
ARTICLE

Adapting a Search Algorithm for
the Spanish Railway Network

J. MACÍAS-GUARASA, R. SAN-SEGUNDO,
J. M. MONTERO, J. FERREIROS, R. CÓRDOBA,
F. FERNÁNDEZ, L. F. D’HARO & J. M. PARDO

Grupo de Tecnologı́a del Habla, Departamento de Ingenierı́a Electrónica, Universidad
Politécnica de Madrid, Spain

(Received 20 December 2004; Revised 21 December 2005; In final form
17 January 2006)

ABSTRACT This article describes a search algorithm adapted to the Spanish
Railway Network for generating as many traveling options as possible between
two railway stations. This algorithm (Warshall’s algorithm) uses connecting
matrices to find all possible railway journeys. The Spanish Railway Company
has imposed severe restrictions: less than 1 second per query in a 600Mhz
processor PC with 32Mb RAM and 150Mb hard disk free memory. The final
average time for a simple query is around 0.25 seconds and the whole memory
consumption is 127Mb. The final implementation has been divided into 3
modules. In the first module, we store additional information in the connecting
matrices to accelerate the later search, proposing several strategies for reducing
thier size. The journey option calculation module accesses the matrix informa-
tion and composes the traveling options. Finally, in the filtering module we
describe the selection criteria considering the algorithm embedded in a general
information service.

KEY WORDS: Search algorithm; railway; journey option search; connecting
matrices; train routing

Correspondence Address : R. San-Segundo, Grupo de Tecnologı́a del Habla, Departamento de

Ingenierı́a Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Ciudad

Universitaria sn, 2804 Madrid, Spain. E-mail: lapiz@die.upm.es

ISSN 0308-1060 print: ISSN 1029-0354 online # 2006 Taylor & Francis

DOI: 10.1080/03081060600585145

Transportation Planning and Technology, February 2006

Vol. 29, No. 1, pp. 25�/42

Introduction

The Spanish railway company, RENFE, is investing significantly in
renewing its infrastructure. As part of this process, one particular issue
has been the improvement of the journey search algorithm in order to
offer better automatic information services. Currently, RENFE pro-
vides information on direct journeys (without connections) (Infotren,
2000) and they want to offer information on all possibilities: journeys
with and without connections. Not only is it necessary to obtain
journey alternatives, but also the algorithm should sort them from the
‘best’ to the ‘worst’ suitability. This aspect requires a journey quality
measure to be defined. This measure will depend on the final service
that RENFE will develop.

The search algorithm should have the following characteristics (San-
Segundo et al ., 2000):

1. The algorithm should generate as many possibilities as possible for
traveling by train between any two stations in Spain (with at least
three connections). The idea behind generating as many alternatives
as possible is necessary because the algorithm must be independent
of the final automatic service. After searching for all alternatives, the
automatic system applies a filter to select the most interesting
journey possibilities for the service provided. For example, if RENFE
wants to develop a service for tourist train information, the criteria
will be different from that of a general journey information service.
In a general service, the duration of the journey could be an
important factor while, for the tourist service, train comfort could
have more relevance.

2. The search algorithm should work in real time. That means that all
alternatives should be generated in less than 1 s. This requirement is
necessary to avoid the user abandoning the service. This is of
particular importance when the information service is provided by
telephone where the user pays an additional telephone fee for this
service. In our case, this extra fee depends on the duration of the call:
RENFE provides the information service through a special telephone
number.

3. For each alternative, the algorithm should provide all of the
characteristics: departure and arrival times for all legs, connecting
stations, type of train, whole journey and individual leg durations.

4. With this detailed description for each alternative, the algorithm
should permit the sorting and filtering criteria to be defined easily.
The journey quality measure must be easy to modify.

In the literature, there are many papers addressing the problem of
optimized train routing and scheduling (Cordeau et al. , 1998, 2001;

26 R. San-Segundo et al.

Lindner, 2000; Liebchen & Peeters, 2002). These consider that train
timetables are modifiable. In our case, the problem is different: we have
to find the journey options given train routing and scheduling
information.

This article is organized as follows: the next section describes the
different algorithms considered and the one to be implemented. In the
third section, the main concepts concerning the Spanish railway
network are described. In the fourth section, we describe the algorithm
implementation: the connecting matrices and the travel option genera-
tion. Finally, the fifth section summarizes the main conclusions.

Search Algorithm

In order to select the search algorithm, we analyzed several algori-
thms used for routing information packets in telecommunication
networks (Sedgewick, 1990; Bertsekas & Gallager, 1992; Tanenbaum,
1996). These algorithms are: Dijkstra’s, Floyd�/Warshall’s, Bellman�/

Ford’s, Distributed Bellman�/Ford’s as well as Warshall’s for directed
graphs.

Dijkstra’s algorithm is an iterative algorithm applied over all
network nodes. For each node, the algorithm computes the minimum
distance from this node to the rest of the nodes. In order to calculate the
distance for any pair of nodes, the algorithm must be applied to all the
nodes. In this case, the algorithm complexity is N3. During the
calculation process, it is possible to store the sequence of nodes that
make up the minimum distance path for each pair of nodes. This
algorithm has the advantage that all calculations can be carried out in a
previous process before the search but it has the problem that it only
obtains the ‘best’ path instead of all possible ones. Second, we
considered the Floyd�/Warshall algorithm. Similar to Dijkstra’s, it
computes only the ‘best’ path between two nodes and has a complexity
of N3. The algorithm generates several connecting matrices considering
a greater number of nodes as intermediate nodes. The algorithm ends
when the matrix considers all possible nodes as intermediate nodes.
The final matrix has the minimum distance between any pair of nodes.
During the process, it is possible to store the intermediate nodes for
each ‘best’ path between any pair of nodes. The Bellman�/Ford
algorithms compute the ‘best’ path considering, in each iteration, a
greater number of intermediate nodes. The algorithms generates several
possible paths but the complexity is higher �/ N4. This type of algorithm
is very useful when there is no knowledge about the network.

Warshall’s algorithm was used for the directed graphs. This
algorithm has a complexity of N3 and it permits all the possible paths
between any pair of nodes to be calculated (with any number of

Adapting a Search Algorithm for the Spanish Railway Network 27

intermediate nodes). It is based on the idea ‘if there is a path from A to
B and another path from B to C, then there is a path from A to C’. For
obtaining a path through several intermediate nodes, it is necessary to
iterate the algorithm as many times as intermediate nodes consider-
ed. The algorithm details are shown in the following steps:

STEP 0: Initialization. We generate a matrix for direct paths (without
connections) between nodes, M0. Each element in the matrix, M0(x,y),
represents the number of alternatives for going from node ‘x’ to node
‘y’ directly. The row i provides information on the direct paths from
node i to all the nodes. On the other hand, column j represents the
direct paths from all the nodes to node j.

STEP i: Matrix for paths with ‘i’ connections. The connection matrix Mi is
obtained by multiplying the matrix M0 i times: Mi�/(M0)i�1. Each
element in the matrix, Mi(x,y), represents the number of alternatives
for going from node ‘x’ to node ‘y’ with ‘i’ connections. Figure 1 shows
a network example with the connecting matrices for direct paths, 1 and
2 connections.

In this example, for going from node B to node G, there is one direct
path, one path with one connection and two paths with two
connections. But not only is it necessary to know if there is a path
between two nodes, we also need to know which nodes are the
connections. In Figure 2 we show the algorithm to calculate the
connection node in the one connection path from B to G. The algorithm
carries out an ‘AND’ operation with the column considering G as final

A

B

C

D

E

F

GH

01000001

10110100

00010100

01100000

00100100

01001000

01000101

10000010

0 =M

A B C D E F G H
A

B

C

D

E

F

G

H

A B C D E F G H
A

B

C

D

E

F

G

H

()

00110110

00111101

02001000

10100200

01010100

10210000

21111100

02000100

201 == MM

A B C D E F G H

A

B

C

D

E

F

G

H

()

02111201

20421310

20010200

02102101

12210000

01121001

12321201

21221210

302 == MM

A B C D E F G H

A

B

C

D

E

F

G

H

=

Figure 1. Network example with connecting matrices

28 R. San-Segundo et al.

node M0(x,G), and the row in which it considers B as initial node
M0(B,y). This strategy provides only one possible connection node C.
When there are several intermediate nodes the ‘AND’ process must be
repeated as many times as there are intermediate nodes to be computed.
In Figure 3 we show the algorithm for calculating the connection nodes
in the two connection path from B to G. In this case, the ‘AND’
processes involve columns and rows from different connecting ma-
trices.

In this case, to calculate the first intermediate node, we carry out an
‘AND’ process between the column that it considers G as final node in a
one connection path M1(x,G), and the row that it considers B as initial
node in direct paths M0(B,y). The second ‘AND’ is similar to the
process shown in Figure 2. This ‘AND’ offers a second alternative as a
second intermediate node: B. This solution is not valid because initial
and end nodes can never behave as intermediate nodes. This algorithm
permits us to calculate all possible paths between any two nodes and
the intermediate nodes.

A

B

C

D

E

F

GH

01000101

0

0

2

0

1

0

1

2

01000101

0

0

2

0

1

0

1

2

2

1

B ? ? G

01000101

0

0

2

0

1

0

1

2

01000101

0

0

2

0

1

0

1

2

2

1
01000101

0M

0

0

2

0

1

0

1

2

01000001

10110100

00010100

01100000

00100100

01001000

01000101

10000010

=

00110110

00111101

02001000

10100200

01010100

10210000

21111100

02000100

1 =M

1st intermediate node: A

00000002

00201012

01000101

AND

2º intermediate node: H

1

B A ? G

10000010

10010110

10000010

AND

M0(B,y)
M1(x,G)

M0(A,y)
M0(x,G)

Figure 3. Intermediate node calculation for the two connection path between B and G

?B G

01

10

00

01

00

01

01000101

10000010

0 =M
A

B

C

D

E

F

GH

Intermediate node: C

00000100

10010110

01000101
AND

M0 (x,G)

M0 (B,y)

1000001

0110100

0010100

1100000

0100100

1001000

01000101

0

Figure 2. Intermediate node calculation for the one connection path between B and G

Adapting a Search Algorithm for the Spanish Railway Network 29

Previous Concepts and Definitions

In this section, we describe the Spanish railway network organization
and the connecting data presentation. The main concept is the ‘train
working’ (or ‘train march’). Any train journey involves one or several
train workings. A train working is a complete section of the railway
network covered by a train and starting at a specific time. A train
working description contains the followings fields (Figure 4):

1. Working code. This is a numerical code that identifies the train
working in the working (or march) database. There are 1412
different workings.

2. Schedule code. This number defines the working schedule. A
working schedule is based on day planning that specifies the days
in which the train works: days when there is a train covering the
stretch proposed. Not all workings are activated every day. In our
database, there are 275 schedules and each working is associated
with one of these schedules.

3. List of stations. In this list, there are four types of station: ‘first
station’ (symbol �/), ‘end station’ (symbol B/), ‘normal station’
where passengers can get off/onto the train (symbol �/) and
‘train stop station’ where passengers cannot get off/onto the train
(symbol .).

For each station, its description contains four fields: station code,
departure time, arrival time and logical distance from the previous
station (the logical distance is not a real distance and is only used for
ticket price calculation). The first station has no arrival time and the
final station has no departure time. One point we must keep in mind for
the following sections is that if we want to travel from station A to
station B using a train working, station A must precede station B in the
working description.

TRAIN WORKING CODE: #50001
SCHEDULE CODE: 0026
FIRST STATION: >17000,0800
DOWN/UP STATION: +18000,0813,0815,0
DOWN/UP STATION: +60400,0924,0925,152
DOWN/UP STATION: +60600,1019,1020,135
STOP STATION: .60800,1053,1054,80

END STATION: <60911, 1155,41

DOWN/UP STATION: +60902,1113,1114,37
DOWN/UP STATION: +60905,1127,1128,18

Figure 4. Example of a train working

30 R. San-Segundo et al.

Another important concept we must comment on is the ‘generic
station’. In our geography, there are some cities with more than one
train station. This fact would be no problem but RENFE wants to offer
journey options with connections even between different stations sited
in the same city. This means that passengers would have to find another
means of transport for going from one station to the other. In order to
consider this type of journey, a new concept has been defined: the
generic station. A generic station is a group with all train stations sited
in the same city. In the geography of Spain there are 999 train stations
and eight generic stations (Alicante, Barcelona, Bilbao, Gijón, Madrid,
Malaga, Seville & Valencia).

Algorithm Implementation

This section describes the search algorithm implementation for the
Spanish railway network. In the search algorithm, we consider as nodes
all train stations independently and the generic stations (i.e. a train
station included in a generic station also counts as an independent
node). So we have a total of 1007 nodes (999�/8). This network is
very complex: there are more than a million possible queries every
day. In this description, we comment on the implementation details
focusing on those that permit the algorithm complexity to be reduced.
In Figure 5, we show a diagram of the search algorithm.

This algorithm is made up of three main processes: matrix genera-
tion; journey option calculation; and option filtering.

In the first process, the connecting matrices are calculated. These
matrices contain not only information related to inter-nodal connec-
tivity but they also store additional information that will help the

Figure 5. Diagram of the search algorithm

Adapting a Search Algorithm for the Spanish Railway Network 31

journey option calculation go faster. Apart from the connectivity
matrices, the algorithm generates the same number of index matrices
(Ind 0, Ind 1, Ind 2 and Ind 3). These matrices facilitate access to the
previous ones.

The matrix generation is a background process and it is carried out
only when the train workings or schedules are modified. Because of
this, processing time is not a critical factor. In this case, the main
problem is the storage memory for these matrices. The memory
problem appears because, as we commented on above, these matrices
contain additional data necessary to make the journey option calcula-
tion work in real-time. In this paper we present several strategies and
solutions for selecting the additional data in order to keep the matrix
sizes under a reasonable value.

The journey option calculation accesses the matrices information and
puts together all the journey options between two train stations for a
specific date. In this case the computing time is the main issue and the
option calculation must be made in real time. This process uses the
schedules to identify the activated train workings. The last module
filters the journey options (in real-time) and presents the ‘best’ options
sorted by a measure of quality. In this module, several measurements
are possible. Although the final criteria depend on the final application,
we will describe in below the criteria implemented for a telephone-
based information service as an example.

Concerning the matrix sizes, RENFE imposed the following limita-
tion: the hard disk space taken up by the algorithm must be less than
150 Mb. With respect to the option calculation and filtering modules,
RENFE established that the time taken up by both modules for any
query cannot exceed 1 s with a 600 Mhz processor with 32 Mb RAM.
These limitations have oriented the solutions and strategies that were
finally implemented.

In Figure 5 we have represented four connecting matrices: M0, M1,
M2, M3. With this information, we can obtain (considering the
algorithm described abvove) journey options with less than four
connections. This number of connections is sufficient to obtain a
high connectivity. In Table 1 we can see the connectivity depending
on the maximum number of connections considered. As we can see,
with three connections we can provide journey options for more
than 99% of the queries. This has been another characteristic imposed
by RENFE.

Matrix Generation

The matrix generation module computes the four connecting matrices
(M0, M1, M2 and M3) and their respective index matrices (Ind 0, Ind 1,

32 R. San-Segundo et al.

Ind 2 and Ind 3). As we commented before, in order to calculate the
journey options in real time (less than 1 s), the connecting matrices
must store additional information. This information occupies a large
amount of memory so we cannot store it in RAM for the journey
option calculation (we have a limit of 32 Mb). Because of this, we have
created the index matrices. These matrices store pointers to the
information stored in the connecting matrices. This way we can load
the index matrices into RAM and provide fast access to the connecting
matrices.

The index matrices are made up of 1 014 049 pointers (1007�/1007).
For each pointer we need a 32 bit number (byte position in Mi), so
the memory taken up by each index matrix is around 4 Mb. For all the
index matrices, we take up 16 Mb RAM. For the algorithm, the total
RAM used is around 20 Mb, smaller than the limit imposed.

In the following sections, we describe the information stored in the
connecting matrices. These data have been one of the most important
issues. As we commented above, connectivity depends on the traveling
date (not all the train workings are active every day). As the matrix
generation is a very time consuming process and must be carried out
only when the workings or schedules change. In this situation, the
connecting matrices must contain information that does not depend on
travel date. This characteristic increases significantly the amount of
data. In the following sections, we describe strategies for reducing its
size.

Direct journey matrix (M0). In Figure 6 we show the information stored in
M0 for each possible journey. For each journey, we store all the train
workings (and their respective schedules) connecting departure and
arrival stations. At the end, we also include the minimum time required
for a direct journey (minimum journey duration). This value will be
useful for generating the rest of the matrices.

The first number is the number of workings that directly connect
both stations. There are stations in Madrid and Barcelona where the

Table 1. Connectivity depending on the maximum number of connections.

Maximum number
of connections 0 1 2 3

Queries with
connections

37 504 375 067 948 077 1 004139

Total number of
queries (10072)

1 014 049 1 014 049 1 014 049 1 014 049

Percentage of queries
with connections (%)

4 37 93 99

Adapting a Search Algorithm for the Spanish Railway Network 33

number of train workings is very high. Because of this, we require a 16-
bit number. After this, we include the workings. Instead of including
the working codes (each code requires 32 bits), we define and store
working indices associated with the codes. We have 1412 train
workings so we only need a 16-bit integer per index. During all the
algorithm modules, we use the workings index instead of the workings
code. The next piece of data is the minimum journey duration. It is the
minimum duration (in minutes) for any direct journey between both
stations. As any train journey takes less than 48 h (2880 min), we
include a 16-bit integer. Finally, we include the schedule codes
associated with all workings. Each schedule code consumes 16 bits.
These codes are not strictly necessary but storing the schedule codes has
permitted us to save computing time and RAM use: it is not necessary
to maintain a table linking working and schedule codes. This fact
duplicates the M0 size but it is irrelevant because the M0 size is very
small compared to the rest of matrices (see below).

As we showed in Table 1, the percentage of queries with direct
journeys is very low (4%). This fact means that the M0 size is very
small: 725 Kb. For 96% of queries where there are no direct journeys,
we do not store any information. An invalid pointer value is assigned to
them in the index matrix (Ind 0). In our case, all the pointers are
positive so we use �/1 to indicate no direct journeys. As we can see, the
Ind 0 matrix shows the connectivity and M0 contains the information
associated to this connectivity.

Matrices for journeys with connections (M1, M2, M3). In these cases, the
most interesting information is the itinerary: the train stations where
the passengers have to change train (sequence of connecting stations).
In order to reduce the time taken up in the next module, we decided to
include itinerary information in the matrices. The itinerary calculation
from the connectivity matrices consists, basically, of an ‘AND’ process
between rows and columns from different matrices. This process is not
very costly but is a real problem; additional checking is necessary that
requires significant computing time. The additional processes are
commented on as follows:In our system, we work with train workings
that are not activated every day. Although the matrices show a journey

16 bits

of train workings Train working indexes

Min Duration

Schedule codes

Figure 6. Data stored in M0

34 R. San-Segundo et al.

option through several connecting stations, there can be a mismatch
between the train working schedules covering each leg that prevents the
generation of a valid journey option for any particular date. These
itineraries should be detected and eliminated.This algorithm can also
produce itineraries with station repetition: one station can be con-
sidered as a connecting station twice in the same itinerary, or the
departure/arrival stations are included as connecting stations. These
itinerary options must be detected and discarded.This checking process
must be carried out during the matrix generation where time
consumption is not an important requirement. In the matrices, only
validated itineraries must be stored. For the first implementation we
decided to consider the following data format (Figure 7): The first
number is the number of itineraries that connect both stations with ‘i’
connections. This number can be higher than 256 so we require a 16-bit
number. We then include the ‘i’ station indices for each itinerary.
Instead of including the station codes (each station code requires 32
bits), we define and store those station indices associated with the
codes. We have 1007 station codes so we only need a 16-bit integer per
index. During each of the algorithm modules we use the station index
instead of the station code.

Even after the itinerary selection, the matrix sizes were extremely
high, especially M3 (see Table 2). Because of this, we decided to change
the matrix format. Instead of storing the station indices, we decided to
store an itinerary index (Figure 8). As we have 1007 stations, with three
connections, we can obtain as much as 10073�/1 021 147 343 different
itineraries. We create an itinerary table and we assign a 32-bit index for

of itineraries

16 bits Itinerary 1: i station indexes

Station Index

Itinerary N: i station indexes

Station Index

Figure 7. First version of the data stored in Mi with i�/1, 2 and 3

Table 2. Matrix size comparison.

First format (Kb) New format for M3 (Kb)

M1 6014 6014
M2 130 044 130 044
M3 529 011 354 636
Total 665 069 490 694

Adapting a Search Algorithm for the Spanish Railway Network 35

each. The itinerary table is stored in a binary file. We only use this
solution for M3 (where the new format produces a 30% size reduction)
but not for M2 or M1: in these cases, we get no size reduction. Table 2
shows the matrix sizes obtained.

As we show in Table 2, it is necessary to further reduce the matrix
sizes. The following actions focus on reducing the number of itineraries
stored. This fact can discard valid itineraries discarded and lose journey
options. We tried to discard the worst itineraries. These actions are as
follows.

The first action is to select connection stations. Instead of considering
all train stations as possible connecting nodes, we make a selection.
Our criterion has been the number of train workings that pass through
the station. This is a measure of station connectivity. From the station
list, we have selected the stations with highest connectivity. After
this selection, the list was revised by RENFE who proposed to add/
delete some of them. The final list contains 152 possible intermediate
stations.

The aim of this action is to solve a problem we observed during
implementation of the algorithm. In the Spanish network, there are
large overlaps between different train workings: two workings can have
up to 10 common train stations. This fact means that these 10 stations
are all valid connecting stations: we obtain 10 different itineraries but
the calculated journeys are equivalent (the same workings are
involved). With this action, we drastically reduce this effect and the
lost journey option is irrelevant.

This solution has made a significant reduction in the matrix sizes �/

from a total of 490 Mb (Table 2) to a total of 186 Mb. The lost journey
option has been less than 1%. This fact reveals that the station selection
has been carried out successfully: the selected stations really are
important connecting nodes.

The second action consisted of sorting the itineraries and storing only
the N ‘best’ ones in the matrices. For sorting the itineraries, we

of itineraries

16 bits Itinerary
index 1

Itinerary
index

Figure 8. New format for M3

36 R. San-Segundo et al.

considered two criteria: minimum journey duration and itinerary
hierarchy. The minimum journey duration is the sum of the minimum
leg duration for all the legs that make up the journey. The minimum leg
duration is obtained from M0 where we have stored this value in
minutes at the end of each data. This measure provides an ideal journey
duration throughout this itinerary. With these criteria we try to avoid
extremely long itineraries through the Spanish countryside. For
example, it is possible to obtain a journey from Madrid to Seville
passing through Barcelona but this is absurd. The second measure is the
itinerary hierarchy �/ the geometric average throughout the hierarchies
of the intermediate stations that make up the itinerary. For the 152
possible intermediate stations, we have defined a hierarchy value. This
is an integer number between 0 and 6 (0 for lowest hierarchy and 6 for
highest hierarchy). This assignment has been carried out by attending to
the number of train workings that pass through each station. Just as in
the previous case, the station hierarchy was referred to and revised by
RENFE.

To sort and select the itineraries we combined both criteria. This
process consists of two steps carried out independently for each matrix:
M1, M2 and M3. First, we sort the itineraries (with i connections) using
the minimum duration. We obtain the best itinerary and select those that
have a minimum duration less that 300% of the ‘best’ itinerary duration.
In the second step we sort the selected itineraries by their hierarchy,
storing the N ‘best’ in the matrix. In Table 3, we show the journey loss
and matrix size depending on the number of itineraries stored.

For the journey lost calculation, we have evaluated all journeys
between all two stations for two days (Wednesday and Saturday):
around 2 million queries (Chequea, 2000). We consider two journeys as
equal when the train workings for covering the legs are the same in
both cases. With these criteria, we permit different stations for the
itinerary connections but they are equivalent journeys: of the same
duration and quality.

Table 3. Journey lost and matrix sizes depending on the number of itineraries stored.

N�/5 N�/10 N�/15 N�/20

Journey
loss (%)

Matrix
size

(Mb)
Journey
loss (%)

Matrix
size

(Mb)
Journey
loss (%)

Matrix
size

(Mb)
Journey
loss (%)

Matrix
size

(Mb)

M1 15 2 5 3 2 3 1 3
M2 22 19 9 31 5 41 3 49
M3 40 21 20 40 15 59 13 79
Total 34 42 18 74 9 103 8 131

Adapting a Search Algorithm for the Spanish Railway Network 37

Considering the results presented in Table 3, we decided to consider
N�/15. In this case, we have a total matrix size of 103 Mb with a
journey lost of 9%. RENFE imposed a limit size of 150 Mb for all the
application files: executable file, table and additional files, index
matrices (16 Mb) and connecting matrices (103 Mb). Considering
N�/20 the total matrix size increases around 30% but journey lost
reduction is very low.

Before finishing this section, it is necessary to comment that for
queries where there are no journeys with i connections, we do not store
any information in Mi. An invalid pointer value is assigned to them in
the index matrix (Ind i). As all the valid pointers are positive, we use the
�/1 value. The Ind i matrix shows the connectivity and Mi contains the
itineraries associated to this connectivity.

Journey Option Calculation

This module obtains the journey options for a traveling query:
departure station, arrival station and departure date. It uses the
information contained in the connecting matrices. Now, the computing
time is a critical factor.

The calculation process is divided into two parts: direct journey
calculation and journey with connections computing. The first step is to
calculate the direct journeys for the required query. This module
accesses matrices Ind 0 and M0, and obtains the train workings (with
their schedules) that connect both stations directly. After this, we check
which workings are active for the specified date. These workings define
the possible direct journeys. We obtain the departure and arrival times
from the train working descriptions.

In the train working checking process we find a special characteristic
that increases the difficulty. In the Spanish railway network, there are
train workings taking one or two days but the activating information is
associated only with the first one. Solving this problem has been
possible because all train workings have a duration of less than 24 h
(this characteristic is imposed by working conditions at RENFE).
Knowing the journey departure time (TDT) and the train working start
time (MBT), it is easy to decide if the journey is included in the first or
second working day (Figure 9).

The second step is to compute the journeys with one, two or three
connections. From Mi matrices, we load the different itineraries. For
each itinerary, we obtain the train workings that connect the
intermediate nodes using M0. Just as in the previous step, we have to
calculate the train working which activates all the legs that make up the
whole journey. In this process, it is necessary to keep two effects in
mind: a train working can cover two days but the activating

38 R. San-Segundo et al.

information refers to the first day (Figure 9), and the whole journey
(that means several train workings) can also cover several days. These
two effects are considered when obtaining the train working activating
dates respective to the query date.

To combine the sections of train workings that form the whole
journey, we concatenate them by considering two details. The first is
that we have to guarantee passengers have a minimum connecting time.
This time is different if the connections are made at the same station or
the connection implies different train stations (see the generic station
concept in above). In our program, the minimum time depends on the
connecting station and it is modifiable by the user. The second detail is
how to choose a train working in which there are several workings that
cover a leg. In our case, for the first leg we sort train workings by
departure time but for the remaining legs we sort them by arrival time.
This way we obtain the journey with the lowest time duration (an
example in presented in Figure 10).

Journey Option Filtering

In this process, we filter and sort the journey options using several
criteria. These criteria depend on the final application of the algorithm.
This section describes the criteria used in our case for a general
information service over the telephone.

DAY 1 DAY 2

Train working

TWBT

Trip

JDT

TWBT > JDT: 1st day

JDT > TWBT: 2nd day

Figure 9. Calculation of the train working activating day

Origin 1st Connection 2nd Connection End

14:0513:4534

13:0012:153309:4008:1512

BA
Train

working

12:2010:1024

12:1010:1522

CB DC

A B C D

Train
working

Train
working

Figure 10. Journey calculation from sections of train workings

Adapting a Search Algorithm for the Spanish Railway Network 39

The filtering process is carried out by attending to the journey
duration. All the options exceeding a percentage of the minimum
duration journey are discarded directly. This percentage is different
depending on the minimum duration. In Figure 11, we show the
relationship between minimum duration and the percentage considered
to prune the journey options. As we can see, when the minimum
duration is lower, the percentage increases.

Finally, we sort the journey options by considering the measurement
of cost. Table 4 shows the description for the digits in this cost
measurement. First we discriminate between direct journeys and
journeys with connections, then we consider journey duration and,
finally, the number of connections.

As we commented before, the journey option calculation and
filtering must be carried out in real time (less than 1 s). In our case,
thanks to the data stored in the matrices, these two processes take an
average time of 0.25 s (with a 600 Mhz processor). This value is four
times smaller than the limit imposed by RENFE. Our algorithm
consumes a large amount of memory but it is very fast independent
of the query.

Finally, we want to comment on another utility implemented in our
system. It consists of giving the possibility to define a desired
intermediate station (IS) for the journey. In our algorithm, the
connecting matrices (M0, M1, M2, M3) contain a limited number of

0

25

50

75

100

125

150

175

200

225

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0
11

:0
0

12
:0

0

Duration (hours)

P
ru

n
in

g
 p

er
ce

n
ta

g
e

(%
)

Figure 11. Pruning percentage vs. minimum journey duration

Table 4. Digits for the cost measure.

1st digit 0 for direct journeys and 1 for journeys with.
2nd and 3rd digits Number of duration hours (04:15).
4th and 5th digits Number of extra duration minutes (04:15).
6th digit Number of connections.

40 R. San-Segundo et al.

train workings or itineraries so it can transpire that the intermediate
station is not included in any of these workings or itineraries. In these
cases we have implemented a utility that concatenates the journey
options obtained with two queries: Origin to IS and IS to End. From
these two queries, we only use direct journeys and journeys with one
connection. This way the final journey has as many as three connec-
tions. The time consumption for this utility remains less than one
second.

Conclusion

In this article we have described how we have adapted a search
algorithm for the Spanish railway network: using the Warshall
algorithm for directed graphs. This algorithm uses connecting matrices
to find all possible journeys that go from one station to another. The
requirements imposed by RENFE (the Spanish railway company)
forced us to implement a very fast algorithm but with a high memory
consumption. For any query, the time is less than 1 s with a 600 Mhz
processor: the average time for a simple query is around 0.25 s. Total
memory consumption was 127 Mb (less than the limit imposed: 150
Mb).

This implementation has been divided into three modules: matrix
generation, journey option calculation and journey option filtering. In
the first module, we have focused on the additional information stored
in the connecting matrices. The main problem has been the memory
taken up by these matrices. Several strategies for reducing this memory
have been presented. The greatest reduction has been obtained by
limiting the intermediate stations: the matrix sizes were reduced by
more than 60% (from 490 to 186 Mb). This effect has been possible as
a result of the high overlap between train workings. Further strategies
have been implemented but they produced journey option losses �/ in
the final implementation, we lost 9% of journey options. This loss is
mainly focused on the three connection journeys (15%). For two and
one connection journeys the loss was 5 and 2%, respectively. For direct
journeys there was no loss.

Conversely, due to the RAM limit (32 Mb), we have defined index
matrices associated with the connecting matrices that permit quick
access to them. The index matrices consume 16 Mb and can be loaded
into RAM. These matrices not only provide quick access, but also
contain the connectivity information.

The journey option calculation module accesses the matrix informa-
tion and puts together the traveling options. Special attention must be
paid to train working activation and concatenation. The selecting
criteria are applied in the filtering module. In this paper, we also

Adapting a Search Algorithm for the Spanish Railway Network 41

described the criteria for a general information service over the
telephone.

Acknowledgements

This work has been partially supported by the grant 2FD1997-1062-C02 (EU and
Spanish CICYT). Authors want to thank the contributions of colleagues at GTH and
RENFE company. Authors also want to thank Mark Hallett for the final revision.

References

Bertsekas, D. & Gallager, R. (1992) Data Networks (Upper Saddle River, NJ: Prentice-Hall).

Chequea (2000) Software for journey evaluation. Version 3.

Cordeau, J. F., Toth, P. & Vigo, D. (1998) A survey of optimization models for train routing and

scheduling, Transportation Science , 32, pp. 380�/404.

Cordeau, J. F., Soumis, F. & Desrosiers, J. (2001) Simultaneous assignment of locomotives and

cars to passenger trains, Operations Research , 49, pp. 531�/548.

Estaciones Comerciales (2000) Anuario de RENFE . Maps of the Spanish Railway Network.

Annual Revision (Madrid: RENFE).

Infotren (2000) Software for direct journey queries developed by RENFE, version 75.

Liebchen, C. & Peeters, L. (2002) Some practical aspects of periodic timetabling, In: P. Chamoni,

R. Leisten, A. Martin, J. Minnemann & H. Stadtler (Eds) Operations Research 2001,pp. 25�/

32 (Berlin: Springer).

Lindner, T. (2000) Train schedule optimization in public rail transport, PhD dissertation, TU

Braunschweig.

San-Segundo, R., Macı́as-Guarasa, J. & Salido, M. A. (2000) Especificaciones del nuevo motor de

búsqueda para la nueva aplicación infotren, RENFE-UPM report, RENFE, Madrid.

Sedgewick, R. (1990) Algorithms in C (Reading, MA: Addison�/Wesley).

Tanenbaum, A. S. (1996) Computer Networks (Upper Saddle River, NJ: Prentice-Hall).

42 R. San-Segundo et al.

