apply low-pass filtering bellow 300 Hz since most of the

noise power lies on these bands. In addition, a low-pass filtering can be advantageous

since the large wavelengths of low-frequency waves are not of much use for localization

purposes. Nevertheless, it is also important to point out that most of the energy of the

human speech concentrates on relatively low frequencies and quickly decreases as the

frequency increases. This way, the highest frequency bands, those being more suited for

source localization since their small wavelengths can explore the space in a more accurate

mood, will contain less speech power and consequently suffer from poor Signal to Noise

Ratios. Thus, there is a clear trade-off between the accuracy of the wavelenghts when

exploring the search space and their SNR depending on their frequency range.

Section 3.9.4 in page 143 presents an extensive evaluation of the experimental results

got with different filtering strategies and assesses about the best configuration in order

to get good localization estimates.

2.4.4.6 Use of geometrical information

When trying to improve the localization performance of the system, it is fundamental to

take into account any possible a priori information that may help us reduce the uncer-

tainty about the speaker position. In this sense, using the knowledge we have about the

environment where the speaker will talk, its geometry, bounds and dead areas, can lead

to better localization rates.

We concentrated on two main aspects on this area:

• Environment bounds. We have a priori knowledge about the geometry of the room

where the speaker will talk and, therefore, we can set the search area to adjust

accurately to the room limits. We can still make things in a smarter way if we
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tighten these bounds and reduce them to fit just those areas where the speaker

effectively speaks, see Section 3.3.1.1 in page 61 for instance. With this strategy we

can define a more accurate area where to search and get better localization results.

This is, then, a proactive technique.

• Dead areas. Within the room we can identify certain places where the speaker is

unlikely to be. For instance, it is almost sure that the speaker won’t be talking on

top of a table or a wardrobe, even though they are included inside the search area.

In our localization algorithm, we took into account this fact by implementing a

new flag. When activated, the program compares all the localization estimates it

outputs to a previously provided list of dead areas. In case any estimate belongs

to any of these dead areas we can assume the system has commited an error in its

localization and, thus, discard this estimate which will be replaced by the previous,

correct position estimate. This is, then, a reactive technique.

Section 3.9.5 in page 152 presents the evaluation of the experimental results got with

these strategies.

2.5 Tracking algorithms

The implementation of tracking algorithms can be taken into account as a way to im-

prove the robustness of our localization algorithms. In effect, it is desirable to integrate

information coming from different measurements. We already did so during our system

design when taking SRP into account: its localization estimates demonstrate to be more

robust since this technique integrates the information collected by every possible mic pair

combination. It is not the only example, in Section 2.4.4.3 in page 41, it was suggested

the idea of integrating the information coming from those mic pairs or frequency bands

selected to be more reliable.

Nevertheless, all the systems proposed above based their estimations on the analysis

of one single speech frame as seen in Section 2.4.3.3 in page 37. In this context, the use

of tracking algorithms can act as an useful tool to integrate the information coming from

temporally different speech frames: In effect, tracking can be viewed as the task of fil-

tering the instantaneous localization estimates output by the systems depicted above in

order to get a spatially smoothed trajectory. This way, if our system suddenly outputs a

wrong estimate which happens to represent an abrupt change in the speaker trajectory,

the estimate will automatically be corrected when compared to the previous speaker lo-

calizations and filtered so that it resembles more a place where the source is likely to be

according to its past behaviour.
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There are two main alternatives depicted in literature, see [Pro06], about how to per-

form this filtering:

• The Kalman filter

• Particle Filtering (PF)

2.5.1 The Kalman filter

The Linear Kalman Filter is based on the comparison of the incoming measurements with

the ongoing estimates in order to recursively produce estimates of the system estate. The

gains, or weights, applied to the input data are dependent on important factors such as

the measurement accuracy and the object motion. An exhaustive introduction to the Kal-

man filter can be found in [Kal60]. If the models are accurate, the resulting state estimates

are optimal in the mean square sense. A simple implementation of the Kalman filter for

tracking can be found at [CSH06] where the final localization estimates are obtained ba-

sed on a SRP-PHAT method that weights, by an adaptive smoothing factor given by the

Kalman predictor, the Cross-Power Spectrum (CSP) information of the actual and the

previous speech frames.

Nevertheless, the linear Kalman filter models the dynamics to be linear and Gaus-

sian. Consequently, it cannot be used for measurements which are nonlinearly related

to the system state such as those resulting from spontaneous speech which can be both

highly changing in space (sharp turns, speaker changes) and sporadic over time (short

utterances).

The Extended Kalman Filter (EKF) was introduced in order to solve this problem by

a first linearization step that accomodates the non-linear measurement equations to be

linear functions of the current state, see [BW01] pp. 210-212. Nevertheless, the tuning of

the EKF parameters demonstrated to be very difficult to tune in practice, see [JU97].

More recently, the Unscented Kalman Filter (UKF) was proposed to avoid this linea-

rization step and accomodate non-Gaussian measurements such as noise sources, see

[DG05].

Apart from integrating the information coming from several speech frames, it was

also proposed, see [BW01] pp. 203-225, to make use of different estimates coming from

different localization systems based on different sensors. In particular, it was suggested

the use of a joint audio-video tracking system. A microphone array would output a

localization estimate based on the methods depicted in this Master Thesis. At the same

time, a video camara would obtain its own source position estimate. Since each method

has its specific strengths and weaknesses, it is wise to integrate their measurements via a
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Decentralized Kalman Filter (DKF) in order to get to a more robust localization system.

2.5.2 Particle Filtering (PF)

As an alternative to the Kalman filter, Sequential Monte-Carlo (SMC) methods, also known

as Particle Filtering (PF), were proposed. They approximate the optimal Bayesian filter

by representing probability distributions through a set of particles. A PF recursively

approximates the filtering distribution of states given observations by predicting candi-

date configurations and measuring their likelihood, see [Leh04]. Applications to single

acoustic sources have been implemented, [DBWW03]. However, its use in multi-speaker

environments is still problematic due to the changing turns and number of active spea-

kers.

2.6 Voice activity detection

As pointed out in the CHIL consortium evaluation lines, see [OM06] p. 46, errors in

the final estimates of a localization system can be attributed either to inaccuracy of the

localization system or to a failure of the prior Voice Activity Detector (VAD). In effect,

a VAD is a required component of an acoustic source localizer since no localization can

ever be performed if the speaker is silent.

The importance of a good speech/silence detection was also hinted by DiBiase in

[Dib00] pp. 31-33 since it allows us to discard those speech blocks with pauses or very

low-power speech. All in all, the use of an accurate VAD as a prior step to any localiza-

tion system turns out to be crucial so that the position estimates are limited just to those

periods of time when there is a speaker effectively speaking. There are two ways a VAD

can fail, both of them decreasing our system performance:

• Silence period marked as speech. It makes our localization system to try to estimate

a source position while no source is in fact active. Consequently, it will result in

an error that will make the overall localization rate drop. This type of error is also

known as False Alarm in the CHIL nomeclature.

• Speech period marked as silence. It makes our localization system discard periods of

time where there is in fact an active speaker. Consequently, no estimate will be

output for these periods. This type of error is also known as Deletion in the CHIL

nomenclature.

The traditional techniques for a VAD design have been usually based on the signal
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energy. In [Com90], adaptive energy thresholds were applied to the output of a micro-

phone array delay-and-sum beamformer in order to identify the speech boundaries. Ho-

wever, in [LAS03], a new method for VAD design was proposed based on the Signal

Cross-Power Spectrum (CSP). This scheme is advantageous since it allows to use the

same technique (CSP), in the first step, for the speech activity detector, and later, for the

talker location itself (it is important to remind that both GCC and SRP localization me-

thods are based upon the CSP analysis, see Section 2.4.1 in page 25).

These techniques were taken into account from the proposal of this Master Thesis.

Nevertheless, finally, an already availabe free software tool, the Qualcomm-ICSI-OGI

front-end (QIO), was used for VAD purposes in this Master Thesis. This choice was ba-

sed on the evaluation and paralell work developed by Francisco Jose Royo in the Speech

Technology Group at Technical University of Madrid (UPM). QIO is a feature extraction

algorithm developed by ICSI (International Computer Science Institute) in Berkeley (Ca-

lifornia), OGI (Oregon Graduate Institute of Science and Technology) and Qualcomm

Inc. As it can be seen in Figure 2.17, the tool goes through a high number of different

steps. However, the QIO front-end allows to make use of just the Voice Activity Detec-

tion (VAD) block if desired. This block is composed by a feed-forward Neural Network

trained to discriminate between speech and non-speech frames using a back-propagation

algorithm based on the speech low-passed filtered log energies. A complete description

about this scheme implementation details can be found in [qio02]. Based on its decisions

the frames in an audio file are labelled with a binary flag: "0" in case they are judged to

be non-speech and "1" when the opposite.

2.7 Summary

This theoretical introduction has dealed with the characteristic issues of the acoustic en-

vironments in which microphones happen to be distant from the sources of interest, such

as a conference room or a digital home. In these environments, when propagating, the

sound waves suffer not only from the natural amplitude attenuation, but also from high

noise and reverberation. A description of the sound propagation issues under these en-

vironments can be found in the first Section of this chapter. Under these conditions, the

captured signal results to be difficult to understand by the later speech recognition sys-

tems.

The use of microphone arrays demonstrate to be an useful way to avoid these nega-

tive effects thanks to their ability to perform spatial filtering. That is, they enhance the

signal coming from a desired direction while rejecting all the others. This effect is achie-

ved by beamforming, a technique that allows to steer the array to the chosen direction.
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Figure 2.17: QIO block diagram

A description about microphone arrays properties and beamforming can be found in the

following Sections of the chapter.

With this basis, it is straight-forward to see the necessity of designing and implemen-

ting a source localization system in order to get the appropiate position we must steer

our array to. This Master Thesis focuses on this key issue and presents three possible

methods for speaker localization: based on Time Delay Estimation (TDE), based on the

Steered Response Power (SRP) and based on Spectral-Estimation Sub-Spaces. This last

method demonstrates not to be suited for wide-band signals such as speech. It is because

of this that this Master Thesis mainly concentrates on the design and implementation of

the two first methods whose characteristics and implementation schemes are described

in the following Sections of the chapter. Both of them output position estimates based

on the analysis of the CSP function (which is the Fourier transform of the GCC function).

TDE methods are defined as indirect methods since they require two steps for localiza-

tion: First, a TDOA computation is done between the signals of a microphone pair based

on their GCC/CSP function. Second, the source location itself is performed based on

this TDOA value and the environment geometrical properties. These methods have the

advantage of their simplicity and low computational load. On the other hand, SRP me-

thods are defined as direct methods since they directly evaluate the array response power
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when steered to different locations and take the maxima as the more likely estimate for

the source position. In this chapter it was demonstrated how SRP methods are equivalent

to the summation of all possible combinations of microphone pairs. This technique the-

refore benefits from the integration of spatially differenciated measurements and offers

more accurate and robust results at the expense of heavier computational processes. The

chapter also discusses the use of different prefilters prior to CSP computations among

which the Phase Transform (PHAT) prewhitening filter was chosen to output the best

results.

In the later Sections of the chapter some implementation details are discussed. Spe-

cially conflictive is the necessity to transform real time delay units in seconds to integer

time delay units in samples when performing the digital implementation of the algo-

rithms. It was seen how this transformation implies an unaccuracy effect that can be cor-

rected either with different rounding techniques, when implementing the system through

time-domain GCC evaluations (TSRP) or by directly evaluating the frequency-domain

CSP functions (FSRP).

In the next Sections some possible techniques that may help improve the basic SRP

algorithm performance are presented. A hyerarchical, coarse to fine search was imple-

mented as a way to decrease the inherent computational load associated to SRP searchs.

Noise masking was also implemented in order to discard speech frames with low SNR. A

study about the confidence we can have on the final estimates given the system known

inputs is carried out in order to exploit those system set-up conditions that can be more

advantageous. Interpolation is also taken into account as a way to reach to sub-sample

resolution in the digital computations. Low-pass, high-pass and band-pass filtering was

implemented in order to check the contributions of the different frequency bands. Finally,

considerations about the geometrical information were taken in order to discard those dead

areas in the search space.

Later on, an introduction about some tracking algorithms is presented. They offer pro-

mising results since they are able to integrate temporally differenciated measurements:

The instantaneous spatial estimates from different speech frames are filtered in order to

get a smooth trajectory. Kalman filter and Particle Filtering (PF) methods are introdu-

ced. Although their design was considered, the design, implementation and exhaustive

evaluation itself of the GCC-PHAT and SRP-PHAT algorithms and their improvement

techniques left no room for the implementation and testing of these tracking algorithms.

Their development is open for future research works continuing this present Master The-

sis.

Finally, an introduction about VAD systems is presented. They are a fundamental

first step in every localization system since no location estimate can be performed during



51 Chapter 2. Theoretical review

the silent periods of an utterance. An accurate distinction between speech and silence

is therefore crucial for a good performance in our system. The main methods to design

a VAD, based on energy and based on CSP analysis, are introduced. Finally, the chosen

solution used in this Master Thesis was an already available free software tool known as

QIO. The motivation and details for this solution are explained in the last Section of the

chapter.



Chapter 3

Experimental results

3.1 Introduction

This chapter is aimed at evaluating the techniques introduced in the theoretical review.

A whole different range of experiments, done under different conditions and applied

to different databases, will be shown in order to analize their results and get to certain

conclusions about the algorithms performance.

3.2 Evaluation strategy

As described in the theoretical review, the SRP algorithm is the most powerful one in

terms of speaker localization performance. Therefore, the main experimental corpus of

this thesis will be aimed at testing this technique under different scenarios in order to ana-

lyze those key features and strategies considered relevant to characterize the algorithm

behaviour.

In order to be able to properly interpret the performance and compare all the different

results from all the different experiments, we need to stick to a certain evaluation strategy.

3.2.1 Main Evaluation Metrics: The CHIL Evaluation Plan

In particular we have decided to mainly follow the CHIL Evaluation Plan, see [OM06].

The CHIL team is a consortium of internationally renowned research labs in Europe and

the US. Using their Evaluation Plan will allow us not only to have an unified, standarized

view of all our results but also to be able to directly compare the performance of our

algorithm versus those techniques currently operating in the international research scene.
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In particular we will make use of their audio technology metrics for acoustic person

tracking. According to this basis, our localization algorithm must yield a set of spatial

(x,y,z) coordinates related to the speaker position estimate every time frame. These posi-

tion estimates will be compared, by means of the Euclidean distance, to the ones labelled

in a transcription file containing the real positions, or ground truth, of the speaker.

In this CHIL Evaluation Plan, the localization errors are classified in two classes:

• Gross Errors.

• Fine Errors.

Whenever our estimation lies less than a certain threshold to the ground truth position

of the speaker we will consider it as a Fine Error. This threshold is set to be 500 mm in an

accurate lecture scenario.

A complete description of the CHIL Evaluation strategies can be found at [OM06].

There are two mainly distinct set of metrics. The first set evaluates the person tracking

abilities of the system while the second one focuses on more specific metrics for acoustic

source localizations.

Among this second set, the most relevant metrics used in this Master Thesis are:

• Pcor or localization rate, it provides the number of fine errors over the total number

of frames for which the localization system has produced an estimation.

• Bias, it provides the mean distance in mm along each of the 3D coordinates (x,y,z)

between the ground truth position of the speaker and the system estimation. It can

be referred just to the fine error estimates or to both fine plus gross error estima-

tions.

• Average error, it provides the mean distance in mm between the estimated positions

and the real positions of the speaker. It can be again be referred to either just fine

errors or to fine plus gross error estimates. When referred to just fine errors, this

metric is equivalent to the MOTP.

• RMSE, it provides the RMSE (Root Mean Square Error) of the location estimates in

case of both fine and fine plus gross error estimates.

• False Alarm rate, it provides the number of false alarms divided by the number of

total frames. A false alarm occurs whenever the localization system yields an es-

timate given that no speaker was in fact active at that moment. False alarms are

generally due to errors in the VAD (Voice Activity Detector).
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• Deletion rate, it provides the number of deletions divided by the total number of

frames. A deletion occurs whenever the localization system does not output an es-

timate given that a speaker is in fact active at that moment. Deletions are generally

due to errors in the VAD (Voice Activity Detector).

On the other hand, among the first set, the most relevant metrics used in this Master

Thesis are:

• MOTP, Multiple Object Tracking Precision, represents the precision of the system,

in mm, when it comes to determine the exact position of a tracked person in the

room. It is calculated as the total Euclidian distance error between fine estimates

and ground truths averaged by the total number of fine errors. It shows the ability

of the tracker to just find correct positions and it is independent of tracking errors.

• A-MOTA, Audiovisual Multiple Object Tracking Accuracy, represents the tracking

accuracy of the system, in %, when it comes to keep correct correspondences over

time between the speaker estimation and its ground truth. It is calculated as the

sum of all gross errors plus all the deletions averaged by the total number of ground

truth points:

A − MOTA = 1 −
gross_errors + deletions

ground_truths
(3.1)

3.2.2 Other Evaluation Metrics

Apart from the CHIL metrics we have also taken into account some other measurements.

A system to convert cartesian (x,y,z) coordinates into polar (r, azimuth, elevation)

was developed. Applying this transformation to both the SRP estimates and the speaker

ground truth positions allowed us to ouput an error in terms of azimuth and elevation

degrees. This metric is relevant since it permits a direct comparison of our results to those

obtained by Lathoud when working with the AV16.3 corpus [Lat06b].

Also, distance error along the z-coordinate seems to be less critical and more difficult

to derive in an accurate way (specially when working with linear arrays lined along the

XY plane, since their directivity pattern is symmetrical along the z-coordinate). There-

fore, localization system performance will be evaluated not only in 3D, (x,y,z) coordi-

nates, but also in 2D, (x,y) coordinates.

3.2.3 Sample Results Table

In order to properly compare the performance of the different experiments carried out,

most of the experimental results in this Master Thesis are displayed through a “standard
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results table“ showing and comparing the key evaluation parameters presented above.

Experiment 1 Experiment 2 Experiment 3

Pcor 56.0 ± 1.0% 76.0 ± 0.9% 86.0 ± 0.7%

Rel. error reduction 35.7% 53.6%

Bias fine (x:y:z) [mm] −6 : −57 : −99 3 : −26 : −64 −8 : −31 : −61

Bias fine+gross (x,y,z) [mm] 25 : −189 : −106 48 : 119 : −73 22 : 21 : −68

Bias AEE fine [mm] = MOTP 230 209 206

Rel. AEE reduction 9.1% 10.4%

Bias fine+gross [mm] 585 503 408

Rel. BIAS f+g reduction 14.0% 30.3%

A-MOTA 11 ± 0.6% 51 ± 1.0% 71 ± 0.9%

Rel. error reduction 363.6% 545.5%

Loc. frames 9390 9390 9390

Ref. duration (s) 496.0 496.0 496.0

Table 3.1: Instance of the standard results table used in this Master Thesis

As shown in Table 3.1, the ”standard results table“ presents several columns, each of

them holding the evaluation parameters considered in different rows. We now offer a

brief description of its contents:

• CHIL evaluation metrics

Pcor, or localization rate, represents the experiment fine error rate in %.

Bias fine (x:y:z), represents the average distance error in mm commited along

each of the three spatial coordinates (x,y,z) when taking into account just those

frames with fine errors.

Bias fine+gros (x:y:z), represents the average distance error in mm commited

along each of the three spatial coordinates (x,y,z) when taking into account all the

analyzed frames, both with fine and with gross errors.

Bias AEE fine = MOTP, represents the average total distance error in mm bet-

ween the estimated position and the ground truth location of the speaker when

taking into account just those frames with fine errors.

Bias fine+gross, represents the average total distance error in mm between the

estimated position and the ground truth location of the speaker when taking into

account all the analyzed frames, both with fine and with gross errors.

A-MOTA, represents the tracking accuracy of the system in %.
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• Loc. frames, represents the total number of frames taken into account during the

experiment considered and gives a clue about the relevancy of the results obtained.

• Ref. duration, represents the total length, in seconds, of the speech considered in the

experiment, that is to say, it measures the total duration of those fragments marked

by the Voice Activity Detector (VAD) to contain speech out of the set of audio files

involved in the experiment.

• Relative reduction, appearing in scriptsize at the columns of the Pcor, Bias fine, Bias

fine+gross and A-MOTA, it represents in the improvements (positive magnitudes)

or degradations (negative magnitudes) of the considered parameters in % when

compared in relative terms to the experiment placed at the first column.

• Statistical reliability, appearing next to the values hold in the Pcor and A-MOTA

rows and preceded by a ± symbol, it represents a measure of the statistical rele-

vance of the figure obtained in each parameter, that is to say, it tells to us how much

we can rely on the experimental value to be an accurate one. In other words, this

parameter sets a probability range within which we are sure, up to a certain degree,

that the parameter considered, either the Pcor or the A-MOTA, will lie regardless of

how many other new experiments or audio files are considered. We compute this

statistical reliability according to the next formula [Lew07]:

margin[%] = α

√

P (1 − P )

N
(3.2)

where:

P is the probability value, in %, of the parameter considered.

N is the total number of elements, frames in our particular case, out of which

the probability value P has been computed.

α is a parameter setting the statistical confindence of the resulting probability

range, P ± margin:

α = 2.58 =:99% confidence.

α = 1.96 =:95% confidence. This is the value used in this Master Thesis.

α = 1.64 =:90% confidence.

3.2.4 Tunable parameters

The set of experiments was thought to cover a range of parameters and situations as

wide as possible. In order to do so, the software developed was designed so that the
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fundamental features of the SRP algorithm could be easily modified. Next, we offer a list

and brief description of those key parameters that were selected so that their influence

on the system performance could be measured under different values and conditions:

• Sampling frequency, fs, it is the rate at which the analog speech signal was sam-

pled to be turned into a digital audio file. Its value it is fixed and determined by the

speech acquisition hardware used during the recordings of each database, although

it is always possible to downsample the given audio files in order to get some new

ones at a lower sampling frequency. The details about the different sampling fre-

quencies used at each of the different databases considered can be found at Section

3.3 in page 61. Experimental evaluation about different sampling frequencies is

performed in Section 3.5.1 in page 73.

• Frame size, it is the number of samples contained by each of the single speech frag-

ments in which the audio file is divided. All the computations leading to a lo-

calization estimate are individually done taking into account just the information

contained at each of these fragments. Some results about the effects of the frame

size can be found in Section 3.5.2 in page 80.

• Frame shift, it sets the rate at which localization estimates are output. This rate was

set to be 40 ms in this Master Thesis as done in the Idiap Project. Therefore, every

frame shift seconds (i.e. every 40 ms) a new fragment of ”frame size“ samples is

created and analyzed. This ”frame size“ samples are constituted by ”frame shift“

new samples coming from the audio file plus "(frame size - frame shift)" samples

coming from the previous analyzed fragment.

• FFT size, it sets the length of the FFTs performed during the algorithm computa-

tions. For convenience and performance reasons it is always set to be a multiple of

2 as described in [FJ06] pp. 27 and must be always greater or equal than the frame

size chosen. More details about the effects and limitations of the FFT size can be

found in Section 3.5.3 in page 88.

• Window type, it sets the smoothing function that will be applied to the frames consi-

dered before its computations. The different possible windowing functions consi-

dered are: Rectangular, Hamming, Hanning, Bartlett and Blackman. More details

about them can be found at appendix B and experimental results in Section 3.5.4 in

page 90.

• Number of maximums, it sets how many peaks out of the correlation function will be

selected and stored for further processing. The algorithm employed at this Master

Thesis only uses the first, most powerful peak as the most likely to indicate the
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correct delay between signals captured by different microphones. Nevertheless, as

pointed in [Var02] pp. 4-5, the primary peak can often result from distorted data

while secondary peaks may contain the proper time delay candidate. Although

not developed in this Master Thesis, the tuning of this parameter can lead to an

improved version of our algorithm that could implement the TIDES (TIme DElay

Selection) scheme proposed by Varma in [Var02] pp. 81-122.

• Correlation type, it determines which kind of correlation will be used during the

algorithm computations: either a time-domain correlation, or a frequency-domain

one (theoretically equivalent to the first one), or a frequency-domain one preceded

by a whitening filter, typically a PHAT (PHAse Transform) one, see [Dib00] pp.

73-85.

• Start and end of the audio file, it determines at which point of the audio file, in se-

conds, will our algorithm start and end its computations. It can be useful to get just

through certain parts of interest in the audio file.

• Sound speed and temperature, it allows to choose either the room temperature, T , fact

that determines the sound speed in that media as explained in Appendix A, or the

sound speed itself. Using an accurate sound speed demonstrates to be of great

importance since it is responsible of turning distance units in meters to delay units

in seconds according to the equation distance = sound_speed(T ).time_delay. As

we can appreciate in Figure 3.1, sound speed varies with temperature and choosing

a wrong value can mislead our results.

• Source mics file, it contains all the audio filenames involved in a certain simulation

altogether with the directory paths where to find them.

• Simulation file, it contains all the details depicting the specific environment in which

the simulation was performed, specifically, the geometric bounds of the room and

the microphone array configuration that captured the signal.

Microphone array, there is a complete flexibility to define different array confi-

gurations. We can determine the number of microphones involved as well as their

spatial coordinates within the room considered. Different array configurations can

be tested and their results checked in Section 3.6 in page 108.

Search space grid and bounds, there is also a complete flexibility to define which

particular area within the room will be examined in search of the speaker. We can

either search the whole room or concentrate on particular part of it. Moreover, we

can also define how fine we want our search to be. Typically we apply a grid to the

search area. The intersecting points of this grid will constitute the set over which the

Steered Response Power (SRP) search will be performed. The distance separating
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Figure 3.1: Sound speed as a function of temperature

the points in the grid is totally tunable in each of the three axis (x,y,z) (typically it

will be the same along the three directions) and can vary from very short distances

(i.e. 10 mm) to grosser ones (i.e. 300 mm).

• Coarse to fine flag, when activated, this flag makes the algorithm perform its search

not in the typicall way but in a hyerarchical mood descending from a coarse level to

finer and finer ones. More details about this technique are given in the theoretical

introduction in Section 2.4.4.1 in page 39 and at the works by Zotkin and Durais-

wami [RDD01] and [ZD04]. Experimental results can be found at Section 3.9.1

Starting frequency, it determines the starting cut-off frequency that will be ap-

plied in the first step of the coarse to fine search according to the given spatial-

frequency relationship, see Section 3.9.1. This parameter will also set how big the

explored areas will be in the coarser level of the search.

Maximum distance threshold, it determines how fine we want our coarse to fine

search to get. The hyerarchical scheme will descend up to that point in which the

distance separating two search points is lower than the threshold defined by this

parameter.

• Interpolation flag, when activated, the system performs an interpolation scheme in

search of improved results as those suggested by Varma at [Var02] pp. 60-68 and
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explained in Section 2.4.4.4 in page 42. Experimental results can be found in Section

3.5.1 in page 73.

Interpolation rate, it sets the rate at which the interpolation will be done. Typi-

cally we will apply x2 or x3 interpolation to 16 KHz sampled databases in order

to try to achieve performances resembling those of 32 KHz and 48 KHz sampled

databases respectively.

• Filter flag, when activated, the system performs either a low-pass, or a high-pass or

a band-pass filtering to the signal prior to any further processing. See theoretical

background in Section 2.4.4.5 in page 44. Experimental results can be found in

Section 3.9.4 in page 143.

Low frequency, it sets the lowest frequency that won’t be removed during the

filtering proccess.

High frequency, it sets the highest frequency that won’t be removed during the

filtering proccess. Obviously, this high frequency parameter cannot go further than
fs

2 .

• Frequency SRP flag, this flag determines whether the SRP computations are perfor-

med in the frequency domain (FSRP), thus achieving sub-sample resolution, see

2.4.3.3 in page 37, or in the time domain (TSRP), then necessarily loosing precision

due to the transformation from real time delay units in seconds to integer units in

samples.

Round flag, it just applies when choosing time domain SRP (TSRP) computa-

tions. In that case, we can elect among different ways of turning these real time

delay units in seconds to integer units in samples. This flag determines whether to

pick the closer integer towards zero, or just the closer integer or perform a linear

interpolation between the two closest integer values. Each of these choices imply

different results as depicted in Section 3.5.1 at page 73.

• Noise masking flag, when activated, the system performs a scheme according to

which those speech samples having whose power lies under a certain threshold

over the noise background are removed as described by DiBiase at [Dib00] pp. 31-

33 and explained in Section 2.4.4.2 in page 40.

Noise mask type, it sets the discarding strategy to follow: As level of reference we

can take either the average noise power along all frequencies or the noise spectrum

itself in order to directly compare frequency index by frequency index to the speech

power spectrum. Experimental results can be found at 3.9.2 in page 133.

Noise threshold, it sets how many dB must the speech signal overpass the selec-

ted noise power reference in order not to be discarded.
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• Dead areas flag, when activated, every localization estimate output by the system

lying within the limits of any of the dead areas (i.e. tables, wardrobes, etc.) defined

in the simulation file is discarded and replaced by the last given localization estimate.

For theoretical details see Section 2.4.4.6 in page 44. For experimental results check

Section 3.9.5 in page 152.

• Microphone distance weighting flag, when activated, those results provided by micro-

phone pairs further located each from another are priorized by applying a weigh-

ting proportional to their separation. More details can be found in Section 2.4.4.3 in

page 41. Experimental results can be found in Section 3.9.3 in page 137.

3.3 Databases

We have used four different databases. Two of them were recorded in real life envi-

ronments: AV16.3 and HIFI-MM1 and another two are simulated databases: Sony and

Simulated HIFI-MM1.

3.3.1 IDIAP AV16.3

An audio-visual database recorded in the IDIAP research institute, Switzerland, with the

aid of 16 microphones and 3 cameras, hence the name AV16.3. A complete description of

this corpus can be found in [GLGP04]. This Master Thesis only makes use of the audio

corpus which was recorded at a sampling frequency of 16KHz.

3.3.1.1 Geometry

For all recordings there are two circular arrays of radius 0.1m composed by 8 sennheiser

microphones each. The centers of the two arrays are separated by 0.8m and the origin of

coordinates is located in the middle point between the two arrays.

The IDIAP Meeting Room consists on a 8.2mx3.6mx2.4m rectangular room containing

a centrally located 4.8mx1.2m rectangular table. Possible speakers’ localizations distri-

bute along a L-shaped area around the table as seen in Figure 3.3. A general description

of the meeting room, depicted in Figure 3.2, can be found in [Moo02].

3.3.1.2 Contents

The complete database along with the corresponding annotation files containing the re-

cordings ground truth is fully accesible online at [Lat06a].
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Figure 3.2: Idiap Smart Meeting Room

Figure 3.3: 3 m-long by 2 m-wide L-shaped area for speakers distribution in Idiap Room
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sequence name duration(s) number of speakers speaker behaviour
seq01 − 1p − 0000 213 1 ST
seq02 − 1p − 0000 188 1 ST
seq03 − 1p − 0000 241 1 ST
seq11 − 1p − 0100 32 1 MV
seq15 − 1p − 0100 36 1 MV

Table 3.2: List of the annotated sequences. Tags mean: [ST]Static speaker, [MV]Moving speaker

The corpus is composed by several sequences or recordings which range in the num-

ber of speakers involved. However, in this Master Thesis we will just focus on those

sequences containing a single speaker, those listed in the Table 3.2.

The sequences names are coded sistematically in order to offer a compact description

of their contents. For example, “seq15-1p-0100” has three parts:

• “seq15” is the unique identifier of this sequence.

• “1p“ means that just one speaker was recorded.

• ”0100” four binary flags giving a quick overview of the content of this recording.

From left to right:

bit 1, 0 means “very constrained” (for instance, speaker facing the microphone

array at all times), 1 means “mostly unconstrained”.

bit 2, 0 means “static motion”, 1 means “dynamic motion”.

bit 3, 0 means “minor occlusions”, 1 means “at least one mayor occlusion”.

bit 4, 0 means “little overlap”, 1 means “significant overlap” between speakers.

3.3.1.3 Annotation

Every audio sequence is assigned a corresponding annotation file containing the real po-

sition (3D coordinates) of the speaker’s mouth at every time frame in which that speaker

was talking. The segmentation between the speech and speechless periods, that is to say

the Voice Activity Detector (VAD) involved, was first checked manually at certain time

instances by a human operator in order to ensure its corretness, and later extended to

cover the rest of recording time by means of interpolation techniques. The frame time

resolution was defined to be 40ms.
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3.3.2 HIFI-MM1

An audio database was recorded at the EDECAN Room in the Speech Technology Group

(ETSIT, UPM) at the same time this Master Thesis was being developed and closely rela-

ted to it. The recording sampling frequency was set to be 48KHz and samples are 24 bits

signed integers. Additionally, a downsampled 16KHz version of it was also generated in

order to compare the performance of our algorithms at different sampling frequencies. It

is composed by 1200 utterances, uttered by 12 different speakers (8 males and 4 females).

The actual length of the corpus is around 35 minutes of continous speech.

3.3.2.1 Geometry

All the recordings were captured by two different microphone arrays. First, a linear array

of four 200 mm equispaced sennheiser microphones located at the front wall of the room

and placed simetrically around the origin of coordinates and, then, a L-shaped array of 3

crown microphones located at the corner to the left of the linear array.

This configuration allows us to perform experiments taking into account different

combinations of arrays:

• 4 sennheiser + 3 crown

• 4 sennheiser

• 3 crown

• 3 sennheiser

• 2 sennheiser

• 2 crown

The Edecan Room consists on a rectangular 4mx4.4mx3m area depicted in Figure 3.4.

During each recording speakers were only allowed to stay at one of five different fixed

positions distributed around the room. In each of these fixed positions the speakers were

allowed to orientate in four, equally spaced, different directions: from totally facing the

array to totally backing it.

3.3.2.2 Contents

A total number of twelve different speakers were recorded. In each recording, there is al-

ways just one sole speaker who utters a single, simple, continous sentence. All the spea-
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Figure 3.4: The Edecan Project Room sited at the Speech Technology Group (GTH) in the Technical
University of Madrid (UPM)
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kers were recorded at every possible position with every possible orientation towards the

array.

The audio files were systematically coded in order to offer a compact description of

their contents. Every file is named:

WWW-PX-OY-UZZUUU-chV.wav where:

• WWW are the speaker initials (speaker id).

• X is the speaker position (1 to 5).

• Y is the speaker orientation towards the array (1 to 4).

• ZZ is the scenario id.

• UUU is the utterance id.

• V is the channel number (0 = close-talk microphone, 1-4 = sennheiser microphones,

5-7 = crown microphones).

3.3.2.3 Annotation

All audio files were generated their corresponding reference files containing the real spea-

kers’ "mouth" localizations for every time frame given the actual position P1-5 he was

occuping as well as his particular height in each case. All these labelling file follow the

format used in the CHIL 2006 evaluation campaign for reference files in the Acoustic Per-

son Tracking Task, see [OM06], namely, one line per time index with the following format:

Time_index(s) Num_simult_speakers Num_noise_sources Speake_ID X_pos Y_pos Z_pos

In the HIFI-MM1 corpus, Num_simult_speakers always equals 1, Num_noise_sources

always equals 0 and Speaker_ID equals the corresponding speaker initials.

Of course, as corresponding to a speaker localization sytem, this labelling info was

just generated to those periods of time within the audio file in which the speaker is ac-

tually talking and never to the silent ones. This segmentation was carried out thanks

to the Voice Activiy Detector (VAD) software developed by ICSI (International Compu-

ter Science Institute) at Berkely University, California, OGI (Oregon Graduate Institute

of Science and Technology) and Qualcomm Inc., [vLK07]. Out of the segments obtained

with this software for each of our HIFI audio files, we just picked those forming a long,
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continuous, consistent fragment since we have the a priori knowledge that all our recor-

dings consisted basically on short command sentences uttered without interruptions.

3.3.3 Simulated SONY

An audio database recorded for the Sony company is currently available for research

purposes. It contains more than 30 hours of clean speech, sampled at frequency of 48KHz

with 16 bits resolution and recorded in a studio by a close-talk microphone.

Thanks to some of the applications developed within the Speech Technology Group

at Technical University of Madrid (UPM), see [RL06], those audio files were processed

in order to simulate they were in fact recorded at the Edecan Room and captured by

different configuration of linear arrays.

3.3.3.1 Geometry

The recordings were simulated as if they would have been uttered by a speaker 1.75

meters tall located at the different positions specified in the Edecan Room depicted in

Figure 3.4.

Two different possible array configurations were simulated:

• 4 sennheiser microphones + 3 crown microphones. It is the same array configu-

ration used for the HIFI database recordings, see Figure 3.4. It allows us to use

different subarray options: linear arrays of 4, 3 or 2 sennheiser microphones, a L-

shaped array of 3 crown microphones and linear arrays of 2 crown microphones.

• 33 sennheiser microphones. A linear, 20 mm equispaced array. Out of these 33

microphones we can pick 11 microphones separated by a variable distance forming

an harmonic linear array depicted in Figure 3.5. This configuration allows to form

different equispaced linear subarrays of 5 microphones:

Microphones 3, 4, 5, 6 and 7 form a subarray of elements equispaced 20 mm.

Microphones 2, 3, 5, 7 and 8 form a subarray of elements equispaced 40 mm.

Microphones 1, 2, 5, 8 and 9 form a subarray of elements equispaced 80 mm.

Microphones 0, 1, 5, 9 and 10 form a subarray of elements equispaced 160 mm.

Apart from these configurations there are many other possible subarrays than can

be got out of this equispaced 33 elements set. For instance, uniform linear arrays of

2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 and 31 elements equispaced 20 mm

could be also picked.
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Figure 3.5: Microphone array configuration for Simulated HIFI and Simulated Sony databases.
33 equispaced linear array (circles) and 11 harmonic array (squares). d = 20 mm

3.3.3.2 Contents

208 different speakers were used during the recordings getting a final total amount of

8740 recordings containing simple command sentences.

The audio files are coded sistematically in order to offer a compact description of their

contents:

• idXXXX_YYYYY-PZ-chA-4+3arr.wav

• idXXXX_YYYYY-PZ-chAA-33arr.wav

where:

• “XXXX” is the speaker id.

• “YYYYY” is the sentence id.

• “Z” is the simulated speaker position (1 to 5). See Figure 3.4.

• “AA” is the channel number. In the 4+3 array: ch0-3 (sennheiser), ch4-6 (crown). In

the 33 array: ch00-32 (sennheiser), ch0,8,12,14,15,16,17,18,20,24,32 (harmonic subar-

ray).

3.3.3.3 Annotation

For every audio sequence, a corresponding annotation file was generated so that it would

also follow the CHIL standards described in [OM06]. These files contain the real position

(3D coordinates) of the speaker’s mouth at every time frame taking into account the po-

sition P1-5 she was standing at (see Figure 3.4) and her height (set to always be 1.75 m).

The frame time resolution was defined to be 40ms.
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3.3.4 Simulated HIFI

A simulated version of HIFI database was also generated in order to compare its perfor-

mance against the one provided by the real recordings. The close-talk channel files were

used as input to the simulation software in order to generate 48 KHz audio files hypo-

thetically sited at the Edecan Room in the Speech Technology Group and captured by the

same array configurations depicted at the beginning of the previous Section in page 67.

The annotation files used are the same of those of the Real HIFI corpus.

However, regarding these simulated databases, both SONY and Simulated HIFI, we

must take into account the limitations of the simulation software in game. This appli-

cations are based on a set of models about sound propagation (in particular, the simu-

lations used in this Master Thesis contain a strong component derived from the direct-

path propagation plus a serie of additional reverberated paths that vary on their number

of reflections before reaching its target: the components holding from 1 to 5 reflections

are computed according to the images method, see [RL06] pp.26-28, while components

having from 6 to 20 reflections are computed according to the ray tracing method, see

[RL06] pp. 28-29). Nevertheless, the results obtained by these systems are still open to

improvements and do not always offer real results. In conclusion, we must be careful

when examining the experiments performed under simulated databases: they can offer

us hints about our system behaviour but they can never be as credible as those resulting

from real recordings. Due to these reasons, as general rule, we will when possible prefer

to perform our experiments under real databases rather than with simulated ones.

Finally, in Table 3.3 we show a summary about the main features of the different

databases used during the experimental part of this Master Thesis.



70
C

h
ap

ter
3.

E
xp

erim
en

talresu
lts

Database fs # Speakers # Frames Environment room Microphone Arrays Annotation

AV16.3
16 KHz 3 static 7295 static Idiap Room 2 circular arrays of 8 mics each CHIL format

2 moving 917 moving Every 40 ms

Real HIFI
48 KHz 12 static 9390 static Edecan Room 4 senn mics equispaced 200 mm (linear array) CHIL format

16 KHz 3 crown mics (L-shaped array) Every 40 ms

Simulated HIFI

48 KHz 12 static 9390 static Edecan Room 4 senn mics equispaced 200 mm (linear array) CHIL format

33 senn mics equispaced 20 mm (linear array)

11 senn mics (harmonic array) Every 40 ms

Simulated Sony
48 KHz 209 static 213950 static Edecan Room 4 senn mics equispaced 200 mm (linear array) CHIL format

33 senn mics equispaced 20 mm (linear array)

11 senn mics (harmonic array) Every 40 ms

T
a

b
le

3
.3

:M
ain

featu
res

of
th

e
d

ifferen
td

atabases
u

sed
in

th
e

exp
erim

en
tation



71 Chapter 3. Experimental results

3.4 Baseline results (GCC-PHAT)

In this Section we will evaluate the basic localization algorithm over which this Master

Thesis was developed: GCC. Some previous work developed at the Speech Technology

Group in Technical University of Madrid (UPM) had set the basis of this algorithm, see

[MH06]. However, this turns out to be a limited algorithm: it only takes into account the

information given by one single pair of microphones and it is only able to determine just

the direction of arrival (DOA) in which the speaker is talking. A theoretical introduction

to this algorithm can be found in Section 2.4.1 in page 25.

Nevertheless, a reliable implementation of this strategy is fundamental to later on

be able to implement SRP, a more powerful localization system that can be seen as the

sumation of all the possible GCC combinations between two microphones, see [Dib00]

pp. 78-80 and Section 2.4.3.2 in page 36.

3.4.1 AV16.3

After designing and implementing the algorithm, we made a basic testing of it with those

static sequences of AV16.3 database. ST-AV16.3 choice was motivated because of its sim-

plicity and good recording conditions (very constrained, static and without occlusions

or overlaps). The evaluation metrics used here cannot follow the CHIL standards since

we are not yet able to determine a exact position but only the time difference of arrival

(TDOA) between the microphone pairs involved. These TDOAs estimations are given in

discrete time units, that is to say, in number of samples. Under this basis, we will evaluate

three different metrics:

• Absolute error, in number of samples. It is computed as:

absolute_error = |estimated_tdoa − true_tdoa| (3.3)

• Relative error, in %. It is computed as:

relative_error = 100
|estimated_tdoa − true_tdoa|

true_tdoa
(3.4)

• Histograms, as done in paper [Dib00], histograms are an useful tool to show both the

absolute and the relative error statistical distribution. The histograms displayed at

Figure 3.7 were formed as follows: as explained in Section 2.4.1 in page 25, each mi-

crophone pair is used to output a TDOA estimation every time frame. We run the

same localization experiment for every possible microphone pair combination and
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then averaged the absolute and relative errors commited by each one of them along

all the time indexes. Given the averaged error info of each of the microphone pairs

we can build a histogram displaying several bars, each of them having a height equi-

valent to the number of microphone pairs whose error metric fits the range covered

by that bar. Based on this graphic, we can later plot an accumulated histogram func-

tion reflecting at each abscissa the percentage of microphone pairs whose averaged

error metrics are lower than that given abscissa.

Therefore, in order to make use of these metrics, we need to translate the speaker

ground truth position given in (x,y,z) coordinates to TDOAs between any possible mic

pair combination. A bash script was developed to perform this task. After this, we can

easily compare our GCC estimations to the ground truth ones and get some graphics

showing some hints about the algorithm performance. We will test separately every pos-

sible mic pair combination in order to get some useful information about which mic pairs

perform better and why.

Finally, a comparison between this basic GCC algorithm and SRP will be shown. A

script was developed converting SRP (x,y,z) estimations into GCC TDOAs estimations

related to every microphone pair so that they could be directly compared.

Results are gathered in Figure 3.6 where the absolute and relative errors for each of

the microphone pairs considered are displayed with crosses in the case of GCC-PHAT

and circles in the case of SRP-PHAT. Figure 3.7 represents the histogram bars and the

accumulated histogram functions derived from the GCC-PHAT (solid lines) and the SRP-

PHAT (dashed lines) methods.

We get two important conclusions from Figures 3.6 and 3.7. First, the overwhelming

improvement of the SRP method over the GCC one in terms of absolute error, relative

error and error distribution. Second, as shown in Figure 3.6, we can observe that the ab-

solute error has a clear tendency to grow as the distance between the mic pair considered

also grows. This is due to the fact that the more distant any microphone pair is, the bigger

the time delay differences (TDOAs) between them will be. However, we can at the same

time appreciate that the relative error follows the opposite effect: it tends to descend as

the distance between microphones grows. Therefore, the TDOA error achieved by distant

microphones estimations, when compared to the real TDOA they should have worked

out, demonstrates to be lower and makes distant microphones to be, in principle, more

reliable in their estimates. This can be due to the fact that the bigger the TDOAs between

microphone pairs are, the smaller the quantization effect will be when translating real

time delay units in seconds to discrete, digital time delay units in samples. A theoretical

explanation about this fact can be found in Section 2.4.1.3 in page 29.
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Figure 3.6: Absolute error (in samples, top) and relative error ( in %1, bottom). Performance
comparison between GCC (crosses) and SRP (circles)

3.5 Basic algorithm characterization (SRP)

In this Section we will evaluate the accuracy of the SRP-PHAT localization algorithm.

To start with, the effect of four relevant parameters on the SRP-PHAT performance will

be studied: the sampling frequency, the frame size, the FFT size and the window type

applied.

3.5.1 Sampling frequency and interpolation techniques

In this Section we will concentrate on measuring the impact of the fs in the localiza-

tion results. We will try to determine whether a higher fs implies better perfomances as

well as the effectivity of trying to emulate higher frequencies by the use of interpolation

schemes.

3.5.1.1 HIFI

We chose HIFI database since it was not only recorded at 48 KHz but also a downsampled

16 KHz version of it was also generated. This way, in Table 3.4 we will measure the
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Figure 3.7: Absolute error (in samples, top) and relative error (%, bottom) histograms (boxes) and
accumulated histograms (lines). Comparison between GCC (solid) and SRP (dashed)

effect of the sampling frequency by performing several experiments, first, at the original

sampling frequency rate, 48 KHz. Secondly, at the downsampled 16 KHz version of the

original database and, finally, trying to simulate the original 48 KHz rate based on a x3

interpolated version of the 16 KHz downsampled database.
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fs= 16 KHz fs= 16x3 KHz fs= 48 KHz

Pcor 56.0 ± 1.0% 76.0 ± 0.9% 86.0 ± 0.7%

Rel. error reduction 35.7% 53.6%

Bias fine (x:y:z) [mm] −6 : −57 : −99 3 : −26 : −64 −8 : −31 : −61

Bias fine+gross (x,y,z) [mm] 25 : −189 : −106 48 : 119 : −73 22 : 21 : −68

Bias AEE fine [mm] = MOTP 230 209 206

Rel. AEE reduction 9.1% 10.4%

Bias fine+gross [mm] 585 503 408

Rel. BIAS f+g reduction 14.0% 30.3%

A-MOTA 11 ± 0.6% 51 ± 1.0% 71 ± 0.9%

Rel. error reduction 363.6% 545.5%

Loc. frames 9390 9390 9390

Ref. duration (s) 496.0 496.0 496.0

Table 3.4: Real HIFI. Interpolation techniques. Microphone array: Linear array of 4 sennheiser

microphones equispaced 200 mm. Frame size: 320 ms. Grid step in which the room was divided:

150 mm

It is interesting to note the effect of the interpolation: trying to “predict” the 48 KHz

samples that would lie in between those obtained at 16 KHz results in a better perfor-

mance but never as good as the original, 48 KHz sampled data. However, the main

conclusion deduced is that the greater the sampling frequency is, the better the perfor-

mance of the algorithm will be. This is due to the fact that a higher fs allows us to make a

more accurate conversion between the real time delay units in seconds among mic pairs

and their corresponding delays in sample units which are the ones we can actually use

in our computations.

It is therefore important to take awareness of the negative effect of loosing precision

in the conversion from real time units to integer sample ones. We then thought we could

try to compensate this effect by applying three different techniques:

• Frequency-domain version of SRP. Implies working with real time units in the fre-

quency domain. As explained in the theoretical background, see Section 2.4.3.3 in

page 37, the operation of performing correlation and picking out of its samples the

one placed at the proper delay is equivalent to that of performing beamforming

with that same appropiate delay, with the difference that, in this last case, we can

perfectly make use of the exact real time delay value instead of an integer version

of it.

• Interpolation. Instead of picking the correlation value placed at the appropiate in-
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teger version of the time delay (in samples), we can try to infer its real value by

performing a linear interpolation between the adjacent samples.

• Rounding. It can be seen as a simpler way to interpolate, based on a step function.

Instead of selecting just the integer value towards zero of the real delay we will pick

that integer which is closest to the real delay.

In Tables 3.5 and 3.6, we performed several experiments fixing all their parameters

except those determining which of the previous techniques to choose. The fs used were

16 and 48 KHz respectively. This way we can measure the effectivity and impact of each

of these schemes aimed at obtaining some kind of sub-sample resolution.

No Rounding Rounding Interpolation Frequency SRP

Pcor 53.0 ± 1.0% 56.0 ± 1.0% 70.0 ± 0.9% 79.0 ± 0.8%

Rel. error reduction 6.4% 36.2% 55.3%

Bias fine (x:y:z) [mm] −42 : 1 : −14 −6 : −57 : −99 −63 : 32 : −31 −13 : −16 : −40

Bias fine+gross (x,y,z) [mm] 4 : −24 : −63 25 : −189 : −106 21 : −5 : −26 36 : 52 : −36

Bias AEE fine [mm] = MOTP 171 230 230 198

Rel. AEE reduction −34.5% −34.5% −15.8%

Bias fine+gross [mm] 593 585 545 465

Rel. BIAS f+g reduction 1.3% 8.1% 21.6%

A-MOTA 5 ± 0.4% 11 ± 0.6% 40 ± 1.0% 58 ± 1.0%

Rel. error reduction 6.3% 36.8% 55.8%

Loc. frames 9390 9390 9390 9390

Ref. duration (s) 367.0 496.0 496.0 367.0

Run time (real-time units) 0.13 0.13 0.13 115.00

Rel. run-time reduction 0.0% 0.0% 99.9%

Table 3.5: Real HFI. Rounding techniques. fs = 16 KHz. Microphone array: Linear array of 4

sennheiser microphones equispaced 200 mm. Frame size: 320 ms. Grid step in which the room

was divided: 150 mm
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No Rounding Rounding Interpolation Frequency SRP

Pcor 66.0 ± 1.0% 78.0 ± 0.8% 69.0 ± 0.9% 85.0 ± 0.7%

Rel. error reduction 35.3% 8.8% 55.9%

Bias fine (x:y:z) [mm] −33 : −41 : −47 −79 : 13 : −32 −72 : 8 : −12 −66 : −23 : −20

Bias fine+gross (x,y,z) [mm] −10 : −28 : −80 −28 : 80 : −45 −12 : −88 : −4 −32 : 72 : −24

Bias AEE fine [mm] = MOTP 185 217 226 231

Rel. AEE reduction −17.3% −22.2% −24.9%

Bias fine+gross [mm] 495 506 631 444

Rel. BIAS f+g reduction −2.2% −27.5% 10.3%

A-MOTA 32 ± 0.9% 56 ± 1.0% 38 ± 1.0% 71 ± 0.9%

Rel. error reduction 35.3% 8.8% 57.4%

Loc. frames 9390 9390 9390 9390

Ref. duration (s) 367.0 496.0 496.0 496.0

Run time (real-time units) 0.25 0.25 0.25 63.00

Rel. run-time reduction 0.0% 0.0% 99.6%

Table 3.6: Real HIFI. Rounding techniques II. fs = 48 KHz. Microphone array: Linear array of 4

sennheiser microphones equispaced 200 mm. Frame size: 320 ms. Grid step in which the room

was divided: 250 mm

As expected, the frequency-domain version of SRP method (FSRP) yields the best

results as it works with the exact time delays in the frequency domain. Nevertheless,

this method, compared to the other three options (all of them performed in the time

domain), turns out to be extremely heavy from the computacional point of view due to

the large number of complex multiplications that must be carried out (as many as FFT

points times the number of space locations the beamformer is pointed to). Particularly, as

reflected in the Tables 3.5 and 3.6, the computational cost of the FSRP method is extremely

higher than the schemes carried out in the time domain. A more detailed study about this

computational load can be found in Section 3.8 in page 123.

3.5.1.2 AV16.3

We do not have any 48 KHz sampled version of AV16.3 database whose fs = 16KHz.

Therefore, we will try to perform x2 and x3 interpolations to check if we can achieve

better performances with this method.

Both Tables 3.7 and 3.8, compare the localization results got with the plain, 16 KHz,

ST-AV16.3 database to those achieved by x2 and x3 interpolated versions of it. Neverthe-

less, Table 3.7 just takes into account the interpolation scheme effects since any kind of
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rounding is performed, while Table 3.8 reflects what happens when both rounding and

interpolation are applied at the same time.

16 KHz No Rounding Interpolation x2 Interpolation x3

Pcor 87.0 ± 0.8% 88.0 ± 0.7% 89.0 ± 0.7%

Rel. error reduction 1.1% 2.3%

Bias fine (x:y:z) [mm] 75 : 13 : −119 50 : 9 : −47 44 : 17 : −9

Bias fine+gross (x,y,z) [mm] 23 : −45 : −135 −25 : −66 : −57 −40 : −67 : −25

Bias AEE fine [mm] = MOTP 227 171 144

Rel. AEE reduction 24.7% 36.6%

Bias fine+gross [mm] 350 303 279

Rel. BIAS f+g reduction 13.4% 20.3%

A-MOTA 73 ± 1.0% 75 ± 1.0% 78 ± 1.0%

Rel. error reduction 2.7% 6.8%

Loc. frames 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0

Table 3.7: ST-AV16.3. Interpolation techniques II. Frame size: 640 ms. Grid step in which the

room was divided: 50 mm

16 KHz Rounding Interpolation x2 Interpolation x3

Pcor 95.0 ± 0.5% 89.0 ± 0.7% 89.0 ± 0.7%

Rel. error reduction −6.3% −6.3%

Bias fine (x:y:z) [mm] 22 : 7 : 27 21 : −0 : 39 26 : 4 : 45

Bias fine+gross (x,y,z) [mm] −27 : −60 : 17 −56 : −86 : 24 −56 : −80 : 28

Bias AEE fine [mm] = MOTP 100 152 141

Rel. AEE reduction −52.0% −41.0%

Bias fine+gross [mm] 191 282 272

Rel. BIAS f+g reduction −47.6% −42.4%

A-MOTA 90 ± 0.7% 78 ± 1.0% 80 ± 0.9%

Rel. error reduction −13.3% −11.1%

Loc. frames 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0

Table 3.8: ST-AV16.3. Interpolation techniques. Frame size: 320 ms. Grid step in which the room

was divided: 100 mm

From Tables 3.7 and 3.8, we can note that interpolation only leads to an improvement

in the mean distance error when no rounding technique is applied to real time delays.
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From this fact, we can therefore infer that both interpolation in the frequency domain and

rounding in the time domain are somehow equivalent techniques in the sense that both of

them aim at getting a better sub-sample resolution or, in other words, a more precise use

of the real time delay between mic pairs. Again, this performance-equivalent techniques

turn out to have drastically different effects on the computational load: while frequency

interpolating x2 and x3 result in neccessarily having to use twice and three times as big

FFT transforms (with consequent twice and three times bigger execution times), rounding

in the time domain allows not to increase the FFT size and keep the execution time. For

instance, some execution times for the experiments above are reflected in Table 3.9.

16 KHz with no rounding
70 ms per frame

1.75 times real-time

16 KHz with rounding
72 ms per frame

1.8 times real-time

16 KHz x 2
120 ms per frame

3 times real-time

16 KHz x 3
220 ms per frame

5.5 times real-time

Table 3.9: Static AV16.3. Instance of computational loads for interpolation schemes

3.5.1.3 HIFI vs. AV16.3

Finally we can make an interesting observation about how well our algorithms work

depending on the chosen database. As we can check, AV16.3 performance rates are much

better than HIFI ones. This is mainly due to two reasons:

• Recording conditions. AV16.3 database was recorded in a smart room designed to

somehow limit reverberation and background noise, see [Moo02]. On the other

side, HIFI database was recorded in the same laboratory this Master Thesis was

developed: a room with big windows yielding high reflecting coefficients and large

background noise since surrounded by lots of PCs whose fans introduce a strong

low frequency noise.

• Array geometry. AV16.3 database was recorded by two circular arrays of 8 micro-

phones each resulting in a total of 16 microphones who can be combained into 120

different mic pairs. Meanwhile, HIFI recordings were captured by a sole linear ar-

ray of 4 elements which only allows 6 different single combinations and presents

worse directivity pattern conditions as far as the main lobe width and the frequency

aliasing of the array are considered.
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3.5.2 Frame size

In this Section we will concentrate on measuring the impact of the frame size in the lo-

calization results. We will try to determine whether a bigger frame size implies better

perfomances as well as measuring how the processing delay derived from big frame

sizes can affect localization when dealing with moving speakers.

3.5.2.1 AV16.3

Here, the choice of the AV16.3 database was due to the fact that it includes both sta-

tic and moving speakers. Consequently, this fact allows us to measure the effect of the

frame length on our algorithm performance under different circumstances. We will first

concentrate on those recordings containing a static speaker. Table 3.10 and Figure 3.8 will

show the localization results of these experiments in which the only parameter to vary

was the frame size. Values considered ranged from 80, 160, 200, 320, 500, 640 to 1000 ms.

Frame Size = 40 ms 320 ms 640 ms

Pcor 81.0 ± 0.9% 87.0 ± 0.8% 94.0 ± 0.5%

Rel. error reduction 7.4% 16.0%

Bias fine (x:y:z) [mm] 58 : 17 : 63 62 : 18 : 65 62 : 19 : 63

Bias fine+gross (x,y,z) [mm] −76 : −174 : 39 −62 : −155 : 46 7 : −45 : 54

Bias AEE fine [mm] = MOTP 197 191 190

Rel. AEE reduction 3.0% 3.6%

Bias fine+gross [mm] 490 423 291

Rel. BIAS f+g reduction 13.7% 40.6%

A-MOTA 61 ± 1.1% 74 ± 1.0% 87 ± 0.8%

Rel. error reduction 21.3% 42.6%

Loc. frames 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0

Table 3.10: ST-AV16.3. Frame size effect. Grid step in which the room was divided: 150 mm

We can conclude that, since we have temporal frame to observe the speaker position,

the bigger the length of the frame, the greater the estimates we will get. Also, as the

frame length increases we will also need to compute more points in our FFT transforms

therefore increasing the computational time required as seen in Figure 3.9.

Next, the effects when considering speakers in movement will be studied. Measure-

ments were made at frame lengths of 80, 160, 200, 320, 400, 500 and 640 ms. The aggre-

gated results from both seq11 and seq15 were gathered at Table 3.11 and then disglosed
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in Table 3.12, for seq11 alone, and Table 3.13, for seq15 alone, since their results came up

to diverge significally. Finally, Figure 3.10 shows the Pcor, A-MOTA and average error

figures as a function of the varying frame size.

seq11 y 15. 40 ms 320 ms 640 ms

Pcor 62.0 ± 3.1% 71.0 ± 2.9% 69.0 ± 3.0%

Rel. error reduction 14.5% 11.3%

Bias fine (x:y:z) [mm] 53 : 15 : 59 49 : 67 : 60 10 : 86 : 41

Bias fine+gross (x,y,z) [mm] −95 : −429 : 8 −115 : −278 : 13 −118 : −185 : 9

Bias AEE fine [mm] = MOTP 218 228 259

Rel. AEE reduction −4.6% −18.8%

Bias fine+gross [mm] 800 660 636

Rel. BIAS f+g reduction 17.5% 20.5%

A-MOTA 23 ± 2.7% 42 ± 3.2% 37 ± 3.1%

Rel. error reduction 82.6% 60.9%

Loc. frames 917 917 917

Ref. duration (s) 42.0 42.0 42.0

Table 3.11: MV-AV16.3. Frame size effect. Grid step in which the room was divided: 150 mm

seq11. 40 ms 320 ms 640 ms

Pcor 75.0 ± 3.9% 87.0 ± 3.0% 83.0 ± 3.4%

Rel. error reduction 16.0% 10.7%

Bias fine (x:y:z) [mm] 63 : −5 : 68 54 : 22 : 68 26 : 28 : 51

Bias fine+gross (x,y,z) [mm] 90 : −6 : 64 90 : 38 : 71 67 : 59 : 74

Bias AEE fine [mm] = MOTP 201 214 253

Rel. AEE reduction −6.5% −25.9%

Bias fine+gross [mm] 386 272 319

Rel. BIAS f+g reduction 29.5% 17.4%

A-MOTA 50 ± 4.5% 74 ± 3.9% 67 ± 4.2%

Rel. error reduction 48.0% 34.0%

Loc. frames 481 481 481

Ref. duration (s) 21.1 21.1 21.1

Table 3.12: MV-AV16.3 seq11. Frame size effect. Grid step in which the room was divided: 150

mm
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seq15. 40 ms 320 ms 640 ms

Pcor 48.0 ± 4.7% 55.0 ± 4.7% 54.0 ± 4.7%

Rel. error reduction 14.6% 12.5%

Bias fine (x:y:z) [mm] 42 : 35 : 50 44 : 114 : 51 −6 : 146 : 31

Bias fine+gross (x,y,z) [mm] −284 : −861 : −50 −325 : −601 : −47 −308 : −434 : −58

Bias AEE fine [mm] = MOTP 235 242 265

Rel. AEE reduction −3.0% −12.8%

Bias fine+gross [mm] 1224 1058 960

Rel. BIAS f+g reduction 13.6% 21.6%

A-MOTA −4 ± 1.8% 10 ± 2.8% 7 ± 2.4%

Rel. error reduction −350.0% −275.0%

Loc. frames 436 436 436

Ref. duration (s) 20.6 20.6 20.6

Table 3.13: MV-AV16.3 seq15. Frame size effect. Grid step in which the room was divided: 150

mm

In this case, the performance does increase as we also increase our frame length but

this just happens up to a certain value of it. This effect is due to the fact that the speakers

are talking at the same time they are moving and, therefore, if we take a too long frame,

the speaker’s position will be different between the beginning and the end of it. We can

try to make some basic calculations about how long our frame can be before this changing

position effect starts having a significal importance on our algorithm localization rate. As

explained above, whenever our estimation lies less than 500 mm from the true speaker

localization we can consider it as a fine error. Taking into account that a human speaker

walks at approximately 5 Km/h, then:

500mm ∗
1m

1000mm
∗

1h

5km
∗

1km

1000m
∗

3600s

1h
= 0.36s (3.5)

Therefore, taking frames longer than 360 ms should start worsening the performance.

We can check this assumption by looking at Figure 3.10. As we can see, the localization

rates grow up to 320-400 ms and after that they start to slowly decrease: the positive

effect of having more data to locate is cancelled by the changing position of the speaker.

In Figure 3.10, we can also note that the performance obtained with moving speaker

in seq11 is obviously better than the one got with seq15. At first, we thought this might

be due to different, more abrupt behaviour of the speaker in seq15. Nevertheless, a close

inspection of the videos corresponding to these sequences refuted this theory. Finally, we

were able to find out the real reason behind this phenomena by playing at the same time
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Figure 3.10: Moving AV16.3 average error and localization rate as a function of the frame size
considered. Top: Average error fine+gross (solid) and average error fine (dashed). Bottom: Pcor
(solid) and A-MOTA (dashed). Aggregated results for seq 11 and 15 are shown in thick lines,

while seq15 alone is shown with thin lines.
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the video recording of the sequence and a graphical representation of our localization

system estimates corresponding to it: either the VAD used by the Idiap Institute or the

human operator in charge of labelling seq15 demonstrated to commit a mistake since

they were including long speechless periods of time in their reference ground truth file.

Thus, although our system localization estimates were proper during the speech periods,

they were obviously wrong during these specific, wrongly marked speechless periods

of time, finally leading to a dramatic drop in the overall performance. This fact showed

us the extreme importance of having an effective VAD precisely marking which are the

speech periods, able to be localized, and which are the speechless ones, discarded in

terms of system evaluation.

3.5.2.2 HIFI

We will also check the frame size effect on the HIFI database to see if the conclusions got

with AV16.3 are of general validity. Experiments at frame sizes of 40, 80, 160, 320, 500,

640 and 1000 ms were performed and their results depicted in Table 3.14 and Figure 3.11.

Frame Size = 40 ms 320 ms 640 ms

Pcor 65.0 ± 1.0% 88.0 ± 0.7% 84.0 ± 0.7%

Rel. error reduction 35.4% 29.2%

Bias fine (x:y:z) [mm] −8 : −27 : −60 −15 : −11 : −27 −7 : −34 : −61

Bias fine+gross (x,y,z) [mm] 25 : 15 : −69 20 : 43 : −28 50 : 19 : −69

Bias AEE fine [mm] = MOTP 213 196 207

Rel. AEE reduction 8.0% 2.8%

Bias fine+gross [mm] 723 386 418

Rel. BIAS f+g reduction 46.6% 42.2%

A-MOTA 30 ± 0.9% 76 ± 0.9% 69 ± 0.9%

Rel. error reduction 153.3% 130.0%

Loc. frames 9390 9390 9375

Ref. duration (s) 367.0 367.0 367.0

Table 3.14: Real HIFI. Frame size effect. Sequences considered: 223 recordings from 12 different

speakers placed at 5 different, static positions. Grid step in which the room was divided: 150 mm

As we can observe in Figure 3.11, the localization rate in HIFI database also grows as

the frame size considered grows but just to a certain point located around 320 ms. From

this point onwards, increments of the frame size considered do not translate into locali-

zation rate improvements but tend to very slowly descend. This phenomena is due to

the fact that all the recordings involved in the HIFI database consist on really short com-
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mand sentences (from Table 3.14 we can deduce the average duration of each recording

to be approximately 1.65 seconds being 223 the files considered and 367 seconds the total

duration of the reference). Therefore, increments of the frame size will imply a dramatic

descend in the number of frames required to analyze the complete file. The last of these

frames will usually be strongly zero-padded as it will not cover enough speech data as to

fill a complete frame size and will therefore present poor localization results. In addition,

there will also be a high probability that these long frames cover not only speech periods

but also a significant part of silence periods that will consequently seriously corrupt the

file overall localization results.

3.5.3 FFT size

We will try to evaluate our algorithm depending on the number of samples of the FFT

transforms we use. In theory, a larger FFT transform result in a more accurate represen-

tation of the signal spectrum.

It is important to note that the FFT size imposes an important limitation on how far

our speaker search can reach. Specifically, the FFT size imposes the length of our cor-

relation fuctions where we perform the search of the appropiate power value placed at

the appropiate time-delay (in sample units) where we expect our speaker to be. Conse-

quently, if our correlation function has N = fftSize points we will only be able to search

among those time-delays (in samples) included in the range [−N−1
2 , N

2 ]. This fact, depen-

ding on both the corresponding sampling frequency we are working with and the speed

of sound, can be translated into the maximum distance any speaker can stand from our

array in order to be localized. Next, some basic computations are presented, in the most

restrictive conditions, in order to check how this phenomenon can threathen our algo-

rithm ability to locate:

1. At 16 KHz The minimum frame size, M, used in any experiment was 40 ms. This

imposes a minimum FFT size, N, of:

Mmin ∗ fs = 40ms ∗ 16KHz = 640 samples

Since (N ≥ M) ∧ N = 2n : Nmin = 1024 and time_delays ∈ [−511, 512] samples

delaymax =
512samples

16KHz
∗ speed_sound = 32ms ∗ 345m

s
= 11.04 m

2. At 48 KHz The minimum frame size, M, used in any experiment was 40 ms. This

imposes a minimum FFT size, N, of:
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Mmin ∗ fs = 40ms ∗ 48KHz = 1920 samples

Since (N ≥ M) ∧ N = 2n : Nmin = 2048 and time_delays ∈ [−1023, 1024] samples

delaymax =
1024samples

48KHz
∗ speed_sound = 21.33ms ∗ 345m

s
= 7.36 m

In both cases, these limits are large enough in order not to impose any restriction in

the room environments considered.

Now, we will concentrate on the hypothetic effect of a finer frequency resolution of

the Fourier transform on our algorithms. In order to do so we will make an experiment

picking a frame size just as big as the FFT size chosen to later compare its results to the

ones obtained when applying a FFT transform twice as big.

3.5.3.1 AV16.3

In next Table 3.15, we compare the results obtained in AV16.3 in the two cases previously

mentioned: when using a FFT size just as big as the frame size considered and when

picking a FFT size twice as big.

FFT Size = 8192 FFT Size = 16384

Pcor 88.0 ± 0.7% 88.0 ± 0.7%

Rel. error reduction 0.0%

Bias fine (x:y:z) [mm] −46 : −30 : −81 −46 : −30 : −81

Bias fine+gross (x,y,z) [mm] −110 : −131 : −95 −111 : −130 : −95

Bias AEE fine [mm] = MOTP 223 224

Rel. AEE reduction −0.4%

Bias fine+gross [mm] 356 356

Rel. BIAS f+g reduction −0.0%

A-MOTA 76 ± 1.0% 76 ± 1.0%

Rel. error reduction 0.0%

Loc. frames 7295 7295

Ref. duration (s) 600.0 600.0

Table 3.15: ST-AV16.3. FFT size effect. fs = 16 KHz. Frame Size = 512 ms equivalent to 8192

samples at fs = 16KHz

As we can see there is no impact of the FFT size on our algorithm performance as long

as this value keeps bigger than the frame size. In this case, the only effect of doubling the

FFT size is a doubled computation time from the 70 ms/frame (1.75 times real-time) of

the 8192 transform to the 140 ms/frame (3.5 times real-time) of the 16384 one.
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We did not see any differential facts in the rest of the databases, compared to AV16.3,

that could have an influence in our algorithm about the localization results with the FFT

size. This is why we decided to conclude here our experimentation about this issue and

proceed with new experiments.

3.5.4 Windowing

When dividing the recorded signal into frames, we can either directly process them (equi-

valent to applying a rectangular window) or try to previously apply a windowing func-

tion in order to smoothen them and prevent possible border-effects that may appear in

the frequency domain if the time-domain signal terminates too abruptly.

3.5.4.1 AV16.3

In the next Tables 3.16 and 3.17, we will measure the performance of different types of

windows: rectangular, Hamming, Hanning, Blackman and Bartlett, applied to ST-AV16.3

and MV-AV16.3 corpus respectively, in order to determine that one yielding the best re-

sults.
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Rectangular Hamming Hanning Blackmann Barlett

Pcor 88.0 ± 0.7% 88.0 ± 0.7% 86.0 ± 0.8% 85.0 ± 0.8% 74.0 ± 1.0%

Rel. error reduction 0.0% −2.3% −3.4% −15.9%

Bias fine (x:y:z) [mm] −47 : −30 : −81 −47 : −30 : −81 −46 : −29 : −80 −46 : −29 : −80 −42 : −27 : −77

Bias fine+gross (x,y,z) [mm] −111 : −131 : −95 −111 : −131 : −95 −132 : −162 : −97 −138 : −168 : −98 −251 : −207 : −98

Bias AEE fine [mm] = MOTP 224 224 223 224 224

Rel. AEE reduction −0.0% 0.4% −0.0% −0.0%

Bias fine+gross [mm] 357 357 395 404 558

Rel. BIAS f+g reduction −0.0% −10.6% −13.2% −56.3%

A-MOTA 76 ± 1.0% 76 ± 1.0% 72 ± 1.0% 71 ± 1.0% 47 ± 1.1%

Rel. error reduction 0.0% −5.3% −6.6% −38.2%

Loc. frames 7295 7295 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0 600.0 600.0
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Hamming Hanning Blackmann Barlett

Pcor 66.0 ± 3.1% 66.0 ± 3.1% 66.0 ± 3.1% 62.0 ± 3.1%

Rel. error reduction 0.0% 0.0% −6.1%

Bias fine (x:y:z) [mm] −82 : 66 : −104 −84 : 66 : −105 −84 : 64 : −105 −88 : 86 : −100

Bias fine+gross (x,y,z) [mm] −210 : −312 : −142 −211 : −314 : −144 −217 : −328 : −146 −240 : −319 : −145

Bias AEE fine [mm] = MOTP 270 272 273 314

Rel. AEE reduction −0.7% −1.1% −16.3%

Bias fine+gross [mm] 644 652 661 727

Rel. BIAS f+g reduction −1.2% −2.6% −12.9%

A-MOTA 32 ± 3.0% 32 ± 3.0% 32 ± 3.0% 24 ± 2.8%

Rel. error reduction 0.0% 0.0% −25.0%

Loc. frames 917 917 917 917

Ref. duration (s) 42.0 42.0 42.0 42.0
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From results in Tables 3.16 and 3.17, we can conclude that the window function sho-

wing the best performance is Hamming, both under static and moving speakers. We

will therefore Hamming window to be the used-by-default one in all the experiments

performed.

3.5.4.2 HIFI

In the following Table 3.17, we limit to compare the performance of rectangular and

Hamming windows in the case of the HIFI corpus to extend the validity of the results

previouly got.

Rectangular Hamming

Pcor 71.0 ± 0.9% 72.0 ± 0.9%

Rel. error reduction 1.4%

Bias fine (x:y:z) [mm] −14 : 20 : 22 −13 : 28 : 22

Bias fine+gross (x,y,z) [mm] −28 : 85 : 21 −30 : 59 : 22

Bias AEE fine [mm] = MOTP 252 253

Rel. AEE reduction −0.4%

Bias fine+gross [mm] 602 580

Rel. BIAS f+g reduction 3.7%

A-MOTA 42 ± 1.0% 44 ± 1.0%

Rel. error reduction 4.8%

Loc. frames 9390 9390

Ref. duration (s) 496.0 496.0

Table 3.18: Real HIFI. Windows effect. Sequences considered: 223 recordings from 12 different

speakers placed at 5 different, static positions. Frame Size= 500 ms. Grid step in which the room

was divided: 150 mm

As we can see in Table 3.18, applying a Hamming window leads to slight improve-

ments compared to the rectangular one.

3.5.5 Search space grid

When performing SRP we first divide our room in a serie of points where to aim our

array in order to find out in which one of them the speaker was located. The way in

which the room is divided demonstrated to be crucial in the algorithm performance. We

typically chose to pick equispaced (x,y,z) points.
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3.5.5.1 AV16.3

Here in Table 3.19, we show some results for 50, 100, 150, 200 and 250 mm equispaced

grids in the case of the ST-AV16.3 database. Under this experimental conditions, the

pointing is carried out by two circular uniform arrays of 8 microphones each, see Section

3.3.1.1 in page 61.
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50 mm 100 mm 150 mm 200 mm 250 mm

Pcor 97.0 ± 0.4% 96.0 ± 0.4% 95.0 ± 0.5% 89.0 ± 0.7% 87.0 ± 0.8%

Rel. error reduction −1.0% −2.1% −8.2% −10.3%

Bias fine (x:y:z) [mm] 23 : 8 : 26 54 : 18 : 43 61 : 18 : 61 74 : −2 : 41 123 : 15 : 42

Bias fine+gross (x,y,z) [mm] −9 : −36 : 18 23 : −22 : 37 27 : −19 : 54 61 : −34 : 46 112 : −33 : 48

Bias AEE fine [mm] = MOTP 99 156 192 228 255

Rel. AEE reduction −57.6% −93.9% −130.3% −157.6%

Bias fine+gross [mm] 160 223 264 319 351

Rel. BIAS f+g reduction −39.4% −65.0% −99.4% −119.4%

A-MOTA 93 ± 0.6% 91 ± 0.7% 90 ± 0.7% 78 ± 1.0% 75 ± 1.0%

Rel. error reduction −2.2% −3.2% −16.1% −19.4%

Loc. frames 7295 7295 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0 600.0 600.0
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3.5.5.2 HIFI

Now, we will analyze which is the effect that the grid spacing of the search space has on

the Real HIFI corpus. In next Table 3.20, we evaluate the results for 25, 50, 100, 150 and

250 mm equispaced grids. In this case, the pointing is carried out by the uniform linear

array of 4 sennheiser microphones equispaced 200 mm, see Figure 3.5 in page 68.
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250 mm 150 mm 100 mm 50 mm 25mm

Pcor 78.0 ± 0.8% 88.0 ± 0.7% 71.0 ± 0.9% 69.0 ± 0.9% 69.0 ± 0.9%

Rel. error reduction 12.8% −9.0% −11.5% −11.5%

Bias fine (x:y:z) [mm] −78 : 11 : −31 −15 : −11 : −27 −18 : −64 : −68 −12 : −51 : −121 −10 : −87 : −143

Bias fine+gross (x,y,z) [mm] −24 : 71 : −44 20 : 43 : −28 19 : −257 : −84 20 : −221 : −128 17 : −240 : −145

Bias AEE fine [mm] = MOTP 216 196 193 203 228

Rel. AEE reduction 9.3% 10.6% 6.0% −5.6%

Bias fine+gross [mm] 497 386 555 527 538

Rel. BIAS f+g reduction 22.3% −11.7% −6.0% −8.2%

A-MOTA 57 ± 1.0% 76 ± 0.9% 41 ± 1.0% 37 ± 1.0% 37 ± 1.0%

Rel. error reduction 33.3% −28.1% −35.1% −35.1%

Loc. frames 9390 9390 9390 9390 9390

Ref. duration (s) 367.0 367.0 367.0 367.0 367.0
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We can here appreciate some odd results. The localization rate increases, as expected,

when reducing the grid from 250 mm to 150 mm. However, if we keep on reducing the

grid spacing, contrary to what we should expect, we appreciate a descending tendency

in the localization rate. We can make a closer inspection of these details by looking at

Figure 3.12

The unexpected results in Table 3.20 and Figure 3.12 can be explained as a conse-

quence of the poor directivity pattern properties of the 4 sennheiser microphones linear

array which was used to capture the audio data. A close inspection of it can be done in

Figures 3.13, 3.14, 3.15, 3.16, 3.17.

As reflected in Figures 3.13, 3.14, 3.15, 3.16, 3.17 and as referred in [AM01], as the fre-

quency gets higher the main lobe beam-width tends to decrease, see Figure 2.7 in page 18.

However, since the intermicrophone distance is quite high in this case, spatial aliasing,

that is, the appearance of grating lobes in undesired directions of space, starts occuring

from relatively low frequencies, in particular according to Nyquist principle, see Section

2.3.1 in page 18:

d <
λmin

2
=:fmax <

c

2d
=

345m
s

0.4m
= 862.5Hz (3.6)

where d is the intermic distance (200 mm),c is the speed of sound (345m
s

) and λmin and

fmax are, respectively, the minimum wavelength and the maximum frequency allowed

to avoid spatial aliasing.

We therefore have the following effect: On the one hand, at the low frequencies range,

we are free of the undesired effects of spatial aliasing but the width of our main lobe it

is too wide to get an accurate beamforming. Our Steered Response Power (SRP) algo-

rithm cannot sort out well between different positions if they are too close because the

directivity pattern does not point precisely to just one point but integrates power coming

from different locations sited at gross areas of space. In Table 3.21 we show some rough

computations about the differences, in degrees, between spatial points equispaced 25, 50,

100, 150 and 250 mm. As we can check, as the grid inter-spacing becomes more and more

finesse, the difference in degrees gets too small to make any significal effect on the power

patterns captured by directivities shown in Figures 3.13 and 3.14. On the other hand, on

the high frequency bands, which demonstrate to output the best localization results in

general, see Section 3.9.4 in page 143, we see much finer main lobes and we are thus able

to get proper pointings to even very close spatial locations. Nevertheless, the effect of the

grating lobes, pointing at totally undesired directions of space and integrating the energy

coming from them, seriously corrupt the results.
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Figure 3.12: Real HIFI. Search grid effect. Top: Average error fine+gross (solid) and average error
fine (dashed) as function of the grid spacing. Bottom: Pcor (solid) and A-MOTA (dashed) as

function of the grid spacing.
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Figure 3.13: Directivity pattern of the linear array formed by 4 sennheiser microphones equispa-
ced 200 mm at 500 Hz.

Figure 3.14: Directivity pattern of the linear array formed by 4 sennheiser microphones equispa-
ced 200 mm at 1000 Hz.
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Figure 3.15: Directivity pattern of the linear array formed by 4 sennheiser microphones equispa-
ced 200 mm at 5000 Hz.

Figure 3.16: Directivity pattern of the linear array formed by 4 sennheiser microphones equispa-
ced 200 mm at 10000 Hz.
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Figure 3.17: Directivity pattern of the linear array formed by 4 sennheiser microphones equispa-
ced 200 mm at 20000 Hz.

Grid inter-spacing Maximum difference between adjacent points (∗)

250 mm 8 degrees

150 mm 5 degrees

100 mm 3 degrees

50 mm 1.5 degrees

25 mm 0.8 degrees

(∗) Results are approximate and have been calculated with respect to the average distance

of any possible speaker in the 223 recordings considered with respect to the origin of

coordinates

Table 3.21: HIFI. Maximum difference in degrees between adjacent points as a function of grid

inter-spacing.

Some suggested solutions to this problem might be the use of linear arrays with a

greater effective length, thus getting a much thiner main lobe, and smaller intermic dis-

tances between them (and therefore having a much higher number of elements) so that

spatial aliasing is avoided as much as possible, see [AM01] and Figures 3.5.5.2, 3.19, 3.20

and 3.21. As a trade-off for this solution, we will need a much higher processing time,

see Section 3.8 in page 123, in order to take into account the information coming from so

many microphones. In literature, it has also been suggested the use of a Constant Direc-

tivity Beamforming (CDB) technique, see [BW01] pp. 3-17 and Section 2.3.2.3 in page 22.

Basically, it consists on a well-designed harmonic array with variable intermic distance

so that several different subarrays of equispaced elements can be formed, each of them



103 Chapter 3. Experimental results

Figure 3.18: Directivity pattern of the linear array formed by 33 sennheiser microphones equispa-
ced 20 mm at 1000 Hz.

designed to cover a specific frequency range. When their responses are properly combi-

ned after some post-filtering they can offer a directivity pattern with constant response

and no-aliasing over wide frequency bands.

3.5.5.3 SONY

In Table 3.22, we show the results for 500 and 150 mm equispaced grids in the case of

Sony database, which was chosen to check the effects of the search space division in a

simulated corpus.
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Figure 3.19: Directivity pattern of the linear array formed by 33 sennheiser microphones equispa-
ced 20 mm at 5000 Hz.

Figure 3.20: Directivity pattern of the linear array formed by 33 sennheiser microphones equispa-
ced 20 mm at 10000 Hz.



105 Chapter 3. Experimental results

Figure 3.21: Directivity pattern of the linear array formed by 33 sennheiser microphones equispa-
ced 20 mm at 20000 Hz.

50 mm 150 mm

Pcor 96.0 ± 0.1% 0.0 ± 0.0%

Rel. error reduction −100.0%

Bias fine (x:y:z) [mm] −82 : −175 : −349 −32 : −48 : −161

Bias fine+gross (x,y,z) [mm] −101 : −149 : −348 237 : 429 : −345

Bias AEE fine [mm] = MOTP 400 256

Rel. AEE reduction 36.0%

Bias fine+gross [mm] 432 632

Rel. BIAS f+g reduction −46.3%

A-MOTA 88 ± 0.1% −71 ± 0.1%

Rel. error reduction −180.7%

Loc. frames 213950 635404

Ref. duration (s) 17690.0 18083.0

Table 3.22: Simulated SONY. Grid spacing effect. fs = 48 KHz. Sequences considered= 8740

recordings from 20 different speakers placed at one single, static position (P2). Frame Size= 640

ms

This last result warns us about how crucial a proper space griding can be if the real

speaker position "does not fit well" in the search space grid. In the first case, when taking

150 mm equispaced points and due to the static position of the speaker, the algorithm

tends to almost always pick a point located at approximately 600 mm from the target,
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therefore leading to poor success localization rates. However, if we build a more precise

grid with 50 mm equispaced points, the algorithm is able to find a new, closer point, this

time located at around 400 mm from the target, therefore leading to a drastic improve-

ment in the localization rate.

3.5.6 Comparison between real and simulated data

In this Section we will compare our algorithm operation under real and simulated condi-

tions. The databases chosen to experiment with were HIFI and its simulated version.

In order to increase the amount of data and conditions under which our algorithm

was being tested, we decided to include two simulated databases, SONY and simulated

HIFI. Simulating a database basically means to take a close-talk recording of the audio

data and then proccess it as if those recordings were in fact uttered at any chosen recor-

ding room and captured any chose array geometry inside it. In our particular case, the

environment chosen to be simulated was the HIFI recording room located at the Speech

Technology Group laboratory in the Technical University of Madrid (UPM). The array

geometry inside it consists on 4 linear equispaced sennheiser microphones placed in the

front wall of the room and 3 L-shaped crown microphones placed in one corner, see Fi-

gure 3.4 in page 65. The simulated recordings obtained at each one of these microphones

are the result of adding an attenuated, line-of-sight version of the close-talk recording

plus several delayed reverberations of it generated by the method of ray-tracing and the

contribution of a background noise, according to the model depicted in Section 2.2.4 in

page 11.

3.5.6.1 HIFI

Here in Table 3.23, we compare the Real HIFI and the Simulated HIFI results when cap-

tured by the linear array of 4 sennheiser microphones equispaced 200 mm.
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Real HIFI Simulated HIFI

Pcor 88.0 ± 0.7% 54.0 ± 1.0%

Rel. error reduction −38.6%

Bias fine (x:y:z) [mm] −15 : −11 : −27 −8 : −19 : −54

Bias fine+gross (x,y,z) [mm] 20 : 43 : −28 −72 : 453 : −97

Bias AEE fine [mm] = MOTP 196 143

Rel. AEE reduction 27.0%

Bias fine+gross [mm] 386 715

Rel. BIAS f+g reduction −85.2%

A-MOTA 76 ± 0.9% 9 ± 0.6%

Rel. error reduction −88.2%

Loc. frames 9390 9390

Ref. duration (s) 367.0 367.0

Table 3.23: Real HIFI vs. Simulated HIFI. Microphone array: 4 sennheiser microphones equis-

paced 200 mm. Sequences considered: 223 recordings from 12 different speakers placed at 5

different, static positions. Frame Size= 320 ms. Grid step in which the room was divided: 150 mm

In Table 3.24, we compare the Real HIFI and the Simulated HIFI results when cap-

tured by the linear array of 4 sennheiser microphones equispaced 200 mm plus the L-

shaped array formed by 3 crown microphones.
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Real HIFI Simulated HIFI

Pcor 72.0 ± 0.9% 70.0 ± 0.9%

Rel. error reduction −2.8%

Bias fine (x:y:z) [mm] −13 : 28 : 22 −14 : 3 : −13

Bias fine+gross (x,y,z) [mm] −30 : 59 : 22 −25 : 214 : −42

Bias AEE fine [mm] = MOTP 253 238

Rel. AEE reduction 5.9%

Bias fine+gross [mm] 580 519

Rel. BIAS f+g reduction 10.5%

A-MOTA 44 ± 1.0% 40 ± 1.0%

Rel. error reduction −9.1%

Loc. frames 9390 9390

Ref. duration (s) 496.0 367.0

Table 3.24: Real HIFI vs. Simulated HIFI II. Microphone array: 4 sennheiser microphones equis-

paced 200 mm plus 3 L-shaped crown microphones. Sequences considered: 223 recordings from

12 different speakers placed at 5 different, static positions. Frame Size= 320 ms. Grid step in

which the room was divided: 150 mm

From Tables 3.23 and 3.24 we can derive that our localization algorithm performs

better with real than with simulated data. There is, nevertheless, an important difference

between the two databases behaviour: while real data shows real poor performances

associated to the L-shaped array, the simulated ones seems to work better. We associate

this event to the fact that, in the real recording situation, the L-shaped array area, located

in a room corner, implies strong and performance-limitting reverberation effects that, on

the other hand, are not present in the simulated version.

3.6 Array geometry evaluation

We will test the robustness of our localization estimates under different array geome-

tries. The objetive is to assess the best configuration in terms of number of microphones,

intermicrophone distance and array geometry.

3.6.1 Number of microphones

In this Section we will concentrate on the effect that different array configurations, with

different number of microphones, have on the algorithm performance.

Now, the focus will be put on just taking into account the effect that a varying number
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of microphones has on the performance when keeping the rest of the parameters (data-

base, frame size, inter-space distance, etc.) constant.

3.6.1.1 Simulated HIFI

HIFI database was simulated to be captured, for instance, by a linear array of 33 elements

equispaced 20 mm. As shown in Figure 3.5 in page 68, this fact allows us to use different

subarray configurations of it including:

• 33 elements linear array, equispaced 20 mm, effective longitude, L = 660 mm.

• 11 elements linear harmonic array, the spacing between the elements varies in such

a way that allows 4 different configurations of linear subarrays of 5 elements each

equispaced 160, 80, 40 and 20 mm respectively.

• 5 elements linear array, 4 different configurations equispaced 160, 80, 40 or 20 mm

respectively. In Table 3.25 we will focus on that one with the maximum equispaced

distance, 160 mm, implying an effective length, L = 800 mm.

• 3 elements linear array, multiple configurations, we will just focus on that one with

the maximum equispaced distance, 320 mm, implying an effective length, L = 960

mm.

• 2 elements linear array, multiple configurations, we will just focus on that one with

the maximum equispaced distance, 640 mm, implying an effective length, L = 1280

mm.

In Table 3.25, we expose the results of all these different array configurations presen-

ted above. They all have the particularity of being equally long phisically. Their effective

lengths, L, are different though. Let’s recall that:

L = Nd (3.7)

where L is the effective length of the array, N is the number of elements in the array

and d is the intermic distance between the elements.
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33 mics 11 harmonic mics 5 mics 3 mics 2 mics

Pcor 90.0 ± 0.6% 86.0 ± 0.7% 75.0 ± 0.9% 73.0 ± 0.9% 31.0 ± 0.9%

Rel. error reduction −4.4% −16.7% −18.9% −65.6%

Bias fine (x:y:z) [mm] 1 : −56 : −20 1 : −95 : 8 −2 : −35 : −31 1 : −24 : −23 2 : 0 : −112

Bias fine+gross (x,y,z) [mm] −25 : 138 : −32 −12 : 120 : −14 7 : −85 : −45 5 : −99 : −49 −45 : −694 : −142

Bias AEE fine [mm] = MOTP 103 182 173 164 113

Rel. AEE reduction −76.7% −68.0% −59.2% −9.7%

Bias fine+gross [mm] 315 425 341 364 1023

Rel. BIAS f+g reduction −34.9% −8.3% −15.6% −224.8%

A-MOTA 81 ± 0.8% 72 ± 0.9% 50 ± 1.0% 46 ± 1.0% −38 ± 1.0%

Rel. error reduction −11.1% −38.3% −43.2% −146.9%

Loc. frames 9390 9390 9390 9390 9390

Ref. duration (s) 367.0 367.0 367.0 367.0 367.0
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The previous Table 3.25 gives us an interesting hint: as the number of elements of the

array increases and as the intermicrophone distance between them decreases we obtain

better localization rates. There are two main reasons behind this phenomena: First, the

greater the number of elements in the array, the lower the side lobes level in its direc-

tivity array and, consequently, the lower the energy coming from directions different to

the steered, main-lobe one, see Figure 2.5 in page 17. Secondly, the greater the number

of elements in the array when keeping its longitude constant, the lower the intermic dis-

tance will be and, consequently, the more the spatial aliasing is avoided, specially at high

frequency ranges, those demonstrating to show better performance. More results about

these effects can be found in Sections 3.5.5 in page 93 and 3.9.4 in page 143 of this Master

Thesis. For a theoretical backgroud check Section 2.3 in page 15 or the McCowan book,

[AM01]. However, this effect also has its trade-off in form of a higher computation time

as referred in Section 3.8 in page 123.

In Table 3.26, we can now check the results for the Simulated HIFI database when

captured by an array having both different number of microphones and different effective

length, specifically, the linear array of 4 elements equispaced 200 mm, having a effective

length, L = 800 mm, and being the one used in the Real HIFI corpus.

4 mics

Pcor 71.0 ± 0.9%

Rel. error reduction

Bias fine (x:y:z) [mm] 4 : −97 : 0

Bias fine+gross (x,y,z) [mm] 9 : −172 : 0

Bias AEE fine [mm] = MOTP 107

Rel. AEE reduction

Bias fine+gross [mm] 506

Rel. BIAS f+g reduction

A-MOTA 42 ± 1.0%

Rel. error reduction

Loc. frames 9390

Ref. duration (s) 367.0

Table 3.26: Simulated HIFI. Array geometry effect II. Microphone array: Linear array of 4 ele-

ments equispaced 200 mm : effective longitude, L= 800 mm. Sequences considered: 223 recor-

dings from 12 different speakers placed at 5 different, static positions. Frame Size= 640 ms. Grid

step in which the room was divided: 50 mm

In this Table 3.26, we can note an interesting effect: although having a greater number

of microphones and a smaller intermicrophone distance between them, the performance



112 Chapter 3. Experimental results

shown is worse than the one obtained with the 3-elements array described in Table 3.25.

This event warns out about a new, interesting conclusion: It is also very important to

take into account the effective length, L, of the arrays involved, see Figure 2.6 in page

17. Since L is longer in the 3-elements array than in the 4-elements one, the width of the

main lobe is wider in this last one. Consequently, the 3-elements array is able to achieve

a more accurate pointing to the selected spatial locations.

As we can see, there are several factors having an influence when talking about ar-

ray geometry effects. Now, just one of them, the effective length, L, will be considered:

In Table 3.27, we kept a constant intermic distance of 20 mm and tried with different

equispaced linear arrays of 3, 5, 7, 9, 11, 15, 17, 21, 25 and 33 elements, each of them the-

refore having an effective length 40 mm longer than the previous one. Results can also

be closely inspected at Figure 3.22.
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33 (L=660 mm) 25 (L=500 mm) 21 (L=420 mm) 17 (L=340 mm) 11 (L=220 mm) 5 (L=100 mm)

Pcor 90.0 ± 0.6% 85.0 ± 0.7% 54.0 ± 1.0% 53.0 ± 1.0% 28.0 ± 0.9% 26.0 ± 0.9%

Rel. error reduction −5.6% −40.0% −41.1% −68.9% −71.1%

Bias fine (x:y:z) [mm] 1 : −56 : −20 1 : −23 : 27 −34 : −112 : −57 2 : 42 : 21 71 : 20 : 0 −7 : 99 : −162

Bias fine+gross (x,y,z) [mm] −25 : 138 : −32 −25 : 251 : −1 −44 : 195 : −50 −52 : 732 : −81 −14 : −264 : 0 −114 : −789 : −159

Bias AEE fine [mm] = MOTP 103 121 186 185 169 247

Rel. AEE reduction −17.5% −80.6% −79.6% −64.1% −139.8%

Bias fine+gross [mm] 315 431 656 932 1087 1191

Rel. BIAS f+g reduction −36.8% −108.3% −195.9% −245.1% −278.1%

A-MOTA 81 ± 0.8% 71 ± 0.9% 8 ± 0.5% 6 ± 0.5% −43 ± 1.0% −48 ± 1.0%

Rel. error reduction −12.3% −90.1% −92.6% −153.1% −159.3%

Loc. frames 9390 9390 9390 9390 9390 9390

Ref. duration (s) 367.0 367.0 367.0 367.0 367.0 367.0
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Figure 3.22: Simulated HIFI. Effective length and number of mics effect.

It is curious to see, both in Table 3.27 and Figure 3.22, that localization rates do grow

with a growing number of microphones but they just do it in a step function mood, that

is to say, for instance, increments from 3 to 15 elements result in approximately equal

localization rates but adding an extra pair of microphones, 17 instead of 15, results in an

abrupt improvement. The same thing happens when reaching 21 and 25 elements in the

array. It seems that there are only significal improvements in the localization rates just

when the effective length is long enough as to determine main lobes thin enough as to be

capable to precisely distinguish between adjacent localization points (it is important to

point out that, as exposed in 3.21 in page 102, the differences in degrees between adjacent

points are quite low, specially when talking about 50 mm equispaced localizations as it is
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the case).

3.6.1.2 Real HIFI

The real HIFI database, as depicted in Figure 3.4 in page 65, was captured by a linear

array of 4 sennheiser elements equispaced 200 mm, placed at the back wall of the room,

plus a L-shaped array composed by 3 crown microphones placed at one corner. This

basis allows us to try different array configurations in order to check their performance:

• 4+3 array, aggregated results when taking into account both the 4 sennheiser linear

array and the 3 crown L-shaped array.

• 4 sennheiser array, results when just taking into account the 4 sennheiser linear array.

• 3 crown array, results when just taking into account the 3 crown L-shaped array.

• 3 sennheiser array, results when taking into account just 3 of the 200 mm equispaced

sennheiser microphones in the linear array. This allows us to directly compare their

records with the L-shaped array ones.

• 2 sennheiser array, results when taking into account just 2 of the 200 mm equispaced

sennheiser microphones in the linear array.

• 2 crown array, results when taking into account just 2 of the crown microphones in

the L-shaped array.

In Tables 3.28, 3.29 and 3.30 we expose the results of all these different array configu-

rations presented above. We particularly concentrate on respectively comparing in each

one of them the performance of the 2, 3 and 4-elements, sennheiser, linear arrays versus

their equivalent crown, L-shaped ones.
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2 senn mics 2 crown mics

Pcor 42.0 ± 1.0% 0.0 ± 0.0%

Rel. error reduction −100.0%

Bias fine (x:y:z) [mm] −69 : −101 : −157 132 : −176 : −175

Bias fine+gross (x,y,z) [mm] 115 : −604 : −159 −38 : 207 : −159

Bias AEE fine [mm] = MOTP 276 281

Rel. AEE reduction −1.8%

Bias fine+gross [mm] 909 1410

Rel. BIAS f+g reduction −55.1%

A-MOTA −15 ± 0.7% −100 ± 0.0%

Rel. error reduction 566.7%

Loc. frames 9375 9375

Ref. duration (s) 496.0 496.0

Table 3.28: Real HIFI. senn vs. crown mics effect II. Sequences considered: 223 recordings from 12

different speakers placed at 5 different, static positions. Frame Size= 640 ms. Grid step in which

the room was divided: 150 mm

The idea of using a 3 crown L-shaped array located at one corner of the room was at

first believed to be useful since its geometry theoretically allowed to have more precision

when determining direction of arrival angles. However, the experimental outputs did

not fit the theoretical assumptions. The reason behind this unexpected result may have

to do with the power accoustic conditions at the L-shaped array. Since it is located at one

corner of the room, it suffers from high reverberation and reflections between its elements

signals.

It is also worth to note in the last Table 3.28 that the SRP-PHAT algorithm in that ex-

periment, since we are just taking into account one microphone pair, is totally equivalent

to the results GCC-PHAT method would have obtained. Once again, see Section 3.4, it is

stated clearly the overwhelming supremacy of SRP compared to GCC.
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3 senn mics 3 crown mics

Pcor 55.0 ± 1.0% 11.0 ± 0.6%

Rel. error reduction −80.0%

Bias fine (x:y:z) [mm] −8 : −8 : −94 96 : 165 : −148

Bias fine+gross (x,y,z) [mm] 83 : −180 : −114 −176 : 136 : −139

Bias AEE fine [mm] = MOTP 259 302

Rel. AEE reduction −16.6%

Bias fine+gross [mm] 612 1552

Rel. BIAS f+g reduction −153.6%

A-MOTA 10 ± 0.6% −79 ± 0.8%

Rel. error reduction −890.0%

Loc. frames 9375 9375

Ref. duration (s) 496.0 496.0

Table 3.29: Real HIFI. senn vs. crown mics effect. Sequences considered: 223 recordings from 12

different speakers placed at 5 different, static positions. Frame Size= 640 ms. Grid step in which

the room was divided: 150 mm

The results taking into account three microphones, that is, three possible microphone

pair combinations, confirmed the uneffectiveness of the crown, L-shaped arrays com-

pared to that of the sennheiser, linear ones. It is also important to note that sennheiser

microphones offer a much better recording quality than the crown ones.



118 Chapter 3. Experimental results

4 senn mics 4+3 mics

Pcor 84.0 ± 0.7% 72.0 ± 0.9%

Rel. error reduction −14.3%

Bias fine (x:y:z) [mm] −7 : −34 : −61 −12 : 26 : 22

Bias fine+gross (x,y,z) [mm] 50 : 19 : −69 −22 : 83 : 22

Bias AEE fine [mm] = MOTP 207 250

Rel. AEE reduction −20.8%

Bias fine+gross [mm] 418 580

Rel. BIAS f+g reduction −38.8%

A-MOTA 69 ± 0.9% 45 ± 1.0%

Rel. error reduction −34.8%

Loc. frames 9375 9375

Ref. duration (s) 367.0 496.0

Table 3.30: Real HIFI. Array geometry effect. Sequences considered: 223 recordings from 12

different speakers placed at 5 different, static positions. Frame Size= 640 ms. Grid step in which

the room was divided: 150 mm

Finally, as expected from the previous experiments and as reflected in Table 3.30, we

can appreciate the localization performance decreases when using both arrays, that is to

say, the 4+3 array. This is due to the poor performance of the L-shape array as well as

a result of mixing, in the same localization process, different types of microphones and

different types of data recorded under different conditions.

3.6.2 Intermicrophone distance

Likewise as done in Section 3.6.1, we can also keep constant the number of microphones

composing the linear array and focus on just varying the intermicrophone distance bet-

ween them to see how this single parameter affects the localization.

3.6.2.1 Simulated HIFI

Here, simulated HIFI database was chosen to be captured by different array configura-

tions. This allows us to perform experiments on the four different, equispaced, linear

subarrays that can be formed out of the 11 elements harmonic array, each of them com-

posed by 5 sennheiser microphones as described above in page 109. The results of these

experiments were reflected in Table 3.31 where we compare their performance when ha-

ving an intermicrophone distance of 160, 80, 40 and 20 mm respectively.
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160 mm (L=800 mm) 80 mm (L=400 mm) 40 mm (L=200 mm) 20 mm (L=100 mm)

Pcor 75.0 ± 0.9% 33.0 ± 1.0% 27.0 ± 0.9% 26.0 ± 0.9%

Rel. error reduction −56.0% −64.0% −65.3%

Bias fine (x:y:z) [mm] −2 : −35 : −31 6 : −47 : 5 3 : −1 : −162 −7 : 99 : −162

Bias fine+gross (x,y,z) [mm] 7 : −85 : −45 −42 : 30 : −91 −81 : −606 : −144 −114 : −789 : −159

Bias AEE fine [mm] = MOTP 173 102 174 247

Rel. AEE reduction 41.0% −0.6% −42.8%

Bias fine+gross [mm] 341 709 1237 1191

Rel. BIAS f+g reduction −107.9% −262.8% −249.3%

A-MOTA 50 ± 1.0% −34 ± 1.0% −47 ± 1.0% −48 ± 1.0%

Rel. error reduction −168.0% −194.0% −196.0%

Loc. frames 9390 9390 9390 9390

Ref. duration (s) 367.0 367.0 367.0 367.0
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As we can see in Table 3.31 and following the suggestions reflected in Figure 3.6 in

page 73, the bigger the distance between the microphones is, the better the localization

rate will be. There are two reasons behind this phenomenon, first, as the intermicro-

phone distance increases, the total effective length of the linear array considered, L, also

rises and, therefore, the beamwidth associated to its directivity pattern becomes thiner

finally leading to a more accurate focus on the selected spatial point while performing

beamforming. Secondly, as the distance between microphones becomes bigger, the time

delay differences between them also increase consequently minimizing the rounding ef-

fect when translating the real units time delays in seconds to integer units time delays in

samples.

3.7 Speaker position influence

We are interested in measuring what impact the speaker position has on the localization

algorithm performance. In principle, the bigger the signal time delay differences bet-

ween microphones are, the better our system can precisely sort out the speaker location.

In fact, too small time delay differences among microphones imply a significant, random

rounding effect when trying to translate real time units into discrete, digital units. The-

refore, in principle, the ideal locations are either those lying as asymmetrically from the

microphone array as possible or those being perpendicular to it as it is explained in the

theoretical introdution to this Master Thesis at the end of Section 2.4.1.3 in page 29.

3.7.1 Real HIFI

The HIFI database election in this case was due to the fact that its possible speaker loca-

tions are restricted to just 5 sites distributed simetrically around the array forming dif-

ferent angles with respect to it, see 3.3.2 in page 64. The following Table 3.32 shows the

different localization rates when individually referred, respectively, to just one out of the

five possible recording positions in HIFI database.

The positions considered: P1, P2, P3, P4 and P5 are the recording positions distributed

around the recording array in the Edecan Room as described in Figure 3.4 in page 65.

Let’s remind some facts about these positions properties in order to explain the results

obtained:

• P1 and P5, are symmetric positions with respect to the center of the array. They are

both separated 1848 mm from it and are the most tilted positions, forming an angle

of approximately 30 degrees with the array plane.
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• P2 and P4, are symmetric positions with respect to the center of the array. They are

both separated 1963 mm forming an angle of approximately 60 degrees with the

array plane.

• P3, is the perpendicular and more distant position with respect to the array plane.
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Position 3 Position 1 Position 5 Position 2 Position 4

Pcor 92.0 ± 1.2% 90.0 ± 1.3% 88.0 ± 1.5% 84.0 ± 1.7% 85.0 ± 1.6%

Rel. error reduction −2.2% −4.3% −8.7% −7.6%

Bias fine (x:y:z) [mm] −61 : −29 : −154 −107 : 16 : −25 84 : 6 : 59 −27 : 13 : −43 42 : −59 : 34

Bias fine+gross (x,y,z) [mm] −28 : −185 : −142 −227 : 142 : −24 315 : 149 : 45 −115 : 103 : −38 167 : 22 : 25

Bias AEE fine [mm] = MOTP 187 217 197 168 207

Rel. AEE reduction −16.0% −5.3% 10.2% −10.7%

Bias fine+gross [mm] 344 393 478 334 386

Rel. BIAS f+g reduction −14.2% −39.0% 2.9% −12.2%

A-MOTA 83 ± 1.7% 80 ± 1.8% 75 ± 2.0% 68 ± 2.2% 71 ± 2.0%

Rel. error reduction −3.6% −9.6% −18.1% −14.5%

Loc. frames 1970 1929 1785 1761 1945

Ref. duration (s) 77.0 75.0 70.0 69.0 76.0
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We can observe that the best localization rates correspond to those of the P3. This

is due to the fact that it is centered with respect to the array. Consequently the signals

uttered from this position will have likewise time delay arrivals to all the microphones

in the array. Thus, time delay differences between the microphone pairs will tend to

be zero and the Steered Response Power (SRP) algorithm will tend to focus the main

lobe in the perpendicular, correct direction. The second best localizations are P1 and

P5. They both have similar rates as it was natural to suppose given their symmetric

nature. Although being not centered and quite close to the array, their localization rates

are comparable to that of the P3. This may be due to two facts: On the first place, we

must take into account the signal to noise ratio influence, lower in P3. Secondly, being

the more tilted positions means asymmetric times of arrivals to the microphones, that is

to say, the closest microphone to P1, for instance, will receive its signal much earlier than

the last one, therefore leading to high time differences of arrival which turns out to be

benefitial as demonstrated in equation 2.43 in page 31. To end with, the worst positions

result to be P2 and P4, they are not centered, thus requiring a proper choice of the angle

to steer at, and not as tilted as to create big time delay differences in the microphone array

so that this choice can be done accurately.

3.8 Computational demands

We must not forget the need of reaching real-time computation performance in our al-

gorithms in order to be able to apply them to real life solutions. If we analyze the SRP

algorithm, there are four main factors affecting its execution time.

• Time-domain vs. frequency-domain beamforming, as explained in the theoretical in-

troduction in Section 2.4.3.3 in page 37, both methods are equivalent in theory.

When the time comes to apply them to practise two main differences between them

arise: First, the frequency-domain method allows to directly use the real time delay

units in seconds while the time-domain one forces a rounding conversion to integer

sample units consequently implying a loose of precision in the localization. Second,

the frequency-domain method implementation implies a large amount of complex

multiplications (as many as the FFT size times the total number of microphone pair

combinations times the total number of points where to focus). On the other hand,

the time-domain method is much lighter since it substitutes this large amount of

operations by IFFT transforms (as many as microphone pair combinations) and

simple sumations (as many as the total number of points where to focus).

• Frame size, its effect is significant in the execution time required as long as increasing

the length of the frames processed eventually forces to an increase in the number of
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points of the FFT transforms involved.

• Number of microphones, as the number of microphones involved raises we have more

and more possible microphone pairs to consider. Let’s remind the total number of

possible combinations of two elements out of a set of N elements:

(

N

2

)

=
N !

2!(N − 2)!
=

N(N − 1)

2
(3.8)

The number of operations implied will increase by this same factor.

• Grid spacing, the way in which we divide the search space has an important in-

fluence on the run time since it defines the final set of points where our array will

focus in search of the speaker localization. The bigger the number of points taken

into account, the longer the computations will take.

The effect (both in performance and run time) of FSRP (frequency-domain SRP) vs.

TSRP (time-domain SRP) implementations can be checked in Table 3.33, whose experi-

ments are referred to the Real HIFI database.

The effect (both in performance and run time) of the Frame/FFT size can be checked

in Table 3.34 as well as in Figure 3.9 in page 3.9 in the case of ST-AV16.3, with frame sizes

ranging from 40 to 1000 ms and FFT sizes varying from 1024 to 16384 points.

The effect (both in performance and run time) of the number of microphones can be

checked in Table 3.35, whose experiments are referred to the Simulated HIFI databases

and range from the use of 2 to 33 microphones.

Finally, the effect (both in performance and run time) of the grid spacing can be che-

cked in Table 3.36, whose experiments are referred to the MV-AV16.3 database and range

from 250 mm inter-spacing (equivalent to 540 different spatial locations) to 50 mm (equi-

valent to 56867 spatial locations).

The general conclusion we can appreciace is a clear trade-off between the algorithm

efficiency and robustness vs. the required CPU time spent.
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Frequency SRP Time SRP

Pcor 85.0 ± 0.7% 78.0 ± 0.8%

Rel. error reduction −46.7%

Bias fine (x:y:z) [mm] −66 : −23 : −20 −79 : 13 : −32

Bias fine+gross (x,y,z) [mm] −32 : 72 : −24 −28 : 80 : −45

Bias AEE fine [mm] = MOTP 231 217

Rel. AEE reduction 6.1%

Bias fine+gross [mm] 444 506

Rel. BIAS f+g reduction −14.0%

A-MOTA 71 ± 0.9% 56 ± 1.0%

Rel. error reduction −51.7%

Loc. frames 9390 9390

Ref. duration (s) 496.0 496.0

Run time (real-time units) 62.00 0.25

Rel. run-time reduction −24700.0%

Table 3.33: Real HIFI. SRP vs. FSRP computational load. Sequences considered: 223 recordings

from 12 different speakers placed at 5 different, static positions. Frame Size= 320 ms : FFT Size=

16384 at fs = 48 KHz. Microphone array= Linear array of 4 sennheiser microphones equispaced

200 mm. Grid step in which the room was divided: 250 mm : 429 locations
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Frame size= 640 ms 320 ms 160 ms 80 ms 40 ms

Pcor 94.0 ± 0.5% 87.0 ± 0.8% 84.0 ± 0.8% 83.0 ± 0.9% 81.0 ± 0.9%

Rel. error reduction −116.7% −166.7% −183.3% −216.7%

Bias fine (x:y:z) [mm] 62 : 19 : 63 62 : 18 : 65 60 : 18 : 64 61 : 18 : 65 58 : 17 : 63

Bias fine+gross (x,y,z) [mm] 7 : −45 : 54 −62 : −155 : 46 −82 : −208 : 40 −72 : −196 : 42 −76 : −174 : 39

Bias AEE fine [mm] = MOTP 190 191 192 194 197

Rel. AEE reduction −0.5% −1.1% −2.1% −3.7%

Bias fine+gross [mm] 291 423 482 481 490

Rel. BIAS f+g reduction −45.4% −65.6% −65.3% −68.4%

A-MOTA 87 ± 0.8% 74 ± 1.0% 68 ± 1.1% 65 ± 1.1% 61 ± 1.1%

Rel. error reduction −100.0% −146.2% −169.2% −200.0%

Loc. frames 7295 7295 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0 600.0 600.0

Run time (real-time units) 3.38 1.80 0.88 0.48 0.30

Rel. run-time reduction −87.8% −284.1% −604.2% −1026.7%
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33 mic (L=660mm) 11 harmonic mic 5 mic (L=800mm) 3 mic (L=960mm) 2 mic (L=1280mm)

Pcor 90.0 ± 0.6% 86.0 ± 0.7% 75.0 ± 0.9% 73.0 ± 0.9% 31.0 ± 0.9%

Rel. error reduction −40.0% −150.0% −170.0% −590.0%

Bias fine (x:y:z) [mm] 1 : −56 : −20 1 : −95 : 8 −2 : −35 : −31 1 : −24 : −23 2 : 0 : −112

Bias fine+gross (x,y,z) [mm] −25 : 138 : −32 −12 : 120 : −14 7 : −85 : −45 5 : −99 : −49 −45 : −694 : −142

Bias AEE fine [mm] = MOTP 103 182 173 164 113

Rel. AEE reduction −76.7% −68.0% −59.2% −9.7%

Bias fine+gross [mm] 315 425 341 364 1023

Rel. BIAS f+g reduction −34.9% −8.3% −15.6% −224.8%

A-MOTA 81 ± 0.8% 72 ± 0.9% 50 ± 1.0% 46 ± 1.0% −38 ± 1.0%

Rel. error reduction −47.4% −163.2% −184.2% −626.3%

Loc. frames 9390 9390 9390 9390 9390

Ref. duration (s) 367.0 367.0 367.0 367.0 367.0

Run time (real-time units) 40.00 11.80 1.13 0.38 0.18

Rel. run-time reduction −239.0% −3439.8% −10426.3% −22122.2%
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56867 loc (50 mm) 7770 (100 mm) 2450 (150 mm) 540 (250 mm)

Pcor 77.0 ± 2.7% 76.0 ± 2.8% 69.0 ± 3.0% 70.0 ± 3.0%

Rel. error reduction −4.3% −34.8% −30.4%

Bias fine (x:y:z) [mm] −2 : 107 : 26 17 : 93 : 40 10 : 86 : 41 19 : 61 : 3

Bias fine+gross (x,y,z) [mm] −144 : −178 : −23 −129 : −181 : −8 −118 : −185 : 9 −97 : −213 : −33

Bias AEE fine [mm] = MOTP 227 236 259 262

Rel. AEE reduction −4.0% −14.1% −15.4%

Bias fine+gross [mm] 577 585 636 630

Rel. BIAS f+g reduction −1.4% −10.2% −9.2%

A-MOTA 53 ± 3.2% 51 ± 3.2% 37 ± 3.1% 39 ± 3.2%

Rel. error reduction −4.3% −34.0% −29.8%

Loc. frames 917 917 917 917

Ref. duration (s) 42.0 42.0 42.0 42.0

Run time (real-time units) 6.85 3.55 3.38 3.15

Rel. run-time reduction −93.0% −102.7% −117.5%
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3.9 Evaluation of aditional strategies

3.9.1 Coarse to fine strategy

For the moment, our SRP-PHAT algorithm always begins with creating a grid in our

room that defines a serie of points equispaced a given value. The microphone array will

later point at each of these points in search of the one with the highest power value.

As seen in Table 3.19 in page 95, the finer the grid in which we divide the room

is, the better localization results we obtain. Nevertheless, this fact implies a growing

computacional time as seen in Table 3.36, since a finer grid means a higher number of

spatial points to compute and evaluate.

Therefore, we then aimed at implementing a new technique that could allow us to

take advantage of the nice results of a fine grid without having to neccessarily spend more

computational time. We made use of Zotkin and Duraiswami’s proposal in [RDD01] and

[ZD04]. Based on the observation that the wavelengths of the sound from a speech source

are comparable to the dimensions of the space being searched and that the source is

broadband, they developed an efficient algorithm performing a hierarchical search of the

Steered Response Power (SRP) from a coarse level to a fine one that promised significant

speedups by using this coarse-to-fine strategy in both space and frequency. More details

about this technique can be found in the theoretical introduction of this Master Thesis in

Section 2.4.4.1 in page 39.

Eventually, we decided to add this new technique to our algorithm and evaluate how

it worked. In the first step, we can select an appropiate, relatively low cut-off frequency

that will define a small number of gross search areas according to the frequency-spatial

relatioship showed above. Once we have selected the gross area containing the strongest

speech energy, we further divide it into 8 equispaced cubes, called octrees, and explore

them themselves with a cut-off frequency twice as big as the previous one (since the areas

to explore have become twice as small). We can continue like that until we get to search

areas as fine and precise as desired. However, the computational time implied in order

to get to these fine levels should not be here a drawback since we are discarding from the

beginning large areas of space and just concentrate on accurately exploring those ones

which are more likely to contain the speaker according to the previous algorithm steps.

After implementing this new technique according to Zotkin and Duraiswami’s base-

lines, some experiments were carried out to check its results, but these turned out to be

highly discouraging. The localization rates dropped dramatically as the result of our al-

gorithm selecting the wrong gross area of space from the very starting steps. This led us

to think there was something wrong with the frequency-spatial properties we had assu-



130 Chapter 3. Experimental results

Figure 3.23: Experimental results (solid) and curve-fitting (dashed) of our array configuration
peak width as a function of frequency

med from Zotkin and Duraiswami papers. Probably their array configuration properties

do not apply to our own experimental conditions. We then decided to stablish our own

hypothesis about the relationship between the cut-off frequency applied to the source

and the consequent width of the explored region.

We then implemented a simple beamformer and closely analyzed a HIFI recording of

a single, static speaker whose position was known and which captured by the uniform

linear array configuration of 4 microphones used in this Master Thesis. We centered

around different cut-off frequencies and sucesively pointed, first, directly to the speaker

position and then slowly moving further from it. In each of these steps we plotted the

speech energy received by our beamformer and set the peak width to be the distance

between those two points distributed around the speaker position in which the power

had descended 3 dB. The curve obtained, depicted in Figure 3.23, was different to that of

Zotkin and Duraiswami. Curve fitting led us to our own frequency-spatial relationship:

b ≃ 0.15 + 5λ (3.9)

New experiments were performed to check the validity of our new assumption, lea-

ding to more promising, but yet insufficient, results. Next in Table 3.37, we will show

and compare some of them to their approximately equivalent non-coarse-to-fine expe-

riments in terms of finesse. Both their localization performance and the computational

time required will also be measured.
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3.9.1.1 HIFI

HIFI database was chosen for the experimentation since this was the corpus whose frequency-

spatial relationship, depicted in Figure 3.23, was most widely studied during this Master

Thesis. AV16.3 frequency-spatial relationship was also studied but its uniform circular

arrays did not offer such a regular behaviour in this sense as that showed by the uniform

linear array in HIFI.

Coarse-to-fine No coarse-to-fine

Pcor 58.0 ± 1.0% 71.0 ± 0.9%

Rel. error reduction 22.4%

Bias fine (x:y:z) [mm] −47 : 16 : 1 −18 : −64 : −68

Bias fine+gross (x,y,z) [mm] −144 : 184 : −3 19 : −257 : −84

Bias AEE fine [mm] = MOTP 239 193

Rel. AEE reduction 19.2%

Bias fine+gross [mm] 736 555

Rel. BIAS f+g reduction 24.6%

A-MOTA 16 ± 0.7% 41 ± 1.0%

Rel. error reduction 156.2%

Loc. frames 9390 9390

Ref. duration (s) 367.0 367.0

Table 3.37: Real HIFI. Coarse to fine strategy. fs = 48 KHz. Sequences considered: 223 recordings

from 12 different speakers placed at 5 different, static positions. Frame Size= 500 ms. Microphone

array= Linear array of 4 sennheiser microphones equispaced 200 mm. Grid step in which the

room was divided: 100 mm

These experiments depicted in Table 3.37 made us think about two main conclusions:

• The localization performance of the coarse to fine algorithm is clearly lower than

the traditional method. This is due to the fact that we are still commiting a high rate

of mistakes in the first step of the method, when choosing the gross area in which to

concentrate our search. This may be due to two facts: In the first place, we must not

forget we are using a band-limitted, low-pass filtered version of the signal in order

to be able to explore at once these relatively big areas, thus, a sensible part of the

signal information is not used during this localization first step. Secondly, we also

must remind we are using an array of just four elements equispaced d= 200 mm.

This fact implies a strong spatial aliasing starting from relatively low frequencies as

cited in [AM01] and depicted in Figures 3.13, 3.14, 3.15, 3.16 and 3.17 in page 100.
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d <
λmin

2
: No aliasing

d = 0.2 m =:λmin > 0.4 m :fmin =
345m

s

0.4m
= 862.5Hz

That is to say, using versions of the source signal containing frequencies higher than

approximately 900 Hz will imply a poor steering of our array. When pointing its

main lobe to a certain point in space, several replicas of it will appear in different

directions, therefore integrating energy coming from different search areas and mis-

leading the obtained results. We could then think of using frequencies lower than

this 900 Hz in the first coarse to fine step but, according to our b ≃ 5λ ratio, that

would define unnacceptably gross areas (cubes around 2 meters long, comparable

to the dimensions of the whole room and, thus, useless).

• The computational time spent with our implementation of the coarse to fine algo-

rithm is comparable, even slowly higher, than the traditional method. This is due

to the fact that, although having to explore a significally smaller set of points, every

exploration implies several correlation and IFFT processes, one for every step in the

hyerarchical search until getting to the finer level, instead of the one-step scheme

traditionally used.

Despite these dissapointing conclusions, we are still optimistic about the possibilities

of this coarse to fine method. One of his most appealing properties, apart from the theo-

retical computational time save, is the fact that it minimizes the negative effect of spatial

aliasing: no matter how close our microphones are in the array, its directivity pattern will

eventually present replicated main lobes at different directions if the frequencies used are

too high, or to put it in an equivalent way, if the areas explored are too fine. However,

this problem, although inevitable with the traditional SRP algorithm, has almost no effect

with a proper coarse to fine algorithm. As the search gets finer and finer and the aliasing

becomes more likely to appear, we concentrate on more and more reduced pieces of space

and, then, the aliased energy contributions coming from different spatial areas to the one

selected will not mislead our results, that is to say, never a location coming from this alia-

sed, wrong directions of the room could be selected as our system final estimation since

those parts were already discarded during the first, non-aliased, steps of the technique.

What is more, and regarding the two inconvenient conclusions depicted above, there

are some promising factors that may help to improve them in the future:

• Localization performance,

The use of a better microphone array, with a better directivity pattern and a

better behaviour with high frequencies will surely lead to improved results. The
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larger the effective lenght of the array is, in order to get a more accurate main lobe,

and the closer the microphones are between them, in order to avoid aliasing, the

better the results will be.

In addition to this improvement, we can think of a simpler, but yet effective,

coarse to fine algorithm in just two steps as described in [AG07], instead of imple-

menting a multiple-steps coarse to fine algorithm as proposed in [ZD04]. With this

new scheme, in the first step, we explore relatively gross areas with an appropiate

cut-off frequency. In the second step we simply apply a fine grid to the reduced,

selected area. The grid applied could be much finer than the one used in the tradi-

tional method as it takes into account a much smaller search area. This would yield

better localization results without increasing the computational time required: The

number of points finally evaluated in the two-steps can be comparable or even lo-

wer than the number of points to evaluate in the whole room even when dividing

it with worse finesse.

• Computational load, the coarse to fine execution time could be lowered with an op-

timized implementation of the algorithm. For instance, since the signal is often

filtered in order to search grosser areas of the space we do not neccessarily need

to make full-length IFFT every step. We could instead make use of the cut-off fre-

quency in order to define an IFFT size as small as possible in each of the steps. That

would help us reducing the computational time required by the scheme.

3.9.2 Noise masking

As proposed by DiBiase in [Dib00] pp. 28-34, it is advantageous to take into account

the Signal to Noise Ratio (SNR) since those frames with a significant amount of noise

will lead to non-sense localization estimates. Following this idea, we implemented a flag

in our system that, when activated, triggers a noise masking strategy in which speech

samples lying underneath a certain noise-dependent threshold will not be taken into ac-

count during the localization computations. According to the theoretical introduction

presented in Section 2.4.4.2 in page 40, this threshold can be designed according to two

different strategies: fixed and adaptive.

In this Section, we willl try to measure how big the noise influence on our localiza-

tion algorithm can be. In order to do so, we will use the more noisy database: HIFI. In

addition, we will evaluate the performance of this noise masking strategy under its fixed

and adaptive focusses.
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3.9.2.1 Real HIFI

Real HIFI database was chosen in this Section as its recording conditions showed to be the

most noisy ones among all the available databases. Here we will then test how well this

noise masking strategy works. What is more, we will also try to assess how to design the

best threshold under which start to discard speech samples. Table 3.38 compares expe-

rimental results without noise masking to those with different fixed thresholds. In Table

3.39 the adaptive threshold strategy is tested. We start by just discarding those speech

samples lying underneath the noise level to, later on try and see what happens if we

raise this adaptive threshold and keep just those speech frequency samples whose power

exceeds in 12, 24 or even 36 dB the noise power.
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Without Noise Masking Fixed threshold + 12dB Fixed threshold + 24dB

Pcor 84.0 ± 0.7% 83.0 ± 0.8% 76.0 ± 0.9%

Rel. error reduction −1.2% −9.5%

Bias fine (x:y:z) [mm] −7 : −34 : −61 1 : −28 : −55 −2 : −22 : −51

Bias fine+gross (x,y,z) [mm] 50 : 19 : −69 89 : 118 : −66 105 : 163 : −64

Bias AEE fine [mm] = MOTP 207 198 207

Rel. AEE reduction 4.3% −0.0%

Bias fine+gross [mm] 418 479 559

Rel. BIAS f+g reduction −14.6% −33.7%

A-MOTA 69 ± 0.9% 65 ± 1.0% 52 ± 1.0%

Rel. error reduction −5.8% −24.6%

Loc. frames 9375 9375 9375

Ref. duration (s) 367.0 367.0 367.0
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Adaptive threshold+0dB Adapt. threshold+12dB Adapt. threshold+24dB Adapt. threshold+36dB

Pcor 84.0 ± 0.7% 84.0 ± 0.7% 85.0 ± 0.7% 83.0 ± 0.8%

Rel. error reduction 0.0% 1.2% −1.2%

Bias fine (x:y:z) [mm] −7 : −34 : −61 −7 : −34 : −61 −6 : −33 : −61 −0 : −29 : −52

Bias fine+gross (x,y,z) [mm] 50 : 20 : −70 52 : 19 : −70 54 : 15 : −68 53 : 36 : −61

Bias AEE fine [mm] = MOTP 206 206 207 202

Rel. AEE reduction −0.0% −0.5% 1.9%

Bias fine+gross [mm] 419 417 417 443

Rel. BIAS f+g reduction 0.5% 0.5% −5.7%

A-MOTA 69 ± 0.9% 69 ± 0.9% 69 ± 0.9% 66 ± 1.0%

Rel. error reduction 0.0% 0.0% −4.3%

Loc. frames 9375 9375 9375 9375

Ref. duration (s) 367.0 367.0 367.0 367.0
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As we can see, adopting a fixed threshold strategy demonstrates to be a wrong option

since it deals with all samples in the same way without discriminating their frequency

particularities. We must not forget that human speech quickly loses power as the fre-

quency increases. Therefore, when averaging the noise power over all frequencies and

taking this value as universal reference threshold, a large part of the high frequency com-

ponents will be discarded thus leading to poorer localization estimates. In fact, high

frequency sounds are the most likely to conduct to proper localization estimates as they

present a much better behaviour as far as the array directivity pattern and beamwidth are

concerned, see Section 3.9.4 in page 143. In other words, the higher the frequency com-

ponent is, the thiner its associated beamwidth will be, thus resulting in a more accurate

pointing to the selected search points.

On the other hand, a frequency-adaptive threshold strategy demonstrates to be more

reasonable. However, it requires a proper tuning of the limit under which start discar-

ding samples. In Table 3.39, we can observe in the first case that eliminating just those

speech samples lying under the noise power yields almost the same results as if we were

not applying a noise masking strategy. The same thing happens even when we choose

to keep just those samples 12 dB above the noise level. The bound chosen in both cases

demonstrates to be too low and finally results in an insufficient number of low power

samples being eliminated as to affect the localization results. It is only when we keep just

those samples raising 24 dB over the noise level that we obtain some slight improvement

performance, we are able to localize better since we only take into account those signifi-

cant parts of the signal which are clearly above the background noise level. Although the

improvement is not spectacular in this particular experiment, this tool must be seriously

taken into account when working in heavy noise conditions. Finally, as the last case de-

monstrates, if we choose to raise our threshold too much (36 dB over the noise level) we

will begin to also discard valuable parts of our signal and get worse localization estimates

in consequence.

3.9.3 Estimation of localization confidence

Some of the previous experiments suggested us the idea that the longer an array is, the

better its localization estimates will be, see Sections 3.4 and 3.6 in pages 71 and 108 res-

pectively. A longer array will be able to point more accurately to the selected search

points. What is more, the more separated the microphones are within the array, the grea-

ter the time delay differences between them will be, thus leading to smaller rounding

errors when translating real units in seconds to integer units in samples.

Now, we can make use of this a priori information in order to improve our localization

rates. As explained above, the more a microphone pair is separated, the more likely is
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to yield, in theory, a proper localization. We should then obtain some improvements

by weighting the different contributions of all the microphone pairs according to the

distance between them.

As demonstrated by Dibiase in [Dib00] pp. 78-80 and exposed in Section 2.4.3.2 in

page 36, the final Steered Response Power (SRP) got when pointing to a certain spatial

location is equivalent to the sumation, at the proper time-delay, of all the Generalized

Cross Correlations (GCC) coming from all the possible mic pair combinations. Precisely,

we will apply our weigthing to this sumation: each mic pair GCC will be multiplicated by

a weigthing factor related to the distance between them. The mathematical expressions

derived are:

• Non-weigthed SRP algorithm:

P = 2Π

N
∑

i=1

N
∑

j=1

cij(τij) (3.10)

where P is the SRP power estimation for a certain location, N is the total number of

microphones in the array, cij(τ) is the Generalized Cross Correlation (GCC) func-

tion between mics i and j and τij is the time delay difference between mics i and j

form a certain spatial location.

• Weigthed SRP algorithm:

P = 2Π

N
∑

i=1

N
∑

j=1

αijcij(τij) (3.11)

where αij is a weigthing factor in the range (0,1] computed as follows:

αij =
dij

dmax
(3.12)

where dij is the distance between mics i and j and dmax is the maximum distance

between any mic pair.

3.9.3.1 Simulated HIFI

The choice of this database was motivated here by the fact that it uses array configura-

tions composed by a large number of elements (as large as 33 for instance) where it is

possible to find distant microphone pairs (as distant as 640 mm), close ones (as close as

20 mm) and all the intermediate values in between. With this he hope to get a fair, uni-

form weighting. Table 3.40 shows a comparison between the regular experiment with the
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linear array of 33 sennheiser microphones equispaced 20 mm and the weighted one.

33 mics (L=660 mm) Weighted 33 mics (L=660 mm)

Pcor 90.0 ± 0.6% 97.0 ± 0.3%

Rel. error reduction 7.8%

Bias fine (x:y:z) [mm] 1 : −56 : −20 1 : −56 : −11

Bias fine+gross (x,y,z) [mm] −25 : 138 : −32 −1 : 6 : −15

Bias AEE fine [mm] = MOTP 103 111

Rel. AEE reduction −7.8%

Bias fine+gross [mm] 315 180

Rel. BIAS f+g reduction 42.9%

A-MOTA 81 ± 0.8% 93 ± 0.5%

Rel. error reduction 14.8%

Loc. frames 9390 9390

Ref. duration (s) 367.0 367.0

Table 3.40: Simulated HIFI. Microphone distance weighting effect. Sequences considered: 223

recordings from 12 different speakers placed at 5 different, static positions. Microphone array:

Linear array of 33 sennheiser microphones equispaced 20 mm (L = 660 mm). Frame Size= 640 ms.

Grid step in which the room was divided: 50 mm

Table 3.41 shows a comparison between the regular experiment with the harmonic

linear array of 11 sennheiser microphones and the weighted one.
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11 harmonic mics Weighted 11 harmonic mics

Pcor 86.0 ± 0.7% 93.0 ± 0.5%

Rel. error reduction 8.1%

Bias fine (x:y:z) [mm] 1 : −95 : 8 1 : −94 : 0

Bias fine+gross (x,y,z) [mm] −12 : 120 : −14 6 : 8 : 0

Bias AEE fine [mm] = MOTP 182 121

Rel. AEE reduction 33.5%

Bias fine+gross [mm] 425 241

Rel. BIAS f+g reduction 43.3%

A-MOTA 72 ± 0.9% 87 ± 0.7%

Rel. error reduction 20.8%

Loc. frames 9390 9390

Ref. duration (s) 367.0 367.0

Table 3.41: Simulated HIFI. Microphone distance weighting effect II. Sequences considered: 223

recordings from 12 different speakers placed at 5 different, static positions. Microphone array:

Linear harmonic array of 11 sennheiser microphones. Frame Size= 640 ms. Grid step in which the

room was divided: 50 mm

Table 3.42 shows a comparison between the regular experiment with the linear array

of 17 sennheiser microphones equispaced 20 mm and the weighted one.
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17 mics (L=340 mm) Weighted 17 mics (L=340 mm)

Pcor 27.0 ± 0.9% 55.0 ± 1.0%

Rel. error reduction 103.7%

Bias fine (x:y:z) [mm] 66 : 145 : −84 −39 : 70 : −29

Bias fine+gross (x,y,z) [mm] 165 : 706 : −88 114 : 329 : −46

Bias AEE fine [mm] = MOTP 393 263

Rel. AEE reduction 33.1%

Bias fine+gross [mm] 1103 783

Rel. BIAS f+g reduction 29.0%

A-MOTA −47 ± 1.0% 9 ± 0.6%

Rel. error reduction −119.1%

Loc. frames 9375 9375

Ref. duration (s) 496.0 496.0

Table 3.42: Simulated HIFI. Microphone distance weighting effect IV. Sequences considered: 223

recordings from 12 different speakers placed at 5 different, static positions. Microphone array:

Linear array of 17 sennheiser microphones equispaced 20 mm (L = 340 mm). Frame Size= 640 ms.

Grid step in which the room was divided: 50 mm

Table 3.42 shows a comparison between the regular experiment with the linear array

of 5 sennheiser microphones equispaced 160 mm and the weighted one.
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5 mics (L=800 mm) Weighted 5 mics (L=800 mm)

Pcor 75.0 ± 0.9% 75.0 ± 0.9%

Rel. error reduction 0.0%

Bias fine (x:y:z) [mm] −2 : −35 : −31 −4 : −25 : −24

Bias fine+gross (x,y,z) [mm] 7 : −85 : −45 7 : −96 : −45

Bias AEE fine [mm] = MOTP 173 164

Rel. AEE reduction 5.2%

Bias fine+gross [mm] 341 334

Rel. BIAS f+g reduction 2.1%

A-MOTA 50 ± 1.0% 50 ± 1.0%

Rel. error reduction 0.0%

Loc. frames 9390 9390

Ref. duration (s) 367.0 367.0

Table 3.43: Simulated HIFI. Microphone distance weighting effect III. Sequences considered: 223

recordings from 12 different speakers placed at 5 different, static positions. Microphone array:

Linear array of 5 sennheiser microphones equispaced 160 mm (L = 800 mm). Frame Size= 640 ms.

Grid step in which the room was divided: 50 mm

The experimental results confirmed the positive effect of this distance-dependent

weigthing. However, this confidence on the localization results only works well with a

high number of microphones so that there can be enough microphone pair combinations

contributing.

The most positive aspect of this technique is its low computational demand. In prac-

tise, applying this weigthing does not result in any increase of the run time. The case

comparing the experiments with 33 and 11 microphones respectively is specially specta-

cular. As we can see, the results using this a priori information on localization confidence

with an 11 harmonic microphones array are better than even those thrown by a 33 mi-

crophones array with no weighting. What is more, the computational load saved by this

operation is huge. Performing a localization search over a 50 mm grid with a 640 ms

frame sampled at 48 KHz takes 1600 ms (40 real-time units) when using 33 microphones

(528 possible microphone pair combinations). Meanwhile, performing the same opera-

tion with a distance-weigthed array of 11 harmonic elements (55 possible microphone

pair combinations) will only take 190 ms (4.75 real-time units), a considerable reduction.

This fact makes this technique crucial when aiming to reach real-time execution times

with real life applications.
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3.9.4 Filtering techniques

In this Section we will make a thorough study about how the different frequency bands

in a speech signal contribute to the speaker localization. Theoretically, the high frequency

components of the audio signals are more appropiate for localization purposes since they

offer a much better response in terms of directivity pattern and thiner beamwidth and

thus allow to a more accurate pointing in the search space. However, human speech

presents a strong attenuation in power terms as the signal frequency increases. There-

fore, it exists a clear trade-off between high frequency components, more accurate but

with worse signal to noise ratios, and the low frequency bands concentrating most of

the speech power but presenting unappropiate directivity patterns. The following expe-

riments will attempt at giving us an insight about this issue. This information can be

really valuable since it can set some kind of a priori knowledge that we could later use

to improve our localization estimates based on the confidence on each frequency band.

We could easily think of a weighting system, similar to the one applied with the intermi-

crophone distance in Section 3.9.3, that could give more importance to those frequency

ranges which behave better when localizing.

During these experiments we will therefore apply low-pass, high-pass and band-pass

filtering to different frequency ranges. We will also consider different databases, sam-

pled at both 16 KHz and 48 KHz (and therefore having bandwidths of 8 and 24 KHz

respectively), in order to get conclusions of general validity.

3.9.4.1 AV16.3

AV16.3 database, sampled at 16 KHz, allows us to study the range up to 8 KHz. Table

3.44 shows the low-pass filtering experiments performed with ST-AV16.3 in the frequency

bands [0-1 KHz], [0-2 KHz], [0-4 KHz] and [0-8 KHz] (full-band).
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[0-8 KHz] [0-4 KHz] [0-2 KHz] [0-1 KHz]

Pcor 95.0 ± 0.5% 86.0 ± 0.8% 83.0 ± 0.9% 74.0 ± 1.0%

Rel. error reduction −9.5% −12.6% −22.1%

Bias fine (x:y:z) [mm] 22 : 7 : 27 −31 : 1 : 121 −10 : −20 : 93 110 : 26 : 114

Bias fine+gross (x,y,z) [mm] −27 : −60 : 17 −118 : −143 : 82 −84 : −169 : 59 −16 : −123 : 103

Bias AEE fine [mm] = MOTP 100 193 214 263

Rel. AEE reduction −93.0% −114.0% −163.0%

Bias fine+gross [mm] 191 377 387 493

Rel. BIAS f+g reduction −97.4% −102.6% −158.1%

A-MOTA 90 ± 0.7% 71 ± 1.0% 67 ± 1.1% 48 ± 1.1%

Rel. error reduction −21.1% −25.6% −46.7%

Loc. frames 7295 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0 600.0

Table 3.44: ST-AV16.3. Low-pass filtering effect. fs = 16 KHz. Frame Size= 640 ms. Microphone

array= Two circular arrays of 8 microphones each. Grid step in which the room was divided: 50

mm

Table 3.45 shows the high-pass filtering experiments performed with ST-AV16.3 in the

frequency bands [1-8 KHz], [2-8 KHz], [4-8 KHz] and [6-8 KHz].

[1-8 KHz] [2-8 KHz] [4-8 KHz] [6-8 KHz]

Pcor 95.0 ± 0.5% 96.0 ± 0.4% 97.0 ± 0.4% 95.0 ± 0.5%

Rel. error reduction 1.1% 2.1% 0.0%

Bias fine (x:y:z) [mm] 22 : 7 : 26 23 : 7 : 27 30 : 12 : 14 22 : 7 : 27

Bias fine+gross (x,y,z) [mm] −24 : −53 : 11 −17 : −30 : 14 14 : −9 : 5 −27 : −60 : 17

Bias AEE fine [mm] = MOTP 100 101 106 100

Rel. AEE reduction −1.0% −6.0% −0.0%

Bias fine+gross [mm] 187 176 156 191

Rel. BIAS f+g reduction 5.9% 16.6% −2.1%

A-MOTA 91 ± 0.7% 91 ± 0.7% 93 ± 0.6% 90 ± 0.7%

Rel. error reduction 0.0% 2.2% −1.1%

Loc. frames 7295 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0 600.0

Table 3.45: ST-AV16.3. High-pass filtering effect. fs = 16 KHz. Frame Size= 640 ms. Microphone

array= Two circular arrays of 8 microphones each. Grid step in which the room was divided: 50

mm
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Table 3.46 shows the band-pass filtering experiments performed with ST-AV16.3 in

the frequency bands [1-2 KHz], [2-4 KHz] and [4-8 KHz] and compares them to the full-

band experiment.

[0-8 KHz] [1-2 KHz] [2-4 KHz] [4-8 KHz]

Pcor 95.0 ± 0.5% 80.0 ± 0.9% 84.0 ± 0.8% 97.0 ± 0.4%

Rel. error reduction −15.8% −11.6% 2.1%

Bias fine (x:y:z) [mm] 22 : 7 : 27 −38 : −23 : 84 −38 : 5 : 121 30 : 12 : 14

Bias fine+gross (x,y,z) [mm] −27 : −60 : 17 −131 : −216 : 25 −117 : −86 : 73 14 : −9 : 5

Bias AEE fine [mm] = MOTP 100 224 204 106

Rel. AEE reduction −124.0% −104.0% −6.0%

Bias fine+gross [mm] 191 448 375 156

Rel. BIAS f+g reduction −134.6% −96.3% 18.3%

A-MOTA 90 ± 0.7% 60 ± 1.1% 67 ± 1.1% 93 ± 0.6%

Rel. error reduction −33.3% −25.6% 3.3%

Loc. frames 7295 7295 7295 7295

Ref. duration (s) 600.0 600.0 600.0 600.0

Table 3.46: ST-AV16.3. Band-pass filtering effect. fs = 16 KHz. Frame Size= 640 ms. Microphone

array= Two circular arrays of 8 microphones each. Grid step in which the room was divided: 50

mm

It is interesting to note that we can achieve better localization results when high-pass

filtering up to a certain point. Specifically, removing the frequencies lower than 1, 2

and even 4 KHz in AV16.3 database improves the performance of our system as expec-

ted, since these frequencies imply wide main lobes that do not allow a precise beamfor-

ming. As curiosity, it is remarkable that performing this high-pass operation practically

removes every trace of human speech (whose power is mainly located in the first KHz

band) but still yields better position estimates about where is the speaker talking. Howe-

ver, it is also important to note that, when removing all those frequencies lower than 6

KHz, the system starts to perform worse than all the previous high-pass filtering schemes,

this is due to the fact that the speech energy in this band finally becomes as weak as to

affect the performance. It is also remarkable that the frequency bands showing the worse

behaviour are those ranging in the [0-1 KHz] and [1-2 KHz] limits: although containing

most of the signal energy, their directivity patterns are not appropiate for localization

purposes.
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3.9.4.2 Real HIFI

HIFI database, sampled at 48 KHz, allows us to study the range up to 24 KHz. Table

3.47 shows the low-pass filtering experiments performed with Real HIFI in the frequency

bands [0-1 KHz], [0-2 KHz], [0-4 KHz], [0-8 KHz], [0-16 KHz] and [0-24 KHz] (full-band).

Meanwhile, Table 3.47 shows the high-pass filtering experiments performed with Real

HIFI in the frequency bands [1-24 KHz], [2-24 KHz], [4-24 KHz] and [8-24 KHz] and [16-

24 KHz].

Finally, Table 3.47 shows the band-pass filtering experiments performed with Real

HIFI in the frequency bands [1-2 KHz], [2-4 KHz], [4-8 KHz], [8-16 KHz] and [16-24 KHz].

We can somehow extract the same conclusions for the Real HIFI corpus: We can check

that frequency bands performing the worst are either the low frequency ones, specifically

the ranges [0-1 KHz] and [0-2 KHz], or those containing frequencies so high that no hu-

man speech power is present in them at all, particularly the range [16-24 KHz]. With

this basis, we will expect that band-pass filtering between [2-16 KHz] to yield particu-

larly good localization results, see Section 3.10 in page 153. However, we can appreciate

that high-pass filtering schemes are not as effective in Real HIFI as they were in AV16.3.

This is due to the bad properties of the capturing 4 elements array with respect to its

directivity pattern response with frequency. High frequencies should perform better but,

in this case, they imply having strong spatial aliasing and grating lobes that corrupt the

localization estimates.
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[0-1 KHz] [0-2 KHz] [0-4 KHz] [0-8 KHz] [0-16 KHz] [0-24 KHz]

Pcor 27.0 ± 0.9% 55.0 ± 1.0% 70.0 ± 0.9% 82.0 ± 0.8% 85.0 ± 0.7% 84.0 ± 0.7%

Rel. error reduction 103.7% 159.3% 203.7% 214.8% 211.1%

Bias fine (x:y:z) [mm] 66 : 145 : −84 −39 : 70 : −29 −33 : −31 : −62 4 : −33 : −71 −3 : −22 : −52 −7 : −32 : −61

Bias fine+gross (x,y,z) [mm] 165 : 706 : −88 114 : 329 : −46 118 : 179 : −69 82 : 168 : −79 64 : 51 : −62 47 : 27 : −69

Bias AEE fine [mm] = MOTP 393 263 209 199 195 206

Rel. AEE reduction 33.1% 46.8% 49.4% 50.4% 47.6%

Bias fine+gross [mm] 1103 783 583 501 415 426

Rel. BIAS f+g reduction 29.0% 47.1% 54.6% 62.4% 61.4%

A-MOTA −47 ± 1.0% 9 ± 0.6% 40 ± 1.0% 64 ± 1.0% 71 ± 0.9% 67 ± 1.0%

Rel. error reduction −119.1% −185.1% −236.2% −251.1% −242.6%

Loc. frames 9375 9375 9375 9375 9375 9375

Ref. duration (s) 496.0 496.0 496.0 496.0 496.0 496.0
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[1-24 KHz] [2-24 KHz] [4-24 KHz] [8-24 KHz] [16-24 KHz]

Pcor 85.0 ± 0.7% 84.0 ± 0.7% 82.0 ± 0.8% 76.0 ± 0.9% 45.0 ± 1.0%

Rel. error reduction −1.2% −3.5% −10.6% −47.1%

Bias fine (x:y:z) [mm] −7 : −32 : −61 −7 : −32 : −61 −6 : −30 : −61 −9 : −28 : −58 17 : −68 : −59

Bias fine+gross (x,y,z) [mm] 28 : −13 : −66 13 : 28 : −69 1 : 37 : −69 −9 : −25 : −64 8 : 487 : −101

Bias AEE fine [mm] = MOTP 206 206 207 203 282

Rel. AEE reduction −0.0% −0.5% 1.5% −36.9%

Bias fine+gross [mm] 424 427 449 518 1175

Rel. BIAS f+g reduction −0.7% −5.9% −22.2% −177.1%

A-MOTA 69 ± 0.9% 68 ± 0.9% 64 ± 1.0% 53 ± 1.0% −10 ± 0.6%

Rel. error reduction −1.4% −7.2% −23.2% −114.5%

Loc. frames 9375 9375 9375 9375 9375

Ref. duration (s) 496.0 496.0 496.0 496.0 496.0
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[1-2 KHz] [2-4 KHz] [4-8 KHz] [8-16 KHz] [16-24 KHz]

Pcor 55.0 ± 1.0% 71.0 ± 0.9% 76.0 ± 0.9% 80.0 ± 0.8% 45.0 ± 1.0%

Rel. error reduction 29.1% 38.2% 45.5% −18.2%

Bias fine (x:y:z) [mm] −30 : 42 : −25 −30 : −37 : −57 8 : −25 : −72 −6 : −19 : −51 17 : −68 : −59

Bias fine+gross (x,y,z) [mm] −233 : −186 : 3 115 : 39 : −63 21 : 273 : −84 −35 : −11 : −58 8 : 487 : −101

Bias AEE fine [mm] = MOTP 238 197 204 193 282

Rel. AEE reduction 17.2% 14.3% 18.9% −18.5%

Bias fine+gross [mm] 968 604 561 442 1175

Rel. BIAS f+g reduction 37.6% 42.0% 54.3% −21.4%

A-MOTA 9 ± 0.6% 42 ± 1.0% 51 ± 1.0% 61 ± 1.0% −10 ± 0.6%

Rel. error reduction 366.7% 466.7% 577.8% −211.1%

Loc. frames 9375 9375 9375 9375 9375

Ref. duration (s) 496.0 496.0 496.0 496.0 496.0
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3.9.4.3 SONY

SONY database, sampled at 48 KHz, allows us to study the simulated range up to 24

KHz. Table 3.47 shows the effects of low-pass filtering with a simulated database: SONY.

The experiments were performed in the frequency bands [0-1 KHz], [0-2 KHz], [0-8 KHz],

[0-16 KHz] and [0-24 KHz] (full-band).

We can again check that low-frequency bands included in [0-1 KHz], [0-2 KHz] are

useless in terms of speaker localization. Only when taking bands including high fre-

quencies and, thus, better directivity patterns responses, can we obtain proper results.
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3.9.5 Use of geometrical information

As depicted during the theoretical introduction in Section 2.4.4.6 in page 44, a possible

improvement technique may consist on accurately defining the bounds of the search to

fit the places where the speaker is likely to be as weall as taking into account dead areas

in the room, such as big tables or wardrobes, where they speakers will rarely lie.

In this Section, we present some basic experiments to test the influence of this strategy

on the final localization estimates.

3.9.5.1 AV16.3

AV16.3 geometry is ideal in order to test how much improvement these techniques may

yield. On the first hand, we know the limits of the room in the Idiap Institute where the

database was recorded: a rectangular room of 8.2mx3.6mx2.4m. However, we also know

that, during the recordings, all the speakers where distributed along the L-shaped area

depicted in Figure 3.3 in page 62. We can either perform a search over all the possible

(x,y,z) coordinates contained in the room or just stick to those points with (x,y) coor-

dinates belonging to the L-shaped area with z-coordinates ranging just in the habitual

heights of a person either sitting or standing.

Whole room search L-shaped area search

Pcor 73.0 ± 1.0% 81.0 ± 0.9%

Rel. error reduction 11.0%

Bias fine (x:y:z) [mm] 63 : 29 : 60 58 : 17 : 63

Bias fine+gross (x,y,z) [mm] −116 : −318 : 113 −76 : −174 : 39

Bias AEE fine [mm] = MOTP 218 197

Rel. AEE reduction 9.6%

Bias fine+gross [mm] 733 490

Rel. BIAS f+g reduction 33.2%

A-MOTA 44 ± 1.1% 61 ± 1.1%

Rel. error reduction 38.6%

Loc. frames 7295 7295

Ref. duration (s) 600.0 600.0

Table 3.51: ST-AV16.3. Use of geometrical information effect. fs = 16 KHz. Frame Size= 40 ms.

Microphone array= Two circular arrays of 8 microphones each. Grid step in which the room was

divided: 150 mm

As we can appreciate in Table 3.51, determining an accurate region where to search,
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using any kind of previous information about the most likely places where the speaker

can be, demonstrates to be crucial in order to improve the localization rates.

We will next analyze the results when ignoring those localization estimates placed

at any of the dead areas defined. The Idiap room contains a big, centered rectangular,

4.8mx1.2m table. We can assume speakers talking around this table or even lying on it,

but we will discard any position estimate located more than 200 mm into the table.

Whole room search Discarding dead areas

Pcor 73.0 ± 1.0% 73.0 ± 1.0%

Rel. error reduction 0.0%

Bias fine (x:y:z) [mm] 63 : 29 : 60 63 : 29 : 60

Bias fine+gross (x,y,z) [mm] −116 : −318 : 113 −116 : −318 : 113

Bias AEE fine [mm] = MOTP 218 218

Rel. AEE reduction −0.0%

Bias fine+gross [mm] 733 733

Rel. BIAS f+g reduction −0.0%

A-MOTA 44 ± 1.1% 44 ± 1.1%

Rel. error reduction 0.0%

Loc. frames 7295 7295

Ref. duration (s) 600.0 600.0

Table 3.52: ST-AV16.3. Dead areas effect. fs = 16 KHz. Frame Size= 40 ms. Microphone array=

Two circular arrays of 8 microphones each. Grid step in which the room was divided: 150 mm

As we can see there is no performance difference in this case between both cases.

This is due to the fact that no estimation was determined to be inside the table. However,

this technique may prove to be useful in rooms with large dead areas and under tougher

noise or reverberation conditions that may lead the system to output wrong estimates

belonging to these areas.

3.10 Selected final experiments

Finally, we have selected three different experiments that sum up the best strategies we

can follow according to all the information collected through the previous experiments.

These three experiments aim at giving a picture as complete as possible: They have been

performed with three different databases, including real and simulated ones and cover

three different frame sizes and estrategies.
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It is important to note that these experiments do not only concentrate on localization

performance but also take into account computational costs. Better localization rates than

the ones shown in the following Tables 3.53, 3.54 and 3.55 were in fact achieved, but at the

cost of necessarily having to spend a considerably higher computational time, far above

from the real-time constraints.

As specified in Section 3.2.1 in page 52, z-coordinate errors demonstrated to be less

critical since the arrays used were lined along the XY plane therefore having a symmetri-

cal directivity patern along the z-axis. Thus, it turned out to be important to evaluate not

only the 3D, (x,y,z), results, depicted in the first column of the following Tables, but also

the 2D, (x,y), results, depicted in the second column of the following Tables, in order to

properly characterize the algorithm behaviour.

3.10.1 AV16.3

The following Table 3.53 shows the most appropiate results for the AV16.3 database. The

static sequences were selected. The frame size, 500 ms, was chosen to be the one showing

the best performance vs. computational time ratio. Actually choosing a greater frame

size would result in better localization estimates, however, as set in Figure 3.9 in page

82, increasing the size above this 500 ms would lead to neccesarily having to double the

FFT size therefore doubling the computational time spent, see Section 3.8 in page 123.

Also, the grid spacing selected, 100 mm, is not the ideal one as demonstrated in Section

3.5.5 in page 93: A finer grid would yield better estimates but would at the same time

imply a slower application, see Section 3.8 in page 123. We also have made use of the a

priori knowledge about the best frequency band in localization terms, [4-8 KHz], see Sec-

tion 3.9.4 in page 143. Finally, the Hamming window and the rounding techniques were

chosen as they demonstrated to be the most reasonable ones throughout the experiments.
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(x:y:z) error [mm] (x:y) error [mm]

Pcor 94.0 ± 0.5% 96.0 ± 0.4%

Rel. error reduction 2.1%

Bias fine (x:y:z) [mm] 52 : 21 : 31 53 : 23 : 0

Bias fine+gross (x,y,z) [mm] 37 : 2 : 26 37 : 2 : 0

Bias AEE fine [mm] = MOTP 159 134

Rel. AEE reduction 15.7%

Bias fine+gross [mm] 224 191

Rel. BIAS f+g reduction 14.7%

A-MOTA 90 ± 0.7% 93 ± 0.6%

Rel. error reduction 3.3%

Loc. frames 7295 7295

Ref. duration (s) 600.0 600.0

Table 3.53: ST-AV16.3. Selected final experiment. fs = 16 KHz. Frame size= 500 ms. Microphone

array= Two circular arrays of 8 microphones each. Grid step in which the room was divided: 100

mm. Windowing: Hamming. Band-pass filter: [4-8KHz]. Rounding applied.

The CPU load for this particular experiment was 65 ms per estimation. Given that

estimations are output every 40 ms, this means 1.62 real-time units, really close to real-

time performance.

3.10.2 Real HIFI

The following Table 3.54 shows the most appropiate results for the Real HIFI database.

The sampling frequency selected was 48 KHz instead of 16 KHz since it leads to smaller

rounding errors, see Section 3.5.1 in page 3.5.1. The frame size, 320 ms, was chosen

because of outputting the best localization results, see Section 3.5.2 in page 80. Grid

spacing, 150 mm, was also the one throwing the best estimates in the case of the Real HIFI

database captured by the 4 elements linear array, see Section 3.5.5 in page 3.5.5. Moreover,

the information about the best frequency bands was used: In Section 3.9.4 in page 143,

we concluded that, in Real HIFI, bands lower than 1 KHz and higher than 16 KHz didn’t

work properly. Therefore, this will be the interval we will use here. Finally, the Hamming

window and the rounding scheme were again the most reasonable techniques.
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(x:y:z) error [mm] (x:y) error [mm]

Pcor 88.0 ± 0.7% 88.0 ± 0.7%

Rel. error reduction 0.0%

Bias fine (x:y:z) [mm] −1 : −21 : −50 −2 : −21 : 0

Bias fine+gross (x,y,z) [mm] 3 : 21 : −56 3 : 21 : 0

Bias AEE fine [mm] = MOTP 195 108

Rel. AEE reduction 44.6%

Bias fine+gross [mm] 375 296

Rel. BIAS f+g reduction 21.1%

A-MOTA 77 ± 0.9% 77 ± 0.9%

Rel. error reduction 0.0%

Loc. frames 9390 9390

Ref. duration (s) 367.0 367.0

Table 3.54: Real HIFI. Selected final experiment. fs = 48 KHz. Sequences considered: 223 re-

cordings from 12 different speakers placed at 5 different, static positions. Frame size= 320 ms.

Microphone array: Linear array of 4 sennheiser microphones equispaced 200 mm (L = 800 mm).

Grid step in which the room was divided: 150 mm. Windowing: Hamming. Band-pass filter:

[2-16KHz]. Rounding applied.

The CPU load for this particular experiment was 11 ms per estimation. Given that

estimations are output every 40 ms, this means 0.27 real-time units, a quite fair result.

3.10.3 Simulated HIFI

The following Table 3.55 shows the most appropiate results for the Simulated HIFI da-

tabase. In this case, the higher possible sampling frequency, 48 KHz, a long frame size,

640 ms and an accurate grid spacing, 50 mm, were all selected in order to achieve the

best possible localization results although this could imply longer computational times.

A proper microphone array, having 11 elements distributed harmonically, see Section

3.6.1 in page 3.6.1, was also used. Apart from that, the microphone distance weigthing

technique was applied as it demonstrated to largely improve the localization results in

this case without having to increase the computational load, see Section 3.9.3 in page 137.

Once again, the Hamming window and the rounding technique were selected.
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(x;y;z) error [mm] (x;y) error [mm]

Pcor 94.0 ± 0.5% 93.0 ± 0.5%

Rel. error reduction −1.1%

Bias fine (x:y:z) [mm] 1 : −93 : 0 1 : −94 : 0

Bias fine+gross (x,y,z) [mm] 6 : 8 : −9 6 : 8 : 0

Bias AEE fine [mm] = MOTP 95 121

Rel. AEE reduction −27.4%

Bias fine+gross [mm] 193 241

Rel. BIAS f+g reduction −24.9%

A-MOTA 87 ± 0.7% 87 ± 0.7%

Rel. error reduction 0.0%

Loc. frames 9390 9390

Ref. duration (s) 367.0 367.0

Table 3.55: Simulated HIFI. Selected final experiment. fs = 48 KHz. Sequences considered: 223

recordings from 12 different speakers placed at 5 different, static positions. Frame size= 640 ms.

Microphone array: Linear harmonic array of 11 sennheiser microphones. Grid step in which the

room was divided: 50 mm. Windowing: Hamming. Microphone distance weigthing applied.

Rounding applied.

The CPU load for this particular experiment was 150 ms per estimation. Given that

estimations are output every 40 ms, this means 3.75 real-time units, much slower than a

real-time application but still reasonable given the time-consuming conditions imposed

and the localization results obtained. We could save computational time at the cost of

slighty reducing the localization rate.
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Conclusions

This chapter makes a general revision of the content of this Master Thesis report. Special

stress will be put on the fundamental conclusions reached through the development of

this Master Thesis as well as the main contributions it contains.

Chapter 1 presented the main objectives aimed to achieve with this Master Thesis as

well as a justification of their achievement and an introduction to the report structure.

Chapter 2 details the theoretical background over which this Master Thesis has been

constructed. Special attention has been given to the speaker localization techniques: Star-

ting with the basic technique to determine the Direction of Arrival (DOA) based on the

Generalized Cross Correlation between microphone pairs with a Phase Transform pre-

whitening filter (GCC-PHAT) and ending up with a more robust algorithm based on the

Steered Response Power (SRP-PHAT) of a microphone array when beamformed to point

at different space locations. Insights about some possible improvement techniques that

could be applied to this algorithms are also discussed as well as some key aspects about

tracking algorithms, to be included in future research works, and Voice Activity Detectors

(VAD) procedure, fundamental in order to determine whether there is an active speaker

at a certain time period and therefore if a localization estimate during that period makes

sense or not.

Chapter 3 describes the exhaustive experimentation carried out to test the two lo-

calization algorithms depicted above: GCC-PHAT and, mainly, the final implemented

version of SRP-PHAT. These experiments were thought to cover as many cases as pos-

sible: they make use of both real databases such as AV16.3 and HIFI and simulated ones

such as Sony and Simulated HIFI, and aim at evaluating the influence of the different

tunable parameters on the system performance, as well as testing the different possible im-

provement techniques and assuring the statistical relevance of the results obtained. Next,

we will highlight the main conclusions we can extract from the experiments conducted
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in the different Sections of this Chapter 3:

• Early experiments demonstrated that localization estimates, both those given by

GCC and SRP, improve when these algorithms are applied a prefilter rather than

using their unfiltered versions. Out of all the possible prefilters tested, the Phase

Transform (PHAT) pre-whitening filter showed the best performance rather than

the Roth Processor, the Smoothed Coherence Transform (SCOT) or the Maximum

Likelihood (ML) filter. More details about these prefilters can be found in Section

2.4.1.2 in page 27 or in IEEE paper [KC76].

• The more distant two microphones in a pair are, the more reliable their GCC-PHAT

DOA estimations will be, that is to say, the smaller the relative error they will com-

mit as demonstrated theoretically in equation 2.43 in page 31.

• SRP-PHAT estimations demonstrate to be much more accurate and robust when

compared to those of the GCC-PHAT method as expected, since SRP can be de-

fined as the sumation of all possible GCCs between all possible microphone pair

combinations as demonstrated in paper [Dib00] pp. 78-80.

• Real databases offer better and more consistent localization results than simulated

ones often missing more accurate models able to properly imitate the real recording

conditions.

• Tunable parameters effects

Sampling frequency, having a higher sampling frequency yields an error reduc-

tion in the localization estimates. As trade-off, it will also imply a higher compu-

tational load since it will be neccessary to take into account a higher number of

samples.

Frame size, in general, the longer the frame size the better localization estimates.

Again, the trade-off is the CPU load increase. However this general hint is not valid

in two cases: First, when localizing speakers in movement the results do increase as

we increase the frame size but just to a certain length beyond which the estimates

yielded will be worse since the speaker position starts to significally differ from the

starting to the end point of the analyzed frame. Secondly, when analyzing too short

utterances if frames are too long they will neccessary contain significal portions of

silence or zero-padding that will make the estimation errors increase.

FFT size, it determines the maximum distance our system can reach in search

of a speaker as demonstrated in Section 3.5.3 in page 88. Apart from this, it does

not affect the localization estimates accuracy. On the contrary, it does affect the

computational load, doubling the FFT size implies doubling the CPU time spent.
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It is important to note that the size of the FFT transform must always be equal or

greater than that of the frame considered and, therefore, this is how the frame size

has an influence on the execution time.

Window type, early experiments showed the convenience of applying windo-

wing functions to the frames prior to their analysis in order to avoid wrong es-

timations. Among the different windowing functions Hamming demonstrated to

perform better than Hanning, Blackman and Barlett.

Search space grid, in general, dividing the search space with more and more

finesse yields more and more accurate localization estimate. Once more, this mea-

sure has a trade-off in form of heavier computational cost: Having more and more

points in the search space where to steer at increases the execution time proportio-

nally. However, this accuracy improvement is just valid when working with ap-

propiate microphone arrays. Arrays whose elements are not close enough to each

other, thus leading to spatial aliasing in high frequency bands, or whose effective

length is not long enough, thus having too wide main lobes as to be steered accura-

tely, will not fulfil the previous assertion. Moreover, localization estimates will just

be proper if the speaker locations are properly taken into account to “fit well” into

the designed grid.

• Microphone array effects

Number of microphones and intermicrophone distance, the closer the elements are to

each other in the array in order to avoid spatial aliasing and the longer its effective

length is in order to present a thin, accurate main lobe, the better the localization

estimates will be. Therefore the ideal array is that having small intermic distances

but lots of elements so that its effective length is long enough. Moreover a significal

number of elements in the array reduces the side lobes level and grants more ac-

curate Steered Response Power (SRP) patterns. The trade-off of this type of arrays

is, once again, the high computational cost associated to them, since it will be nec-

cessary to take into account a microphone pair combation number that grows in a

quadratic mood every time a new element is added to the set.

L-shaped array, although its shape assures theoretically smaller geometric areas

in which the speaker can stand, their localization estimates are seriously worsened

by the strong reverberation conditions present at their corner location.

• Those speaker positions perpendicular to the microphone array are the ones sho-

wing the best localization results. Whenever they are not perpendicular, then, the

more tilted they are with respect to the array the better for our localization pur-

poses, which confirms what equation 2.43 in page 31 hinted.
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• Additional strategies effects

Coarse to fine search, this strategy requires to experimentally set and tune the

proper relationship between the width of the energy peak and the source frequency

for every specific array configuration.

Noise masking, adopting a fixed threshold estrategy for all the frequencies

proved to mislead the localization estimates as it leads to massive discard at high

frequency bands, those containing less energy but being more effective in locali-

zation tasks. An adaptive threshold strategy setting a discard mask related to the

energy spectra at each frequency component demonstrated to effectively work in

noisy environments although it requires a prior, proper tuning of the threshold le-

vel to choose.

Estimation of localization confidence, localization estimates result to be more

accurate if we put more confidence on those microphone pairs whose elements are

more distant. However, this confidence only improves the results when there is a

large enough number of microphone pairs contributing.

Filtering techniques, the use of pass-band frequency bands, when properly

chosen, demonstrates to improve the localization estimates. Specifically, low fre-

quency bands, typically under 2 KHz and associated to directivity patterns with

too wide main lobes, are not advised to be taken into account as well as too high

frequency bands, typically above 16 KHz, containing low speech power and prone

to show spatial aliasing.

Interpolation techniques, the experiments done within this field showed us

the importance of reaching sub-sample resolution in our digital computations. As

explained in Section 2.4.1.3 in page 29 the conversion from real time delay units in

seconds to discrete, digital time delay units in samples neccesarily leads to impreci-

sions in our computations that must be avoided as much as possible. These impre-

cisions depend on 4 main facts: First, the sampling frequency of the signal. Second,

an accurate selection of the speed of sound in the given environment. Third, the

speaker position defining its DOA with respect to the array. Forth, the rounding

function used to transform real time units into digital ones. 3 main solutions were

proposed to this imprecision problem:

FSRP, A first solution to the problem was to directly avoid it by straight-

ahead using the exact real time delay units in seconds. This is possible in the

Frequency SRP (FSRP) method described in Section 2.4.3.3 in page 37. The expe-

rimentation carried out with this method shows an important improvement in the

localization rates but at the cost of prohibitively rising the execution time required.

Interpolation, The second solution we thought of was to artificially rise the sam-



162 Chapter 4. Conclusions

pling frequency of the digital signal by x2 and x3 interpolation processes in order

to reduce imprecissions. Once again, the localization results improve although they

are never as good as if they would have been obtained with signals originally sam-

pled at rates x2 and x3 times higher. However, once again, this technique implies

rising x2 and x3 the execution time required.

Rounding functions, Finally we thought of trying to smartly sort out the values

of the missing subsamples in the correlation function based on their neighbouring

samples values. This technique means no rise in the computational time spent

and proves to effectively work throwing localization rates comparable, although

slightly lower, than the previous methods.

Use of geometrical information, the use of any kind of a priori knowledge

about the position speaker turns out to be of high importance: defining proper

bounds where to search the speaker (as tight as possible but without discarding

any possible location) as well as taking into account those dead areas where the

speaker is not likely to be, such as armchairs, large tables, etc. help the system to

discard wrong location outputs.

• Distance errors between the true speaker position and their corresponding esti-

mates are generally much higher along the z-coordinate compared to those of the x

and y-coordinates. This is due to the fact that the arrays used are XY lined and the-

refore have a symmetric directivity pattern along the z-axis which makes it difficult

to make a difference between points lined in this direction. We can make use of this

fact in two possible ways:

Computational time, we can reduce the finesse of the search space grid in the

z-direction without loss of accuracy in the system estimates but with a gain in the

execution time since there will be less locations to evaluate.

Localization rate, we can rise the localization rate by giving more finesse in the x

and y directions and less in the z one. The computational time can be keep constant

since the overall number of points to evaluate can be approximately the same as

when giving equal finesse to all directions.

• Computational load in SRP algorithm increases linearly with the FFT size (and,

consequently, with the frame size), the number of search points (which depends

upon the grid spacing defined) and quadratically with the number of microphones

in the array. FSRP implementation is also far more computationally expensive than

TSRP. In general, we appreciate a trade-off between localization performance in the

system and CPU time spent.
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Future work

5.1 Introduction

This chapter will give an overview about the future research lines opened after the com-

pletion of this Master Thesis. The main tasks in this Master Thesis were the design,

implementation and evaluation of a speaker localization systems. The design process

was completed succesfully and the evaluation of the implemented algorithms was ex-

haustive in terms of databases, tunable parameters, improvement techniques and envi-

ronment conditions and geometries giving little room to further extend it in the future

with new cases. Hence, most of the future lines proposed focus on giving hints about the

design and implementation of new algorithms and improvement techniques that could

be added to the system in order to improve its localization tasks.

5.2 Implementation of the Time Delay Selection (TIDES) algo-

rithm

Described in Varma’s Master Thesis [Var02] pp. 81-122, the Time Delay Selection (TIDES)

algorithm proposes to take into account not only that peak value of the GCC (Generalized

Cross Correlation) function but also some other weaker peaks. This technique is based

on the fact that GCC function was observed to always contain a peak at the proper time

delay difference between a microphone pair. However, this peak does not always turn

out to be the strongest one since reverberation may make other peaks appear at wrong

time delays.

This idea was taken into consideration during the achievement of this Master Thesis

and the system was implemented to have a tunable parameter that could set how many
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peaks we want to select out of the GCC functions. However, this issue was never exploi-

ted and opens a door to add a new improvement algorithm in the future that could lead

to improved estimations.

We here suggest a basic outline for this algorithm that could consider selecting just

the two strongest peaks in the GCC function, instead of just the strongest one as done

in this Thesis. When compared, if one of these two peaks turns out to be dramatically

stronger we will proceed as usual. However, if the two peaks result to be similar in

strength we will make use instead of a weighted version of the values corresponding to

the two peaks.

5.3 Improvement of the coarse to fine search method

As described in Section 3.9.1 in page 129, the experimental results obtained with the

implemented coarse to fine search method did not fit the expectations, both in computa-

tional requirements and localization rates, we had deposited on it.

As far as the localization rates are concerned, we may think of adding a new, simpli-

fied version of our coarse to fine algorithm as the one described in Abad’s Thesis [AG07].

Based on a two-steps technique instead of on the complex multi-step version based on

octrees referenced in Duraiswami’s article [ZD04]. This new technique would consider

a gross search in the first step performed with a proper cut-off frequency associated to

a energy peak width that could cover areas gross enough as to explore the environment

just by looking at a few spots. After this step, that gross area, gross but yet significally

smaller than the whole room, showing the greater Steered Response Power (SRP) would

be selected to be explored with finesse and with the full-band version of the signal this

time. This scheme is promising in both the computational requirements, since the num-

ber of points to explore can be much smaller than directly dividing the whole room with

finesse, and the localization rates, since the second step search could be done with much

more finesse than allowed when working with the whole room area.

Finally, as far as the computational requirements are concerned, the implemented

coarse to fine algorithm could also be modified so that the IFFT transforms could have

less points and, thus, run more efficiently: Whenever we are making use of a low-pass

filtered version of the original signal in order to get grosser energy peaks to explore gross

areas of space we do not need to apply IFFT transforms covering the full signal band. We

could then reduce the IFFT size to just fit the band limitted by the corresponding cut-off

frequency. This algorithm optimization would lead to some computational load save.
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5.4 Further estimation of the localization confidence

As we described during the theoretical introduction in Section 2.4.4.3 in page 41, any

kind of a priori information about how the reliability of our estimations is related to the

prior experiment conditions can be used to improve our localization results by designing

techniques that put more emphasis on those conditions which yield the best results.

The microphone distance weighting technique is a good example of this: Since the

experiments in Section 3.4 in page 71 showed distant microphone pairs to output better

estimates, we decided to give them more importance by simply applying a weighting

function.

Therefore, this same thing could also be extended in the future to a set of different

other features. For instance, as pointed out in Section 3.9.4 in page 143 when talking

about the filtering schemes, the results output by the experiments in this section could

be used to likewise design a weighting function that would integrate the information

coming from all frequency bands but giving more importance to those showing better

performances. This approximation would surely output better estimates than the ones

obtained by simply using the pass-band filtered versions of the signal that demonstrated

to perform better as it was done in the final experiments Section 3.10 in page 153.

However, the design of simple, linear weighting functions as proposed above does

not seem to exploit all the potential of this localization confidence path. We can think of

a much powerful tool to take into account all these facts. As future line of research we

propose a new strategy with no precedent in the state-of-the-art literature: The design

and implementation of a MuMe, [Jab94], Neural Network (NN) that can be trained in

order to sort out itself the appropiate weighting function corresponding to the overall set

of parameters selected to have some influence on the localization confidence. In order to

do so, it is important first to make an in-depth study about all these possible issues that

may have an effect on the localization confidence. We have already here clearly identi-

fied two of them: the inter-microphone distance and the signal frequency bands. There

can be though many others such as the environment geometry, the signal to noise ratio,

the speech spectral content, etc. All of them will be used as input during the training

phase of the NN which will compare the results that our localization algorithm yields to

the ground truth positions taking into account every possible variation of selected input

parameters. During this training phase the NN is able to design a weighting function

that perfectly shapes the contribution of all the input conditions so that the output they

yield is as similar to the ground truth as possible. Once this weighting function has been

found out we can later use it as a valuable a priori information that will help our estimates

resemble more the true speaker localizations.
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5.5 Use of better array configurations

As concluded in the array geometry Section 3.6 in page 108, there are some array confi-

gurations which are not suited for speaker localization tasks. For instance, the linear

array of four 200 mm equispaced sennheiser microphones used during the HIFI database

recordings offers a quite poor directionality at low frequencies, not being able thus to re-

ject signals coming from undesired directions, and strong spatial aliasing at medium and

high frequencies as can be seen in Figures 3.13, 3.14, 3.15, 3.16 and 3.17 in page 100. In ad-

dition, the L-shaped array of 3 crown microphones also offers a poor directivity and it is

subject to strong reverberation and inter-microphone replicas due to its corner position.

Therefore, for the recording of future databases aimed at speaker localization pur-

poses, we here suggest the use of linear arrays characterized by a reasonbly small micro-

phone inter-distance (i.e. 20 mm) in order to avoid aliasing at high frequencies as well as

a reasonably large (i.e. > 500 mm) effective length in order to get thin main lobe patterns.

The longer the number of elements in the array, the lower the side lobes thus helping

to reject signal from undesired directions, but also, the higher the computational time

spent to take into account the quadratically growing number of mic pair combinations.

Hence, we propose not to neccessarily using a equispaced microphone scheme to fulfil

the effective lenght but rather a harmonic distribution of them in the mood of the 11 har-

monic array of the Simulated HIFI database depicted in Figure 3.5 in page 68. Moreover,

this harmonic array configuration could also be used to implement a Constant Direc-

tive Beamformer (CDB) as described in [BW01] pp.3-19, [AG07] pp. 35-38 and Section

2.3.2.3 in page 22. It basically consists on capturing each frequency band with a certain

linear sub-array within the harmonic array whose equispaced elements have an inter-

distance designed to fit with the frequency band that it aims to capture. The result is an

approximately constant directivity pattern along all the frequency ranges as depicted in

the instance in Figure 5.1.

In addition to the previous suggestions, and given the fact that XY lined linear arrays

cannot make clear distinctions along different locations lying in the z-direction, it would

be interesting to form not a linear, 2D array but a T-shaped, 3D array. Some suggestions

in this sense can be found at [MSBS95] and [MSBS97]. In its simplest configuration it

could be formed by a usual, XY lined, linear array plus the addition of at least one extra

microphone centered in a different z-coordinate with respect to the linear array. This way,

all the mic pair contributions including this extra microphone would give us precious

distinct information about the z-axis localization that would help us reduce the typically

large errors committed in this Master Thesis in the z coordinate estimation.
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Figure 5.1: Instance of a Constant Directivity Beamformer array (left) and its correponding di-
rectivity pattern along all the frequency bands (right). An almost frequency-constant directivity

pattern is obtained.

5.6 Algorithm optimization

The final objective of the localization system, once its implementation and testing have

been finished, is to perform in real time. In order to do so, an optimization process of the

algorithms implied it is crucial to reduce the execution time of each position estimate.

During this optimization process, it is important to find out which parts of the pro-

gram are the most demanding in computational time and concentrate on their implemen-

tation and instructions to try to lower their load. In this sense, the gprof tool, [FS], can

help us analyze our code giving us precise information about the heavier parts in our

code. This application is an useful way to profile programs that are too big or complex as

to be directly analyzed from their source code.

gprof harvest information about our program while analyzing it during a real exe-

cution of the system. It shows how much time the program spent in each function as

well as how many times every function was called and who was the one calling them

every time. This turns out to be a valuable knowledge about how to rewrite our code, we

should concentrate on optimizing the heavier rutines as well as minimizing the excesive

call of computationally demanding functions.

5.7 Tracking algorithms implementation

In order to properly localize moving acoustic targets it is appropiate to develop algo-

rithms able to automatically track the speaker. These tracking techniques can improve
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the robustness of our estimates since they integrate several temporally differenciated es-

timates: In fact, they basically consist on filtering the instantaneous location estimates

provided by the localization system. The Kalman filter [Kal60] has been proposed in

[DESS97] as a way to spatially smooth these estimations. Then, geometrical properties

are used in order to infer the source position. As an alternative, Sequencial Monte-Carlo

(SMC) methods, also known as Particle Filtering (PF), implement a Bayesian filter that

tries to predict the optimal candidate configurations by measuring their likelihood, gi-

ven the localization estimates [DBWW03].

These techniques are here proposed for further implementation in future research

works. The work developed in [CSH06] can be taken as reference for a simple tracking

implementation based on a SRP-PHAT method that bases its estimates on the summation

of the CPS (Cross-Power Spectrum) functions of the actual and previous frames, weigh-

ted by an adaptive smoothing factor given by the Kalman estimator.

5.8 Multiple speaker localization

This current Master Thesis has concentrated on the localization of a single speaker. Fur-

ther improvements of this work could include the addition of multiple speaker localiza-

tion techniques. An exhaustive introduction to these techniques can be found in [AM01]

pp. 180-203. In this sense, the Steered Response Power (SRP) scheme is appropiate for

multi-source detection purposes as ti performs a comprehensive inspection of the search

space allowing to encounter different power maxima.

Apart from this possibility, there is a new open field of research to locate multiple

speakers through the design and implementation of the so-called High Resolution Sub-

Space methods such as the MUSIC (Multiple Signal Classification) algorithm, which

makes use of eigenanalysis-based techniques to break up the signal into spatio-spectrally

differentiated sub-spaces, see [WK85] and [Sch86].
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Appendix A

Speed of sound

The speed of the sound is variable and can be altered depending on a different set of

factors as explained in [Gar07]. However, in our case, we will just concentrate on study

its variations when propagating through a gas. The speed of sound is affected by the

physical properties of a gas such as its temperature, pressure and humidity. For instance,

the higher the temperature, the quicker the propagation speed. An approximate measure

of the sound speed is given by the following equation:

c = 331.5 + 0.606 · ϑ [m/s] (A.1)

where ϑ is the temperature in Celsius scale.

If we compute the speed of sound at the standard air temperature (25 C) with this

formula we get: c(T ) = 346.65 m/s.

There is an alternative, more precise equation given by the following formula:

c =

√

λ · κ · T

m
[m/s] (A.2)

where λ is the adiabatic index of the gas (1.4 for air), κ is the Boltzmann constant (1.38·

10−23J · K−1), T the temperature in Kelvin scale and m is the mass of a single molecule

in kilograms (0.0289645 kg
mol

· 1mol
6.022·1023 molecules

≃ 4.81 · 10−26kg). This formula considers

that the transmission of sound in the air is made without energy loss, an approximation

very close to reality.

Following this equation, the speed of sound at the standard temperature in Kelvin

scale (298 K) is c(T ) ≃ 345.98 m/s.
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Windowing

The speech signal is sampled and digitalized so that it can be processed by a computer.

These speech signals are then tipically grouped into frames in order to be easily analy-

zed. Finally, with the aim of getting a clearer analysis, these frames are usually applied

different windowing functions that confere different spectral characteristics to the signal

considered, i.e. smoothing the frames edges and therefore avoiding abrupt responses in

the frequency domain and allowing a more efficient way to deal with a continous signal

divided into separated frames.

There are different tipically used window functions. Each of them has different spec-

tral characteristics. Here we show the windows used in this Master Thesis:

• Rectangular

w[n] =

{

1, si 0 ≤ n ≤ M

0, resto
(B.1)

• Bartlett

w[n] =















2n
M

, si 0 ≤ n ≤ M
2

2 − 2n
M

, si M
2 ≤ n ≤ M

0, resto

(B.2)

• Hanning

w[n] =

{

0.5 − 0.5 · cos(2πn
M

), si 0 ≤ n ≤ M

0, resto
(B.3)

• Hamming
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w[n] =

{

0.54 − 0.46 · cos(2πn
M

), si 0 ≤ n ≤ M

0, resto
(B.4)

• Blackman

w[n] =

{

0.42 − 0.5 · cos(2πn
M

) + 0.08 · cos(4πn
M

), si 0 ≤ n ≤ M

0, resto
(B.5)

Figure B.1 shows the shape of the windows defined in (B.1), (B.2), (B.3), (B.4) y (B.5).
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Figure B.1: Commonly used windows (taken from J. Ordonez, [OV03])
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User manual

C.1 Introduction

This appendix is intended to show to future users how to use the designed and imple-

mented tools developed during this Master Thesis.

C.2 Steered Response Power (SRP)

C.2.1 Introduction

The program srp.c contains the code responsible of performing the Steered Response

Power algorithm with speaker localization purposes. In order to obtain an executable file

from it we should ’ls’ to its directory and, once there, run the command make.

We can see our srp program as a black box that will require a set of input informa-

tions in order to properly output the speaker position estimates. The general input-output

structure of the whole process it is depicted in Figure C.1 and exhaustively explained in

Section C.2.3.

C.2.2 Command line options

All the main features having any kind of influence in the algorithm behaviour can be

totally controlled and tuned thanks to a serie of command line options. A comprehensive

enumeration and explanation of them can be found in Section 3.2.4 in the page 56 of this

Master Thesis.

For further details about the command line parameters, their default values, their
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Figure C.1: SRP program block diagram

short and long options, etc. type the command ’./srp –help’.

C.2.3 Way of operation

As shown in the block diagram in Figure C.1, there are two main types of data taking

part in our speaker localization process:

• The input data. We have total control to customize it in order to depict any kind

of localization scenario: type of speaker’s room, microphones geometry, databases,

etc. We can specify all this information via several different input files:

’roomName.sim’: This file links all the information relative to the environment

geometry. It lists the names of the configuration files, along with their directory

paths showing where to find the following specific data:

- ’micArray.arr’, this file contains the number of microphones composing the

microphone array intended to be used during our simulation. The (x,y,z) coordi-

nates of each one of the microphones involved it is also provided here. The mm is

the unit chosen.

- ’searchSpace.txt’, this file specifies the spatial limits, in (x,y,z) coordinates,
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of the portion of space that our algorithm will inspect in search of a speaker. In

addition, it also specifies the isotropic spacing that the program will use to separate

consecutive search points in the x,y,z-axis. The mm is the unit chosen once again.

- ’deadAreas.txt’, this file specifies the number of dead areas (i.e. areas where

the speaker is not likely to be such as large tables and wardrobes) along with the

coordinates of their (x,y) limits in mm.

’sourceMics-database’, the first line of this file provides the program with two

figures: The number of microphones involved in the simulation and the number of

common characters in the audio files involved, that is to say, the length of the base

name after which the simulation output files will be named.

• The output data. It contains the localization estimates thrown by our SRP algo-

rithm. Based on this information we will eventually be able to evaluate the perfor-

mance of our algorithm by means of comparison against the ground truth.

’baseName.max’, this file contains several columns. The first one holds the time

indexes, in seconds, for which the localization estimates were given. The following

columns, grouped in sets of 3 columns, hold, respectively, the (x,y,z) coordinates in

mm where our system estimates the speaker to be. There will be as many (x,y,z)

estimates as number of maximums were specified to be computed, see command

line options in Section 3.2.4 in the page 56. The estimates are sorted from maximum

to minimum, from left to rigth.

’baseName.val’, this file sorts all the time indexes, in brackets and in second time

units, for which the localization estimates were given. For each one of them, first,

the frame mean power in dB is given; this information can be useful to check a pro-

per behaviour of the VAD or to ellaborate graphs linking the localization estimate

rate with the mean power present in the frames. Secondly, it sorts from maximum

to minimon, from top to bottom, as many (x,y,z) coordinates in mm as numbers of

maximums were specified in the command line options. Finally, altogether with

the (x,y,z) coordinates, the power of each estimate, in watts, is also provided.

’baseName.tree’, this output file is only written when the coarse-to-fine version

of the SRP algorithm is executed. It contains the same data as the ’.val’ file with the

difference that this information it is not only given for the final position estimate of

each time index but also for all the prior position estimates, from the coarse to the

fine one, through which the coarse to fine algorithm had to go in each case before

getting to a final position estimate.

Generating some of the input files listed above, as well as handling the output files

containing the position estimates can be sometimes a time-demanding task specially if
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there are hundreds or thousands of audio files involved in the simulation, each of them

having a high number of time instances when to make a position estimate. For this and

some other reasons it was intended to make use of some bash scripts that could help us

automatize and reduce such tasks. Bellow, we will describe their function in detail:

• ’genSrpInput-database.sh’, this script generates the ’sourceMics-database’ input file

based on a ’.list’ file which contains all the audio files of an specific database taking

part in an specific simulation. This ’.list’ text file can easily be obtained and shaped

by means of ’ls’ and ’grep’ bash commands. Then, this script adds to these filenames

the proper directory paths where to find them. One such script exists for every

different data base in order to consider their specific name formats, etc.

• ’doSrp-database.sh’, this script allows to easily modify all the different command

line options that may have an effect on the simulation we want to perform, see Sec-

tion 3.2.4 in the page 56. Once all these options have been specified, the script calls

the ’srp.c’ program with the appropiate parameters linking it with the appropiate

input files ’roomName.sim’ and ’sourceMics-database’.

• ’go-database.sh’, once we have got the ’srp.c’ output estimates we want to eva-

luate a large enough amount of them according to the CHIL standards in order to

check the performance of the different variations of our algorithm. This evaluation

consists on comparing, audio file by audio file, time index by time index, our algo-

rithm localization estimates against the ground truth position and it is performed

by ’sp_loc_eval’, a program provided by the CHIL consortium. Thanks to this ’go-

database.sh’ script we can automate the call to ’sp_loc_eval’ instead of doing it file by

file by providing it with the appropiate parameters that it requires along with the

appropiate list of output ’.max’ files that we want to evaluate. In this respect, most

of the times, this script will make use of the same ’.list’ file which listed the names

of all the audio files that were used in that simulation in particular. Once this call is

executed, the ’sp_loc_eval’ will create two text files for every of the ’.max’ files listed:

’summary-baseName.txt’, containing the main CHIL evaluation metrics related

to that audio filename in particular, see Section 3.2.1 in page 52.

’output-baseName.txt’, containing, time index by time index, the speaker id, er-

ror in mm and error classification that resulted from the comparison between our

system estimates and the ground truth. Finally, once all the ’summary-baseName.txt

and ’output-baseName.txt’ have been generated, the script ’go-database.sh’ uses them

to call the ’calc_overall_performance.pl’ python script, also provided by the CHIL

consortium. This python script will output a ’.err’ file containing the average per-

formance of the whole simulation taking into account all the audio files consi-

dered. For further details about the CHIL-provided software, ’sp_loc_eval’ and
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’calc_overall_performance.pl’, try typing ’./sp_loc_eval -h’ and/or reading the ’README.txt’

file accompanying them.

C.2.4 Example

In this Section we will show an example, step by step, on how to entirely set up, run and

collect the data thrown by an SRP localization process.

1. Configure the set of audio files over which the simulation will be performed

• Write in a text file the names of those audio files that you want to be invol-

ved in the speaker localization. If the audio files names follow an appropiate,

systematic format, the use of bash commands such as grep toguether with the

connection operators |̈¨ or >̈¨ can help to easily list a subset of files with an spe-

cific feature even when located within an extensive database. Here are some

specific instances for the HIFI database. These instances are to be run from the

data base directory containing the audio files:

ls | grep .wav | grep LFD > lista-HIFI.list, selects just those audio files utte-

red by user LFD.

ls | grep .wav | grep P1 > lista-HIFI.list, selects just those audio files uttered

from position P1. For details about the specific formatting of each database

audio files check Section 3.3 in page 61.

• Run the genSrpInput.sh script in order to automatically provide the audio files

selected with their corresponding directory path. Basically, this script needs

to be specified the name and path of the lista.list file toguether with the root

database directory where to find the audio files, the number of common cha-

racters in the audio files format and the number of microphones involved. As

a result, it will output the sourceMics text file that will be directly used by the

SRP program to get all the information it needs regarding the set of audio files

over which it has to perform localization estimates, see Figure C.1.

2. Configure the environment geometry that you want to be used during the simu-

lation

• Go to the directory containing the roomName.sim configuration file and set its

parameters: the directories where to find the particular configuration files hol-

ding the geometry specifications, the number of microphones arrays that are

going to be involved toguether with the name of the particular micArray.arr

files that is going to be used, the name of the particular searchSpace.txt and

deadAreas.txt files that will be taken into account during the simulation, the
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particular file format used in this case, etc. Each of these issues can be mo-

dified under their corresponding field within the roomName.sim configuration

file.

• Go to the directory containing the micArray.arr file (or files if several micro-

phone arrays are to take part in the task) and fill them with the appropiate info:

the number of microphones composing that array and their exact (x,y,z) coor-

dinates in mm within the room. This way, out of the given set of microphones

that actually recorded the audio files, any possible kind of new subarray confi-

guration can be tested in the SRP algorithm just by creating its corresponding

micArray.arr file and filling it in with how many microphones take part on it

and which are their spatial coordinates.

• Go to the directory containing the searchSpace.txt file and fill it with the ap-

propiate info you want to apply for your particular simulation: the spatial

boundaries, top vertex and bottom vertex, to which your search space will be

reduced as well as the specific distance in mm separating two neighbouring

points in the grid whose SRP (Steered Response Power) will be evaluated.

This scheme allows complete flexibility, you could, for instance, select finer

grids for the (x,y) coordinates and a grosser one in z. Likewise, you could res-

trict your speaker search to specific areas or heights in your room instead of

performing it along the whole room.

• Go to the directory containing the deadAreas.txt file and fill it with the appro-

piate info you want to apply for your particular simulation, that is to say, the

number of dead areas involved and the (x,y) coordinates in mm of their limits.

3. Launch the experiment with the appropiate parameters This can be easily done

by configuring the appropiate doSrp-database.sh script with the desired values for

the command line options that you want to use during your test. Plenty of infor-

mation about these command line options can be read in Section 3.2.4 in the page

56 and by typing ./srp –help in the SRP program directory. Anyway, there are some

peculiarities about some of these parameters that I would like to comment further

here:

• fs, the fs selected will only apply in the case of raw audio files. Otherwise, the

program will automatically read from the audio file and consider the actual fs

at which it was recorded.

• FFT size, must always be greater or equal than the frame size. Additionally

and for computational reasons, it is convenient that it is set to be a power of 2.

• Dir Input Files, this command line option specifies the directory where the pro-

gram can find its required input files, that is to say, the sourceMics and room-
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Name.sim files.

• First Time Index and End Audio File determine the time boundaries, in seconds,

of the piece of audio file to be analyzed by the program. Naturally, these values

should be positive and End Audio File must always be greater than First Time

Index. In case End Audio File is set beyond the time duration limits of a file it

will automatically be set to match that file length. Finally, when we just want

our SRP program to analyze the whole duration of our audio files we need to

set both parameters, First Time Index and End Audio File, to 0.

• Frequency SRP Flag, when activated the FSRP method is applied and, conse-

cuently, the Round Flag stops having any effect on the program performance

since this parameter it is only meaningful for the TSRP method. When not

active, it means the TSRP alternative will be chosen instead.

• Round Flag, can take the following values: 0 (no rounding is applied), 1 (the

rounding is done to the closest integer) or > 1 (the rounding is done according

to a linear interpolation).

• Low Frequency, its value can be used in two possible cases: 1) if the Filter Flag

is activated, it sets the low cut-off frequency and 2) if the Coarse to Fine Flag is

activated, it sets the starting cut-off frequency in the first step of the coarse to

fine scheme.

• Maximum Distance value only applies when the coarse to fine method is acti-

vated (this parameter is the one setting the threshold at which the coarse to

fine scheme stops).

• Fixed Threshold Flag, if active (set to 1) it triggers a fixed noise masking thre-

shold scheme, if not (set to 0) an adaptative threshold will be chosen instead.

However, this flag will only have an influence in the case that the Noise Mas-

king Flag has been previously activated.

• Noise Size Secs parameter is in charge of specifying the length, in seconds, of the

frame located at the beginning of the audio file over which the noise estimation

will be done. Of course, this parameter will only have an influence in the case

that the Noise Masking Flag has been previously activated.

• Noise Threshold parameter sets the number of dB the audio signal has to over-

pass the noise level in order not to be discarded. Of course, this parameter

will only have an influence in the case that the Noise Masking Flag has been

previously activated.

Once we have set our desired simulation options the script doSrp-database.sh au-

tomatically composes and launches the appropiate order to start the localization

estimation. Some order examples could be:
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• For the HIFI database (by order of appearance):

/home/ithil/ccastrogo/reposito/proyecto/far-field/srp/srp -v edecanRoom-HIFIMM1-

srp.sim -M sourceMics-HIFI -l /home/ithil/ccastrogo/reposito/proyecto/far-field/srp/ -f

48000 -n 0.32 -s 0.04 -p 16384 -w m -x 3 -r 3 -j 0 -k 0 -u 0 -z 2 -q 0 -a 0 -b 150 –freq-srp

0 -R 1 -N 0 -X 0 -Z 0.05 -G 24 -F 0 -L 1000 -H 8000 -E 0 -W 0

-The SRP program is launched from its path, /home/ithil/ccastrogo/reposito/proyecto/far-

field/srp/ in this case, making the execution independent of where doSrp-HIFI.sh

was called.

-The names of the required configuration input files are sourceMics-HIFI

and edecanRoom-HIFIMM1-srp.sim this time and they can be found at path

/home/ithil/ccastrogo/reposito/proyecto/far-field/srp/.

-fs = 48 KHz.

-Frame size = 0.32 secs.

-Frame shift = 0.04 secs.

-FFT size = 16384 points.

-Window = Hamming.

-Number of maximums = 3.

-Correlation method = 3 (GCC-PHAT).

-Starting and end time indexes determined to fit the whole audio file lenght

(both are set to 0).

-Interpolation flag not active (set to 0).

-Interpolation rate set to x2 (it does not apply since the interpolation flag

is not active).

-Dicard flag not active (set to 0, meaning that the discard of powerless

frames will not be active). This option will typically remain unactive since

it belongs to early versions of the SRP program. At the moment, this task is

performed as a previous step by the VAD.

-Coarse to fine flag not activated (set to 0).

-Maximum distance = 150 mm (it does not apply since the coarse to fine

method is not active this time).

-Frequency SRP flag not active (set to 0), meaning that TSRP alternative

will be the one performed.

-Rounding flag = 1, implying that the rounding in the TSRP method will

be done to the closest integer (it applies since FSRP is not active).

-Noise masking flag not active (set to 0).

-Fixed threshold flag not active (set to 0) meaning that an adaptative noise

threshold will be chosen instead (it does not apply anyway since the noise
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masking strategy has not been selected).

-Noise size secs = 0.05 secs (it does not apply anyway since the noise mas-

king strategy has not been selected).

-Noise threshold = 12 dB (it does not apply anyway since the noise mas-

king strategy has not been selected).

-Filter flag not active (set to 0).

-Low frequency = 1000 Hz (it does not apply since not the filter flag, nei-

ther the coarse to fine flag have been activated).

-High frequency = 8000 Hz (it does not apply since the filter flag has not

been activated).

-Discard dead aread flag not active (set to 0).

-Distance weighting flag not active (set to 0).

• For the AV16.3 database:

/home/ithil/ccastrogo/reposito/proyecto/far-field/srp/srp -M sourceMics-AV16.3 -

v idiapRoom-AV163-srp.sim -l /home/ithil/ccastrogo/reposito/proyecto/far-field/srp/ -f

16000 -n 0.16 -s 0.04 -p 4096 -w r -x 3 -r 3 -j 0 -k 0 -u 1 -z 3 -q 0 -a 0 -b 250 -F 1 -L

4000 -H 8000 –freq-srp 0 -R 1 -N 1 -X 0 -Z 0.05 -G 24 -E 0 -W 1

sourceMics-AV16.3 and idiapRoom-AV163-srp.sim selected as configuration

input files, fs = 16000 Hz, frame size = 0.16 secs., frame shift = 0.04 secs., FFT

size = 4096 points, Rectangular window, number of maximums = 3, GCC-

PHAT correlation method, whole audio file lenght analyzed, interpolation ac-

tive at 2x, no discard of powerless frames, no coarse to fine, pass-band filtering

performed in the band [4000, 8000] Hz, TSRP method selected with rounding

to the closest integer, +24 dB adaptative noise masking applied (noise estima-

tion performed over the first 0.05 secs. of audio), no discard of dead areas and

microphone distance weighting applied.

• For the SONY database:

/home/ithil/ccastrogo/reposito/proyecto/far-field/srp/srp -M sourceMics-SONY -

v edecanRoom-HIFIMM1-srp.sim -l /home/ithil/ccastrogo/reposito/proyecto/far-field/srp/

-f 48000 -n 0.64 -s 0.04 -p 32768 -w m -x 3 -r 3 -j -k 0 -u 0 -z 2 -q 0 -a 0 -b 500 -F 0

-L 1000 -H 4000 –freq-srp 0 -R 1 -N 0 -X 1 -Z 0.05 -G 12 -E 0

sourceMics-SONY and idiapRoom-AV163-srp.sim selected as configuration

input files, fs = 48000 Hz, frame size = 0.64 secs., frame shift = 0.04 secs.,

FFT size = 32768 points, Hamming window, number of maximums = 3, GCC-

PHAT correlation method, whole audio file lenght analyzed, no interpolation

applied, no discard of powerless frames, coarse to fine applied: starting cut-off

frequency = 1000 Hz and 500 mm separation between points in the finer level
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as stop condition, no filtering performed, TSRP method selected with roun-

ding to the closest integer, no noise masking applied, no discard of dead areas

and no microphone distance weighting applied.

4. Collect the output data and evaluate it

We will now focus on the baseName.max output files. For each of the audio files

analyzed (those that were listed on lista.list on the first place) one of these .max files

will be created showing for each time index the (x,y,z) coordinates, in mm, where

our SRP algorithm estimates the speaker to be. We want to compare these esti-

mates against the golden standard provided by the ground truth. As the number

of estimates to compare is often prohibitively large (time indexes times the num-

ber of audio files evaluated) we have developed an automatic script, go.sh, that will

perform this task for us. All that we need to specify to this go.sh script is:

• Output Basename, it defines the label after which the output-basename.txt files

will be named.

• Summary Basename, it defines the label after which the summary-basename.txt

files will be named.

• Threshold Lecturer and Threshold Audience set the distance limit, in mm, accor-

ding to which the errors will be classified either into Fine or Gross errors in

the Lecturer and Audience scenarios respectively. Typically, this thresholds

will be set to 500 mm in order to meet CHIL specifications. For more details,

check [OM06].

• Time Step, it defines the time step, in seconds, between consecutive location

estimates.

• Type of Error, it can be either set to be ae (average error) or rms (root mean

square error).

• Lecturer ID, out of all possible speakers, this label defines over which speaker

in particular the evaluation will be performed. When set to all it will lead to

aggregated evaluation results for all speakers.

• Error, this label can be either distance, implying that errors will be shown in

mm in the (x,y,z) coordinates or azimuth, implying that errors will be shown in

angles in the (r,θ,φ) coordinates.

The previous parameters are in fact required in order to make a call to the sp_loc_eval

program. Provided by the CHIL organization, this software is in charge of compa-

ring CHIL-formatted localization estimates against CHIL-formatted ground truths.

Anyway, apart from these parameters, go.sh also requires to know:



• Overall Filename, it defines the label after which the .err file containing the ag-

gregated results for all the audio files involved will be named.

• Reference Directory, it defines the path where to find the ground truth files.

• Input Directory, it defines the path where to find the input files to go.sh, that is

to say, the .max files.

• SRP List File, it defines the path and name of the same .list file that was used in

the first stage of the process to enumerate the audio files that were taking part

on the simulation. This info is also required at this last stage because it will be

necessary to evaluate the output results that each of them threw.

Once this information is given the go.sh script automatically proceeds as follows:

(a) From the .list file tt reads the name of the first audio file involved in the simu-

lation.

(b) It makes a call to sp_loc_eval which, with the appropiate parameters listed

above, will make a comparison between that specific audio file SRP results

and its corresponding ground truth. The evaluation results will be stored in

the output-baseName.txt and summary-baseName.txt files. It is important to note

that these files will have a different name each time since the audio file base

name changes.

(c) It goes again to the first step and proceeds like this until all the audio files

listed in the .list file have been evaluated.

(d) After this, calc_overall_performance perl script is called having as inputs all the

output-baseName.txt files generated. This call will create the aggregated final

results for all the audio files involved. These results will be stored in the .err

file.

5. Present the obtained results

Finally, the chiloutputerr2latex program was designed to read directly the info contai-

ned in the .err files and convert it to LATEX tables format (stored in .ltx files).
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