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I. ABSTRACT 
 
 
There are many different solutions for tracking multiple objects and many of these 
solutions involve probabilistic algorithms, which have been fully tested as the best 
solution in tracking tasks. In this thesis a multiple tracking algorithm based on the 
Kalman Filter and the Probabilistic Data Association Filter is developed. The 
algorithm is part of an obstacle avoidance system in an autonomous robot. The 
measurements used as input to the tracking algorithm come from a stereo-vision 
system that detects objects in the robot’s environment. The robustness and 
adaptability of the tracking algorithm is increased by the use of a validation/removal 
algorithm. The algorithm is capable of initiating tracks, accounting for false reports, 
and removing tracks, accounting for missing reports. 
 

II. REPORT 
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1. Introduction 
 
 
This master thesis is focused in the area of robotics and probabilistic algorithms. 
The objective of the work described here is to track multiple objects in an image 
with different Kalman Filters (KF). One KF is used for tracking each object. 
 
There are two parts of the project. One of them focuses on the development of a 
simulator platform (Part I) and the other one on a real time platform [17] (Part II). In 
real time application, the implementation focuses on achieving a small execution 
time. In this part, where the implementation is done on a simulator platform, the 
execution time is not as important. 
 
The correct estimation of the position of multiple objects in a scene is important in 
many different applications such as mobile robots, white radar or identification of 
people in a scene. This thesis is centered on the case of mobile robots. In this case it 
is necessary for the robot to detect and determine the position and velocity, both 
modulus and direction, of the objects in the scene so that it can choose the right path 
and avoid collisions. 
 
The input comes from a data file that contains the xyz-coordinates of image points 
that originate from different objects in the scene. The number of objects can change 
with time. The input 3D points are obtained with a stereo-vision system, which has 
already been implemented in another project [12].  
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The association of the points to different objects is done with another probabilistic 
algorithm, the Probabilistic Data Association Filter (PDAF). A difficult part of the 
association is that the number of measures obtained from an object may vary from 
one to many. In many previous works it is assumed that one object can only 
generate one measurement [11]. The output of the developed tracking algorithm is 
the position, the velocity and the number of objects in each image. 
 

 
Figure 1.1: General description of the project. 

 
 

1.1 Outline 
 
To make the understanding of the realised work easier, the report contains seven 
chapters which can be subdivided into four groups: 
 
 

1. Objectives: The objectives of this master thesis are described in Chapter 2. 
The difficulty is not only to track the objects, but also to associate the data to 
different objects. This includes a number of problems such as validation, 
occlusion and crossing.  

 
2. Theoretical basis of the development: Chapter 3 gives a theoretical 

description of the tracking algorithms used; the Kalman filter and the 
association algorithm. Chapter 4 explains the input data, the output and the 
image transformation necessary to visualize the results. This chapter also 
describes the system model used by the Kalman filter in this thesis.  

 
3. Implementation: How the theoretical information is applied in this thesis is 

described Chapter 5. The implantation was done in three steps, first with one 
single object, then with a fixed number of objects and finally with a variable 
number of objects. Solutions on how to solve the problems with association 
described in the objectives are also presented.  

ASSOCIATION 

KALMAN 
FILTERING 
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4. Results: In Chapter 6 the results of tracking different number of objects are 

presented. The errors and the accuracy of the tracking algorithm are 
investigated and then the influences of different parameters are tested. 
Finally Chapter 7 ends the report with a conclusion. 
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2. Objectives 
 
 
The tracking algorithm presented in this thesis deals with the problems of 
associating measurements and to determine the number of objects and their 
estimated positions. To do this some objectives must be stated, and these are 
presented in this section. 
 

• Tracking objects: There are many algorithms to choose from when tracking 
objects. However, given the knowledge that the input data contains noise 
[12], limits the choice to probabilistic algorithms. In this work the 
probabilistic Kalman filter is used, since it provides the optimal 
implementation of the Bayes’ filter [1]. One KF is used to track each object. 
It is possible to use an only estimator for all the objects, but since the number 
of objects is variable this is more difficult to implement. 

 
• Data association: For the tracking to be possible it is necessary to identify 

which measurements that comes from which object. To develop this 
association there are multiple choices of algorithms, as discussed in Chapter 
3.2. The association algorithm used in this work is the Probabilistic Data 
Association Filter, PDAF. This algorithm uses the Euclidean distance, a 
validation gate and a measure probability to do the association. 

 
• Varying numbers of objects: The algorithm must be able to handle the fact 

that the number of objects in the scene can vary. This fact brings problems 
that need to be taken care of. For example some phenomena might affect a 
tracker’s estimate or decimate the input data. Noise might temporarily create 
multiple measurements or cause the target-originated measurement to 
disappear. If a visual disturbance is too severe, the tracker can lose target 
altogether.  
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The objective is to solve these problems by analyzing some causes of 
disturbances and come up with a solution on how to deal with them. 

 
• Validation: There may be unexpected measurements - do these 

measurements originate from newly visible objects or are they just clutter? 
To avoid that noise is characterized as an object, data has to be associated to 
the object a certain number of times before it is validated as a real object in 
the scene. 

 
• Occlusion: Predictions may not be supported by measurements – have these 

objects ceased to exist or are they simply occluded? Occlusion results when 
another scene element is interposed between the camera and the tracked 
object, blocking the object’s image projection, or a portion of it. This result 
in incomplete data or no data associated with the tracked object. To avoid 
that an object is removed even though it is still in the scene, the object is kept 
in the scene for a certain amount of time even though no new data is 
associated to it. This is the opposite process to the validation process 
explained above. 

   
• Crossing: A single measurement may match to more than one object – 

which object should the measurement be assigned to? When two tracked 
objects cross each other’s paths one target–originated measurement may 
often fall within the other target’s overlapping tracking window. This could 
lead to multiple trackers locked onto the same part. This problem is solved 
by the algorithm itself since an input parameter to the Kalman filter is the 
velocity. Another problem appears when two objects move close to each 
other in the same direction and with the same velocity. To avoid that two 
objects is seen as one, each object has a validation gate. The size of this gate 
determines how good the algorithm is on separating measures of different 
objects. 
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3. Tracking Algorithms 
 
 
To be able to carry out the tracking of an object, some kind of information, usually 
from sensors, has to be received. The implemented system is as mentioned part of an 
obstacle avoidance system in a robot’s vision system. The robot must be able to 
move autonomously in partially structured environments, and uses a stereo-vision 
system to recognize objects in its way. The detection of the different objects in the 
scene has already been done and put into a data file, see previous works [12]. 
 
Since the data is noisy and the measures consist of both information and clutter, it is 
difficult to get an exact position of the objects from the input data only. These 
inaccuracies, together with other errors, usually have statistical properties that are 
different from the target ones. This makes it possible to extract the target tracks from 
the clutter using different probabilistic models. In this chapter the methods and 
algorithms for achieving this are described and an overview of the tracking task is 
shown in Figure 3.1. 
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Figure 3.1: Brief overview. 

 
 
In the association process each measurement is assigned to a target. At each time 
step, or frame, it has to be decided if the measurements arise from a previously 
known object, from a new object, or if the measurement is false. This can be done 
by applying different association algorithms such as the Maximum Likelihood filter 
(ML), the Nearest Neighbor filter (NN) or the Probabilistic Data Association Filter 
(PDAF). The last one, the PDAF, will be used in this thesis. Different kinds of 
association algorithms will be commented later on in this chapter. 
 
As each measure has been associated the states have to be estimated. There are 
many solutions on how to do this, and a lot of research has been done the last years. 
Many of these solutions involve some kind of filter, such as the Particle Filter (PF) 
or the Kalman Filter (KF) which will be used in this thesis. Kalman filtering is an 
efficient method for tracking when the distribution of measurements is Gaussian. 
The KF is a discrete process and it is an optimal solution of the Bayes filter when 
the system is linear and the related noise is Gaussian with zero mean. 
 
 

YES

NO Associate EOF 

Validate or 
Remove 

Kalman 
filter 

Visualize 

Close input file 

Open input file 

Read data 
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3.1 The Kalman Filter 
 
 
The discrete Kalman filter is a set of mathematical equations that provides an 
efficient recursive mean for estimation of the state of a discrete process, in a way 
that minimizes the mean of the squared error, see [1]. The structure of the Kalman 
filter is very simple as it can be seen in Figure 3.2 below: 
 

 
 

Figure 3.2: Structure of the Kalman filter. 
 

3.1.1 Equations  
 
The Kalman filter combines a motion model with measurements in order to obtain 
the best target estimate. To use the KF, the process must be expressed by a linear set 
of equations. Equation 3.1 is called the state or process equation (motion model) and 
it expresses the evolution of the process’ state vector with time: 
 

111 −

→

−

→

−

→→

++= kkkk wuHaGa    <3.1> 

 
where G  is a nn×  transition matrix that relates the state at the previous time step to 
the state at the current time step, and n  is the number of states. H  is a ln×  matrix 

that relates the state vector to the control input matrix, lu ℜ∈
→

. kw
→

 represents the 

process noise, that is a zero-mean white Gaussian noise sequence, ),0(~)( QNwp
→

, 
whose covariance matrix is Q(k). 
  



TRACKING MULTIPLE OBJECTS WITH KALMAN FILTERS – PART I 

Johanna Broddfelt TRACKING ALGORITHMS 10 

The measurement is modeled by the output equation (sensor model) and exposes 
which is going to be the output of the system from the current state vector: 
 

kkk oaCm
→→→

+=    <3.2> 

 

where km
→

 is the measurement vector and C  is a nm×  matrix that relates the state 

vector to the measurement. ko
→

 represents the measurement noise that is a zero-mean 

white Gaussian noise sequence, ),0(~)( RNop
→

 whose covariance matrix is R(k). 
 
Equations 3.1 and 3.2 can be presented as in the block model below: 
 
 

 
Figure 3.3: Signal-flow-model of the discrete time, linear, dynamical system. 

 
 

3.1.2 Prediction and Correction 
 
The filter performs the state vector estimation in two phases: prediction and 
correction [1]. In the prediction phase the algorithm predicts the value of the state 

vector using the system model and Bayes’ rule, zeroing the process noise 
→

w . Then, 
in the correction phase, it adjusts the prediction with an actual measurement at that 
time. Figure 3.4 gives a complete picture of the operation and equations of the KF, 
the vector sign )(→  will be left out from now on. 

 
The errors for a priori and a posteriori estimation can be defined as shown by 
Equations 3.2 and 3.3 respectively. In the equations n

ka ℜ∈−ˆ  is defined to be a 
priori state estimate at step k given knowledge of the process prior to step k, k-1, and  

n
ka ℜ∈ˆ  is defined to be a posteriori state estimate at step k given the measurement 

km . The ∧ sign indicates that it is an estimate and the minus sign indicates that it is 
a priori estimation. 
 

H 

G 

C +uk-1 ak mk + 

wk-1 

ok 

Motion model Sensor model 

Delay Ts 
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      −− −≡ kkk aae ˆ     <3.2> 
 
      kkk aae ˆ−≡     <3.3> 
 
The a priori estimate error covariance is expressed by Equation 3.4 and the a 
posteriori estimate error covariance by Equation 3.5, where T denotes the matrix 
transpose. 
 

     [ ]T
kkk eeEP −−− =    <3.4> 

 
[ ]T

kkk eeEP =     <3.5> 
 
These equations are achieved through the Bayes’ filter theory. They are useful when 
deriving the expressions for the KF. The goal is to find a formula that computes a 
posteriori state estimate, kâ , as a linear combination of a priori estimate −

kâ  and a 
weighted difference between an actual measurement km  and a prediction of the 
measurement vector −

kaC ˆ . This equation (3.10) together with the rest of the 
prediction and correction equations are shown in Figure 3.4 below.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3.4: A complete picture of the equations of the KF. 

 
 
K  is called the Kalman Filter gain and is a mn×  matrix that minimizes the 
posteriori estimate error covariance in Equation 3.11. 
 
Equation 3.9 uses the predicted measurement covariance matrix Sk: 
 

         )( RCCPS T
kk += −     <3.12> 

 

Prediction phase 

1. Project the state ahead 

11ˆˆ −
−
−

− += kkk HuaGa  <3.6> 

2. Project the error covariance ahead 

QGGPP T
kk += −

−
1  <3.7> 

3. Predicted measurement 
−− = kk aCm ˆˆ   <3.8> 

Correction phase 

1. Compute the Kalman gain 
1)( −−− += RCCPCPK T

k
T

kk    <3.9> 

2. Update the estimation with measurements km  

)ˆ(ˆˆ −− −+= kkkkk mmKaa       <3.10> 

3. Update the estimation error covariance matrix 
−−= kkk PCKIP )(              <3.11> 

00 , Pa  (Initial estimates) 
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The difference between the measurement and the predicted measurement in 
Equation 3.10 is called innovation, or the residual: 
 

−−= kkk mmr ˆˆ      <3.13> 

 
The innovation is weighted by the Kalman filter gain K. As it can be seen in 
Equation 3.9 as the measurement covariance R approaches zero, the gain K becomes 
bigger and weights the innovation in Equation 3.10 more heavily. This means that 
the actual measurement is trusted more and more. On the other hand as the a priori 
estimated error covariance matrix −

kP  approaches zero, K becomes smaller and the 
predicted measurement is trusted more and more.   
 

3.1.3 Filter Parameters 
 
When the Q  and R  matrices are constant, the estimation error covariance kP  and 
the Kalman gain K  quickly stabilize and remain constant, as shown in [1]. 
However, in many applications this is not the case, the measurement error in 
particular does not remain constant, and sometimes the process noise changes during 
the filter operation. When it is necessary to take these changes into account Q  
becomes kQ  and R  becomes Rk. In tracking algorithms for example, it is sometimes 
interesting to reduce the magnitude of kQ  when the object seems to be moving 
slowly and increase it when the object starts moving faster.  
 
The measurement noise covariance R  can usually be calculated during the filter 
operation. Manipulation of the filter behavior is also possible, by changing the R . 
For example, if R  is made bigger then K is reduced and the filter gets slower to 
respond to the measurements and trusts the predicted states more, see Equations 3.9 
and 3.10. And as explained earlier, if  R  is made smaller the filter responds to the 
measurements more quickly and the measurements are trusted more. 
 
The state noise covariance matrix Q  informs if the process is well known. If it is, 
the noise covariance can be set to a small value. In cases where the process model is 
unknown, acceptable estimation results can be accomplished if enough uncertainty 
is injected via Q .  
 



TRACKING MULTIPLE OBJECTS WITH KALMAN FILTERS – PART I 

Johanna Broddfelt TRACKING ALGORITHMS 13 

3.2 The Data Association 
 
 
As the objective stated the system has to be able to handle multiple and various 
numbers of objects. In order to deal with this an algorithm for associating the 
measurement to the different objects is needed. For this kind of association different 
research groups have developed several algorithms that are classified into two 
groups: [2] 
 

• Optimal 
• Suboptimal 

 
The optimal approach is called Multiple Hypothesis Data Association (MHA). This 
solution involves all combination of matches between priori estimates and current 
observations, which are calculated for each time step. At each time step a hypothesis 
tree is grown, each branch representing a particular combination. 
 
The suboptimal group is further divided into two popular methods known as Nearest 
Neighbour Data Association (NN) and All Neighbour Data Association. 
 
The All Neighbour approach involves two main implementations known as 
Probabilistic Data Association Filter (PDAF) and Joint Probabilistic Data 
Association Filter (JPDAF) [3]. It has been shown [2] that the JPDAF algorithm 
gives a result that is one of the better. But a disadvantage of using the JPDAF is that 
a single track can be computationally very expensive. 
 
The NN chooses the nearest measurement within its gate1 as the most adequate. The 
PDAF assigns a probability between each object and the measurements within its 
gate and then uses these for a weighted update. The JPDAF jointly considers all 
possible data association combinations and calculates their joint probabilities, again 
for their use in a weighted update stage. [4] 
 
Since the NN chooses the nearest measurement in the estimation process it does not 
give good results in high clutter density tracking environments, when there is more 
than one target and when the tracks intersect. An advantage of this method is that it 
is computationally inexpensive, and regardless of the drawbacks, this method works 
well with low clutter density and when targets don’t interfere with each other. In 
addition to this the track management is also simple. In Part II [17] a minimization 
of the execution time is preferred, since the development is done in a real-time 
platform, and the NN is therefore a good choice. In this thesis, Part I, where the 
development is done on a simulator platform the PDAF will be used. 
 
 
 
 
 
 
 
 
1. Gating is explained in Chapter 3.2.1 
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3.2.1 Gating 
 
In order to speed up the data association step from the optimal solution approach, 
one strategy is to limit the search region for the measurements. The gating procedure 
is used to select candidates from the measurements to match with a certain track. 
The gate, if using with Kalman filters, is designed as follows [5]: 
 
    }ˆˆ:{ 1 γ<= −

kk
T

kkk rSrzV     < 3.14 > 
 
Where Vk is the gate, γ is the threshold and kr̂  and Sk come from Equations 3.13 and 
3.12. The shape of the gate, if defined like this, is elliptical and centered around the 
estimated position, as shown in Figure 3.5. 
 

 
Figure 3.5: Typical ellipsoid gating region. 

 
 

3.2.2 The Probabilistic Data Association Algorithm 
 
The Probabilistic Data Association Filter (PDAF) uses a Bayesian approach to solve 
the problem of data association. It proposes a better solution for the association 
process in situations where there is a single target and no measurements or multiple 
measurements. However when the tracking problem includes multiple objects the 
PDAF can difficultly handle the association problem as it will be explained in the 
following paragraphs. 
 
To select the measurements associated to each target, rather than choosing the data 
closest to where the object is expected to be, the PDAF weights the influence of 
various candidate measurements [6].  
 
In the Kalman filter application the PDAF introduces the notation of the combined 
innovation instead of the standard innovation value given by Equation 3.13. The 
combined innovation, which also is called kr̂ , is computed over the m measurements 
detected at a given time step as the weighted sum of the individual innovations, as 
can be seen in Equation 3.15. 
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∑=
=

m

i iik rr
1

ˆ β      <3.15 > 

 
Each iβ  is the probability of the association event iθ  that the ith measurement is 
originated by the object of interest. These events encompass all possible 
interpretations of the data so that ∑=

=
n

i i0
1β . The association probabilities iβ  are 

derived from an assumed normal Probability Density Function (PDF) on any 
characteristic related to the correct measurement and a uniform noise model for 
spurious measurements. [7] 
 
The density function used to obtain iβ  uses the idea of a validation gate. The 
validation gate can be approximated as a tracking window in the form of a circle 
with a certain radius. This limits the search of measurements to be associated with 
each target. 
 
As said earlier it is difficult to track multiple objects with the PDAF. This is because 
one target–originated measurement may often fall within another target’s 
overlapping validation gate. Such persistent interference could lead to multiple 
trackers locked onto the same target. 
 
The JPDAF solves this problem by sharing information among separate PDAF 
trackers in order to calculate the association probabilities more accurately. The 
essential result is an exclusion principle of sorts that prevents two trackers from 
latching onto the same target [7]. The JPDAF is normally used with Particle Filters. 
In this thesis the PDAF will be used together with the Kalman Filter. 
 

3.2.3 The Implemented Association Algorithm  
 
To do the association you need to calculate the probability that a measurement 
belongs to a certain object. This probability can be calculated according to different 
characteristics. In this case the likelihood iβ  is a normalized PDF with zero mean. 
The PDF is based on the Euclidean distance from each measure to the predicted 
state vectors. The distance from a measure m to a predicted center is calculated as in 
Equation 3.16 below. 
 

( ) ( )22 ˆˆ −− −+−= k
m
kk

m
k

m
k zzxxd  <3.16> 

 
If the distance to the closest predicted position is larger than the validation gate 
radius, g, the measure is treated as a candidate for a new track, otherwise it is 
assigned to the closest existing target. Since the association is depending on the size 
of the validation gate, this parameter is important when to determine the number of 
tracks. For example when two people are walking next to each other, then the radius 
has to be set so that they both can be identified as objects. On the other hand, if the 
parameter is set too small one object might instead be identified as two. 
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Since a newly created track does not have a predicted state, the distance from a 
measure to a new track is calculated to the mean of the measures associated with it. 
Therefore if one or more of the following measures are associated with a new track, 
the mean has to be updated when a measure is added.  
 
When all measures have been assigned, the combined innovation of each track, kr̂ , 
is calculated according to Equation 3.15. The combined innovation is used by the 
Kalman filter to correct the predicted state. The means of the measures associated to 
each object, which are used for updating the velocity according to Equation 4.2, are 
also calculated. The structure of the implemented association algorithm can be seen 
in Figure 3.6 and a more detailed description of the developed association algorithm 
can be found in Chapter 5.4. 
 

3.2.4 Validation and Removal 
 
As can be seen in the figure below the association algorithm consists of two major 
parts. In the first part all the measures are associated to different objects. The second 
part consists of removal or validation of objects. 
 
When a new track is created it is assigned the label candidate. This means that it is 
not considered a validated track in the scene until it has been present for a certain 
amount of time, i.e. a certain number of iterations. The number of iterations you 
choose as a limit should be adapted to how noisy the input data is.  
 
A track is removed when no measures has been associated with it for a certain 
amount of time. This time, i.e. the number of iterations, must be chosen so that the 
tracking continues during occlusion. 
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Figure 3.6: Structure of the association algorithm. 
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4.  Models 

 
 
The format of the input data and the output is described in this chapter. Also to 
understand the implemented tracking algorithm the system model developed in this 
thesis is described. The system model defines the state and velocity vectors related 
to the tracking task. To be able to present the results of the estimated process, it is 
necessary to know how to transform the 3D data into image coordinates. This is 
described by the pin-hole model in the end of this chapter. 
 

4.1 The Input Model 
 
The input data used in the tracking and data association processes are in Cartesian 
coordinates (world- or absolute coordinates). This is important for measuring the 
distance between targets and measurements, and for using state estimation 
techniques. 
 
The data to be processed in the tracking algorithm comes from a vision system that 
consists of two cameras. The images from the cameras have already been processed 
and put in a binary file [12]. This file is organized in the following way:  
 

1. ne - An integer that tells how many points there are in the current frame i.e. 
the number of XYZ coordinates (see description of the coordinate axis in 
Figure 4.1). 

2. Float X coordinate. 
3. Float Z coordinate. 
4. Float Y coordinate. 
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Table 4.1 shows the structure of the input file and Figure 4.1 shows the 3D 
coordinate system. 
 

Table 4.1: The structure of binary input file. 
 

X1 X2 Xn X1 
Z1 Z2 Zn Z1 ne = n 
Y1 Y2 

. . .  
Yn 

ne = n 
Y1 

. . .  

 
 
 

 
 

Figure 4.1: The 3D coordinate system. 

 

4.2 The System Model 
 
The system model used in this application, according to the input specifications 
mentioned before and the estimation requirements commented in the objectives, is 
described by the equations below. The Kalman filter uses the mean, center of each 
target, to predict the states, which then are corrected by the mean of the associated 
measurements.  
 

In the state equation the state vector (
→

a ) consists of the x and z position coordinates. 
The coordinates are the corrected centers of each object. These coordinates are 
updated with the help of the velocity of the objects in both x and z directions, as 
shown by Equation 4.1. Ts is the sample time, 66 ms, of the global discrete 
estimation process. 
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The velocity is calculated in both x and z directions by taking the difference 
between the mean of the associated measures and the corrected state from the 
previous time step and then dividing it by the sample time as follows:  

s

kk
k T

am
v 1ˆ
ˆ −−
=      <4.2> 

 
The output equation that relates the state to the measurement is defined by the 
equation 
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A block diagram of the system model is given in Figure 4.2 below. 
 

 
Figure 4.2: System model. 
 

 
The process noise covariance matrix and the measurement noise covariance matrix 
are shown in Equations 4.4 and 4.5. 
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The choice of the covariance matrices is a compromise. In Equation 4.4 2σ  denote 
the variance of the process noise and in Equation 4.5 it denotes the variance of the 
measurement noise. 
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4.3 The Output Model 
 
All of the objects are moving on the ground and therefore the tracking can be seen 
as a 2D tracking in the xz-projection plane. The y-coordinates are used for plotting 
the measures in a 3D-image, where the objects are modelled by a cylinder. The KF 
models all systems with a Gaussian probability distribution. This distribution and 
the cylinder model are shown in Figure 4.3. 
 
The center of the cylinder is the corrected state, the mean of the target estimate, 
which in the figure is represented by the yellow line. The height of the cylinder is 
fixed, but the y-position depends on the mean of the y-coordinates belonging to each 
target. The width of the cylinder is an empirically adjusted parameter, the validation 
gate explained earlier, adapted to the width of the tracked objects. 
 
 

 
Figure 4.3: Cylinder model. 

 
 
There is one estimated output from each track and these are visualized in a 2D-
projection where the target cylinders are represented by circles, and in a 3D-video 
where the object cylinders are represented by rectangles. The coordinates of the 
objects are Cartesian (absolute coordinates in meters or millimeters) and to plot the 
coordinates in an image, transformation into image pixels is necessary. This is done 
with the pin-hole model of the camera described in the next chapter. 
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4.4 The Pin-hole Model 
 
As mentioned earlier the input data are in Cartesian coordinates. This is the 
traditional system for real world environmental representation. In the ground plane it 
consists of an x- and y-axis that are perpendicular. To achieve a three-dimensional 
representation a z-axis, the height, is added perpendicular to the xy-plane. In this 
thesis the axis-system is changed so that the y-axis represents the height as can be 
seen in Figure 4.1.  
 
To be able to plot the measures and the tracked state vectors in a video image the 
absolute coordinates have to be transformed into the image plane ones (IP). In order 
to do this you first need to transform the coordinates into camera coordinates.  
 
The different coordinate systems can be seen in Figure 4.4 and are defined as 
follows: 
 

• The absolute or world coordinate system (ACS) consists of {X, Y, Z} and 
gives information about the position of the points in 3D space. 

 
• The camera coordinate system (CCS) consists of {X’, Y’, Z’}. The origin of 

the CCS is at Oc, and the z-axis coincides with the optical axis of the 
camera. 

 
• The image plane coordinate system (ICS) consists of {u, v} and is a 2D 

system that represents a position in the image plane. The origin Oi is the 
intersection of the optical axis with the IP measured in pixels. 

 
 

 
Figure 4.4: Pin-hole model. 
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The focal length ƒ is the distance between the IP and the optical center Oc. The 
distortion-free camera model, or "pin-hole" model, assumes that every point in the 
ACS is connected to its correspondent image point on the IP in a straight line 
passing through the focal point of the camera lens, Oc. In Figure 4.4 the undistorted 
image point of the object point, “Pu”, is shown. 
 
The camera has been calibrated so that the CCS and the ACS coincidence. With this 
calibration, the transformation can be divided into three steps [9]: 
 

1. The first step is to move the origin of the ACS into the origin of CCS. 
  
2. The next step is to rotate the ACS until its axes are coincident with those of 

the CCS.  
 

3. The final step is to move the IP laterally until there is complete agreement 
between the two coordinate systems. 

 
These transformations involve some parameters called extrinsic (from ACS to CCS) 
and intrinsic (from CCS to ICS). The extrinsic parameters include the translation of 
the origins, the rotation γ around the z-axis and the rotations α and β around the x- 
and y-axis respectively. The intrinsic parameters include the focal length, f, the 
scaling factors and the image center coordinates [10]. Less important intrinsic 
parameters such as the distortion coefficients can be consulted in [9].   
 
In the following paragraphs the different matrices needed to do the ACS to ICS 
transformation are summarized. In the first step, to do the transformation to camera 
coordinates you need to know the translation matrix T that moves the origin of the 
absolute coordinates into the origin of the camera coordinates: 
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In the second step the rotations about the coordinate axes have to be calculated: 
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The sequence of rotations around the ACS coordinate axes can be expressed as 

)()()(),,( αβγαβγ XYZR =  where R is a composite rotation, the rotation matrix, in 
which )(γZ  is applied first, then )(βY  and finally )(αX . The rotation matrix is 
orthogonal and thus it has the property that R-1= RT [9]. The rotation transformation 
gives the following: 
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The generalized displacement (i.e. translation plus rotation) transformation gives the 
camera coordinates and takes the form: 
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To be able to express the generalized displacement as a product of matrices the 
matrices must be augmented to 4x4 as follows: 
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Finally in, the third step, to extract the image coordinates the CCS coordinates have 
to be normalized by Z’ and multiplied by the focal length f. That gives the image 
coordinates in meters or millimeters, depending on the units of f. In order to plot the 
coordinates in the image it is necessary to transform them into pixels. That is done 
by dividing by the scaling factors sx and sy (meters/pixel) [10] and correcting the 
position by adding the image centers ox and oy shown in Figure 4.5. 
 
The equations below show how to project the object coordinates onto the image 
plane: 
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Figure 4.5 shows the image center offset that needs to be corrected for in the 
transformation into image pixels. 

 
Figure 4.5: Image center offset.
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5. Implementation 
 
 
The association and Kalman filtering described in previous chapters are 
implemented in Matlab. The input data comes from a dat file, see Chapter 4.1. The 
output from the Kalman filter is visualized in a 2D projection plot and in the input 
video. The probabilities of finding objects in the scene are also plotted in an object 
probability plot.  
 
The developed Matlab code main.m, initiate.m, association.m, kman.m, visualize.m, 
transf.m and constants.m can be found in Section V. An overall view of the global 
implementation is presented by the flow chart in Figure 5.1. The different parts of 
the implementation, the input, initiation, association, Kalman filtering and 
visualization are then explained more in detail. The implementation was done in 
three steps; first with one single object, then with a constant number of objects and 
finally with a varying number of objects. 
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Figure 5.1: Flowchart of implementation. 
 

5.1 Input Data 
 
As explained earlier the images from the vision system have already been processed 
and the results have been put into a binary dat file. The structure of this file is 
explained in Chapter 4.1. To read the input file the Matlab command fread is used. 
Firstly the integer ne is read, which tells how many measures that are obtained. Then 
the x, y and z-coordinates of each point extracted from the frame are read and saved 
in a matrix as 32 bits floats. As all frames have been read and processed, the input 
file is empty and closed. 
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5.2 Number of Objects 
 
In order to simulate the functionality of the Kalman filter, the tracking task was first 
developed with one single object. Then the association algorithm was implemented 
with a fixed number of objects. Finally, the filtering was done with a varying 
number of objects, which leads to the tracking tasks that was described in the 
objectives, Chapter 2.  
 

• When tracking one single object, the tracking problems commented in the 
objectives are not present. If there is only one object, an association 
algorithm is not necessary; all the data is associated to the object, including 
noise. 

 
• When the number of tracks is known a priori and remains fixed throughout 

the motion sequence the measurements are associated to the closest object. 
This is called Nearest Neighbour association which has the capability of 
explicit modeling of measurements, which is explained in next paragraph. 
Since the number of objects is constant, tracks should not be terminated 
during the simulation. If no measurements are assigned to an object it means 
that it is occluded and the tracking algorithm has to have the capability of 
track continuation. 

 
• When tracking multiple objects where the number of objects is changing 

over time the association algorithm has to integrate the capabilities of 
 

Track Initiation: The creation of new tracks when new objects are 
supposed to enter the field of view and prevent that noise is 
characterized as a new track. 

 
Track Termination: The termination of a track when no 
measurements are associated to the object for an extended and 
programmable period of time. 

 
Track Continuation: The continuation of a track over several 
programmable frames in the absence of measurements associated to 
it. Thus the tracking algorithm is capable of providing support for 
temporary occlusion. 

 
Explicit Modeling of Measurements: A measurement may only be 
assigned to a single track. 

 
The tracking characteristics described above are going to be explained further in the 
following chapters. 
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5.3 Track Initiation 
 
Each time a new track is initiated a new Kalman filter is started. The Kalman filter 
associated with each track cannot be initiated from a single iteration since it does not 
provide the velocity information included in the model. There are two solutions to 
this problem.  
 

1. The first one is to delay track initiation until two consecutive and associated 
measurements are available to give a reliable estimate of a feature's velocity.  

 
2. The second solution, which is implemented, is to initiate the velocity 

estimates to zero while simultaneously initializing the corresponding 
elements of the  error covariance matrix to a value that represent the 
uncertainty in the velocity estimates [11]. 

 
To initiate tracks the objects have to be “found” in the scene: 
 

• At the beginning (t=0) it is assumed that there are no objects in the scene. In 
this situation the first measure that is received is defined as a candidate track.  

 
• From this moment, each time a new measure is received the distances to the 

already existing tracks are calculated. 
 

• If the distance is bigger than the radius, g, of the validation gate, the measure 
is the beginning of a new candidate track, otherwise the measure is 
associated to the closest existing track and a new mean is calculated.  

 
• This continues until all the measures in the frame have been associated. The 

predicted states are then computed by adding the velocity information as 
shown by Equation 4.1. 

 
If the initial estimate was absolutely correct then P0 would be zero. But as the initial 
estimate is based on measurements and the initial velocity is set to zero there is an 
uncertainty in the estimation and P0 is assigned the values according to Equation 5.1 
(in mm2): 
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5.4 Data Association 
 
The association algorithm functionality can be summarized with these two 
statements: 
 

I)  When assigning the measurements each measure may either 
1. Come from a previously known track. 
2. Be the start of a new track, e.g. a previously not detected object that 

has entered the field of the camera. 
3. Be a spurious measurement, a so called outlier (also called false 

alarm). 
 

II)  In addition, at the end of the association process, for those tracks that 
have not been assigned any measurements there is the possibility of 
4. Deletion of the track. This situation may arise when an object leaves 

the field of the camera. 
5. Continuation of the track. The missed measurements are perhaps due 

to either noise or a temporary occlusion caused by the motions of the 
camera or objects in the scene 

 
 
The idea of using 3 different states for an object track; candidate, validate and 
remove were discussed earlier in Chapter 3.2.4. Figure 5.2 shows the different 
numbered possibilities, 1-5, of the tracking. The implemented association algorithm 
consists of two parts where the association is done in the first part and the validation 
or removal is done in the second. 
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Figure 5.2: The association algorithm. 
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One property of the association algorithm developed in this thesis is that a 
measurement may only be assigned to one track. Which track should it be assigned 
to? The first part of the association algorithm solves this:  
 

• Firstly the Euclidean distances from each measurement to all existing tracks 
are calculated, see Equation 3.16. Then the algorithm search for the closest 
track.  

 
• If the number of objects in the scene were constant, the measure would 

automatically be assigned to the closest track. But with a varying number of 
objects, should the measurement be assigned to the closest track or treated as 
a new one? This question is solved by the validation gate – if the 
measurement is within a radius g of an existing tracks predicted state it 
belongs to the track, otherwise it is treated as a candidate for a new track.  

 
• When a measure does not belong to a previous known element it gets the 

label candidate, and the validation counter is started. The label candidate 
means that it can either be the beginning of a new track or just a false alarm. 

 
• If a measure is assigned to a track that has been created in the same iteration 

a new mean is calculated. 
 
In the second part the tracks may either be validated or removed: 
 

• When a candidate has been present for a certain programmable time, it is 
validated as a new track and the number of tracks is increased. 

 
• If the candidate is not validated the validation counter is updated. 

 
• When no measurements are associated with a present track it becomes a 

candidate for removal and the removal counter is started.  
 

• When the removal candidate has been absent for a certain programmable 
time it is removed and the number of tracks is decreased. 

 
Now with the described implementation the first three specifications of the 
association algorithm have been taken into consideration; Explicit Modeling of 
Measurements, Track Initiation and Track Termination. But what about Track 
Continuation - how is the track continued over several frames in the absence of 
associated measurements? Since no measures are assigned to it, the center of 
measures simply has to be assumed to be equal to the predicted center, which is a 
good approximation. 
 
To increase the robustness of the association algorithm a factor of probability is 
added, i.e. the probability that a measurement belongs to a certain object. This 
probability is used for calculating the combined innovation kr̂  according to Equation 
3.15. If the track is in the state of Track Continuation no measures are associated 
with it, and the combined innovation related to the track is therefore zero. 
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5.5 Kalman Estimation 
 
As described earlier in chapter 3.1, the KF consists of a prediction step and a 
correction step. The prediction step predicts the state of the next time step. 
Therefore, at each time step, the correction of the current state is done first and then 
the prediction of the next state. To be able to predict the state it is necessary to know 
the velocity of each target. The filtering function consists of the following steps 
which also can be seen in Figure 5.3: 

 
1. The first step is to correct the predicted state and error covariance as in 

Figure 3.4, correction phase. To increase the robustness, the original 
innovation that is used by Equation 3.10 to compute the Kalman gain has 
been replaced by the combined innovation, see Equations 3.13 and 3.15. As 
discussed earlier if a track does not have measurements associated to it the 
combined innovation is zero. This means that the state is not corrected but 
just assigned the predicted state. 

 
2. The next step is to update the velocities, which is the model input, according 

to Equation 4.2. This is done using the difference between the mean of the 
measures and the corrected state vector from the previous time step. As 
mentioned earlier, in the case when no measures are assigned to a track, the 
mean of the measures are assumed to be equal to the predicted state vector. 
The calculated movement is then divided by the sample time.  

 
3. The final step is to predict the next estimation by using the system model 

according to Equation 4.1 and the error covariance according to Equation 
3.7.  

 
 
Table 5.1 below shows the functionality of the different time steps of the KF 
designed for the application of this thesis and Figure 5.3 shows a block diagram of 
the Kalman filtering model. 
 
 

Table 5.1: Time steps in KF. 

 
 
 

 t=0 t=1 t=2 t=n 

1. Correction 00ˆ ma =  111 ˆˆˆ rKaa += −  222 ˆˆˆ rKaa += −  nnn rKaa ˆˆˆ += −  

2. Velocity 00 =v  
sT
am

v 01
1

ˆ−
=  

sT
am

v 12
2

ˆ−
=  

s

nn
n T

am
v 1ˆ −−

=  

3. Prediction 001 ˆˆ vaa +=−  
112 ˆˆ vaa +=−  223 ˆˆ vaa +=−  nnn vaa +=−

+ ˆˆ 1  
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Figure 5.3: Model of Kalman filter. 

 
 
The values of Q and R used in the implementation can be seen in Equations 5.2 and 
5.3. As mentioned earlier the diagonals of the matrices are the x and z variances of 
the process noise and the measurement noise (in mm2). The true values of these 
variances are unknown. Sometimes the measurement noise R can be measured prior 
to the operation of the filter, but in this case the true point of a measurement’s 
position is unknown. The true value of Q can not be determined since the process 
can not be directly observed.  
 
The value of R is obtained by dividing the variance of the measurements associated 
to an object by the validation gate, as it is explained in Part II [17], Chapter 6.1.1. 
The value of Q is obtained by tuning of the filter.    
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How the tracking result is affected when these values are manipulated is discussed 
in Chapter 6.3.3. 
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5.6 Execution Time 
 
The camera’s frame rate is 15 fps, giving the system a sample time of ms6615

1 ≈ . 

This means that in a real time implementation, as in Part II [17], the loop execution 
time should not exceed this expected execution time.  
 
As the implementation in this part is done on a simulator platform, the execution 
time is not as important as when implementing on a real time platform. A way to 
compensate for an execution time that is longer than the sample time is to calculate 
the velocity with the measured execution time. If the measured execution time is 
shorter than the expected, the system is paused for the remaining of the sample time. 
 

5.7 Visualization 
 
As mentioned earlier the output from each Kalman filter is plotted in both a 2D 
projection and in a 3D image as in Figures 5.4 and 5.5. In both plots the measures 
are visualized as red stars. In the 2D image, which can be seen as a projection of the 
walking plane, each target is represented by a circle. The center of each circle is the 
corrected state obtained from the Kalman filter and each target is drawn in a 
different color. 
 

 
Figure 5.4: 2D plot of tracking with circles. 

 
 

To show the input video the Matlab command imshow is used. To plot the red 
measures and the rectangles in the image the Cartesian coordinates used in the 
model must be transformed to image coordinates as explained in Chapter 4.4. The 



TRACKING MULTIPLE OBJECTS WITH KALMAN FILTERS – PART I 

Johanna Broddfelt IMPLEMENTATION 37 

center of each rectangle is represented by the corrected states of each track and the 
mean of the associated y-coordinates. 
. 

 
Figure 5.5: 3D image with rectangles. 

 
 
The size of the input image (u, v) used in the experiments is 320x240 pixels. The 
extrinsic parameters (rotations around the ACS-axis and translation of the center) 
are shown in Table 5.2, and the intrinsic parameters (the focal length divided by the 
scaling factors and the image centers offsets), are shown in Table 5.3: 
 

Table 5.2: Extrinsic parameters. 
 

γ (rad) α (rad) Β (rad) Ty (mm) 
0.0166 0.019508 -0.014053 970 

 
Table 5.3: Intrinsic Parameters (pixels). 

 
f /sx f/sz ox oy 

430.79014 431.72027 151.26555 117.03242 
 
 

The object probability is also plotted, as Figure 5.6 shows. The figure informs about 
the normalized probability, obtained from the tracking algorithm, of where to find 
an object in the scene at each iteration step. 
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Figure 5.6: Object probability plot. 
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6. Results 
 
 
In this chapter the tracking results from the already described theory and 
implementation are presented. This includes the results when using a single object, a 
constant number and a varying number of multiple objects.  
 
The tests were done with a fixed R and Q according to Equations 5.2 and 5.3 and P0 
is fixed to the value of Equation 5.1. The limit of the validation counter is set to 4 
time steps and the limit of the removal counter is set to 15 time steps. The reason for 
the difference of the counters’ limits is that outliers, spurious measurements, only 
last a few time steps while an occlusion takes longer time. The validation gate is 
determined through tuning to the final value of 850 mm.   
 
After the initial tests the accuracy of the tracking algorithm is investigated and then 
the influences of the different parameters in the paragraph above are tested. 
 
The implemented results will be presented in a 2D xz-projection plot, where the 
scaling of the axis is in mm, and in a 3D image of the scene.   
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6.1. Number of Objects 
 
As explained in Chapter 5.2 the implementation of the association algorithm 
depends on the actual scene; if it consists of one object, a constant number of objects 
or if the number of objects is changing. The most difficult part is to track a varying 
number of objects, and therefore a major part of this chapter consists of these 
results, where different states of the tracking (candidate, validate and removal) are 
tested in different situations. 
 

6.1.1 Tracking a Single Object 
 
As commented before when tracking one single object no association algorithm is 
necessary and problems like validation, occlusion and crossing are not present. All 
the input data is associated to the object, including noise. This could lead to the 
estimator losing the target as can be seen in Figure 6.1. The estimator is tracking the 
measures that can be seen in the left plot of Figure 6.1 without problems. Suddenly 
noise creates a temporary clutter, a so called outlier, and the estimator loses the 
target as can be seen in the right plot. The reason for this target loss is that the 
estimator corrects the predicted position with the mean of all the input measures, 
including noise ones. 
 

 
Figure 6.1: Tracking a single object. 

(mm) 

(mm) 
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6.1.2 Tracking a Constant Number of Multiple Objects 
 
When the number of tracks is known a priori and remains fixed throughout the 
motion sequence the measurements are associated to the closest object with a NN 
algorithm. If the initial position of the objects is known prior to the tracking a 
validation gate is not necessary since no objects have to be found in the scene. 
 
Since the number of objects is constant tracks should not be terminated during the 
tracking. If no measurements are assigned to an object it means that it is occluded. 
How the track is continued during occlusion is presented in part c) of the next 
chapter. 
 
Another problem with the association that has to be taken into consideration is 
crossing. An example of a problematic crossing can be seen in Figure 6.2 where it is 
shown that the expected tracks are followed without any problems. The crossing is 
solved by the algorithm itself since an input parameter to the Kalman filter is the 
velocity. 
 

 
Figure 6.2: Crossing. 

 
This simulation does not use input data from a real scene. The data is generated in 
Matlab so that two objects cross each other in the point (0, 10000). In a real 
environment this extreme situation would not occur unless the objects jump over 
each other. On the other hand, in a real scene, the disadvantage is that objects do not 
always move in straight lines and with constant velocity. The approximated velocity 
may then not always be correct. This complicates the association process and the 
crossing phenomena since an incorrect velocity leads to a bad prediction of the state. 
If the predicted state is inaccurate the measures might be associated to the wrong 
tracking estimator. 
 
In other words, in Figure 6.2, if the predicted states would be inaccurate, tracker 1 
and 2 might switch target at the crossing so that the positions of tracker 1 and 2 in 
the right picture are converted.   
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Usually the initial position of the objects is not known a priori and the objects have 
to be located in the scene before any tracking can be implemented. To do this a 
validation gate is necessary - all the measures within a certain radius are associated 
with the same object. How the tracking initiation is implemented is described in 
Chapter 5.3. The difficulty is to determine the radius of the gate. The number of 
objects present in a cluster is determined by the size of the gate as it is shown by the 
first example in the following chapter. 
 

6.1.3 Tracking a varying Number of Multiple Objects 
 
a) The validation gate radius 
 
An important task when tracking a varying number of multiple objects is to 
determine the actual number of objects in the scene. As commented in the pervious 
chapter the number of objects present in the scene depends on the radius of the 
validation gate. Figure 6.3 below shows the result of an experiment in which the 
number of objects is being estimated correctly even though two objects move close 
to each other with the same velocity. The effect of changing the validation gate 
radius will is presented in Chapter 6.3.2. 
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Figure 6.3: Correct number of objects. 
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b) Validation or false alarm 
 
Another important task is to determine if a measure that is not within the gate of an 
existing track is the start of a new track or just a false alarm (outlier). This problem 
is solved by using the validation counter. If a candidate has been present for a 
certain amount of time its track is validated. Figure 6.4 shows the result of a 
candidate that is being validated. When the candidate is created the number of 
candidates for validation, “no can in”, increases from zero to one. When the object is 
validated the number of objects, “no objects”, increase from zero to one and the 
number of candidates is reset.  
 

 
Figure 6.4: Candidate and validate. 

 
 
Figure 6.5 shows an example of a false alarm; a track is created as a candidate but it 
is not validated. Here the number of candidates is also increased and then restored 
when the validation counter ends, but the number of objects remains constant. 
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Figure 6.5: False alarm. 

 
 
c) Removal of continuation of a track 
 
The opposite problem of validation, to remove an object or continue tracking, also 
has to be solved. Figure 6.6 shows a situation in which two objects get occluded for 
a while. Instead of removing the tracks immediately the removal counter is started 
and the tracking of the objects continues. 
 
As can be seen in Figure 6.6, when the objects are occluded no measures from them 
are received as input to the tracks. The number of candidates for removal, “no can 
out”, increases to two while the number of objects, “no objects”, is kept the same 
during the time. 
 
Then when object nr 1 appears again, as can be seen in Figure 6.7, the number of 
candidates for removal decreases to one. Object nr 3 is absent for too long and 
therefore its track is removed when the counter ends, and as a result the number of 
objects is decreased from two to one. 
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Figure 6.6: Occlusion.  
 

 
Figure 6.7: Occlusion and removal. 
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As the presented results show the developed tracking algorithm seems to be working 
correctly. The number of objects detected in the scene is determined correctly by the 
validation gate. A candidate is validated when a new target is supposed to enter the 
scene and treated as a false alarm when outliers appear. The tracking is continued 
during occlusion and when a target is absent for too long its track is removed 
 

6.2 Accuracy and Errors 
 
As showed in the results above the developed tracking algorithm, including 
validation and removal of tracks, is working correctly. To determine if the number 
of detected tracks is accurate the number is compared to the manual background 
truth, i.e. the number of objects calculated manually in each frame. 
 
Another interesting factor to test is the estimation error that will inform about the 
accuracy of the developed tracker. Different tests show that almost any initial 
estimation error covariance matrix P0 can be used, as the filter eventually converges. 
The only value that can not be used is P0=0 since the Kalman gain would then 
initially and always be zero. If K is zero the state is not corrected with the 
measurements, it only takes the value of the prediction.  
 
The plots in Figures 6.8, 6.9 and 6.10 were obtained from a scene with a single 
object that is in a comfortable view of the cameras. The objects position in the scene 
affects the accuracy of the obtained measures. The choice of P0 determines how 
long it takes for the filter to converge. As can be seen in Figure 6.10 if an initial 
value according to Equation 5.1 is used it only takes the filter 4 iterations to 
converge to the value 0.09161 mm2. Other parameters that affects the time of 
convergence will be discussed in Chapter 6.3.3. 
 

 
Figure 6.8: Convergence of P. 

 
 

As discussed in Chapter 5.5 the input data only comes from measures and the true 
points are unknown and therefore the true values of Q and R can not be obtained, 
only the ideas of them. To measure the accuracy of the estimations some samples 
should be compared to its correct positions, called the background truth. But since 
the exact positions of the measurements are unknown the qualities of the estimators 
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have to be measured with the manual background truth. This is done by measuring 
the distance from the estimated centers to the means of the measurements associated 
with each track. The manual background truth only gives an idea of how good the 
accuracy of the estimators is. 
 
Figure 6.9 shows the absolute distance between the estimates and the centers of 
measures and Figure 6.10 shows the positions of the estimates as blue plus signs and 
the positions of the centers of the measures as red dots. As can be seen in the 
figures, the distance between the estimated states and the centers of measures is 
small, which means that the accuracy of the tracking algorithm is good. 
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Figure 6.9: Accuracy of estimation compared to manual background truth. 
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Figure 6.10: Estimates and centers of measures. 
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6.3 Parameter Influence 
 
Different parameters of the Kalman filter and the association algorithm affect the 
tracking in different ways. In this chapter some parameters are manipulated in order 
to see how the tracking is affected. The tested parameters are the removal counter, 
the validation counter, the validation gate radius and the Kalman parameters Q and 
R. During the tests all parameters are kept constant except for the one being tested. 
The values of the parameters are the same as described in the beginning of the result 
chapter. 
 

6.3.1 Removal and validation Counters 
 
If the limit of the removal counter is too small, objects that are still present in the 
scene may be removed. One example of this is showed in Figure 6.11. As can be 
seen the input data associated to object nr 4 is poor and therefore measurements are 
missing during several iterations. Since measurements are missing the tracked object 
becomes a candidate for removal.  
 

  
Figure 6.11: Candidate for removal. 
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In this experiment the limit of the removal counter is set to 10 iterations and in 
Figure 6.12 the counter reaches the limit. No new measurements have been 
associated with the target and therefore the track is removed. Then when 
measurements are associated with the object again a new tracker is started, and the 
object is applied tracking number 3 instead of the original 4. To avoid this, the 
number of iterations counted for removal should be increased. 

 
Figure 6.12: Removal of still existing object. 

 
 
If the counting for removal is made longer it may lead to continued tracking of 
objects that is not present in the scene. If there are several objects in the scene, this 
could lead to a great number of objects being tracked, which is time consuming. 
 
For the validation counter, if the counts are too few, clutter that is present over a 
number of iterations may be validated as an object. And if the number of iterations 
counted is too many, an object that is present in the scene a short amount of time 
may never be validated.  
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6.3.2 Validation Gate Radius 
 
If the size of the validation gate radius is set too big, two objects may be seen as 
one. The right picture of Figure 6.13 gives an example of this; the radius is increased 
to 950mm and the two persons are being tracked as one single object. In the right 
picture the original radius of 850 mm is used and the two persons are being tracked 
correctly as two individual objects. 

 
Figure 6.13: Validation gate radius. 

 
 
The opposite of the example given above, when the radius is set too small the 
tracking of one single object may be divided into multiple trackers. 
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6.3.3 Kalman Covariance Matrices 
 
The time it takes for the estimation error covariance to converge was discussed 
earlier. Other parameters that influence on the time it takes for the KF to converge 
are the measurement noise covariance matrix, R, and the state noise covariance 
matrix, Q.  
 

1. When Q is made 100 times smaller than the original value used, the 
predicted error covariance decreases according to Equation 3.7, and therefore 
the estimation error covariance also decreases as it depends on the predicted 
value.  

 
2. When R is made 100 times bigger than the original value used, the Kalman 

gain, K, decreases as can be seen in Equation 3.9. A small K leads to a big 
estimation error covariance according to Equation 3.11. 

 
The effects of Q and R on the estimation error covariance can be seen in Table 6.1 
and in Figure 6.14 where different values of Q and R affect the number of iterations 
before the filter converge and the final value of P. The results were obtained from a 
scene with a single object that is in a comfortable view of the cameras. 
 

Table 6.1: The value of P in mm2 depending on Q and R. 
Iteration 1 2 3 4 5 6 7 8 

Q=1 
R=0.1 1 0.09524 0.09163 0.09161 0.09161 0.09161 0.09161 0.09161

Q=0.01 
R=0.1 1 0.09099 0.05025 0.03760 0.03225 0.02970 0.02842 0.02775

Q=1 
R=10 1 0.66667 0.62500 0.61905 0.61818 0.61806 0.61804 0.61803

 
 
In Figure 6.14 the black dashed line shows the convergence of P when running the 
KF with the original values used, Q=1 and R=0.1, the blue line is the result of 
increasing R 100 times and the red line is the result from decreasing Q 100 times. 
 

 
Figure 6.14: The value of P depending on Q and R. 
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If R is increased the measurements are believed to be noisy, K becomes smaller and 
the predicted states are trusted more. The filter becomes slower to respond to the 
measurements, which results in a reduced estimate variance. On the other hand if R 
is decreased, the measurements are believed to be good, K increases and the 
measurements are trusted more. The filter responds to the measurements more 
quickly, increasing the estimation variance. 
 
R should be chosen so that the best performance is achieved in terms of balancing 
responsiveness and estimate variance. The original value of R used can be seen in 
Equation 5.2. To test the theory presented in the previous paragraph R was 
manipulated by increasing and decreasing the original value by a factor of 100. 
Figure 6.15 shows the tracking when R is 100 times greater and Figure 6.16 when R 
is 100 times smaller. The blue plus signs are the estimated states and the red dots are 
the centers of measures. As can be seen the filter is slower to believe the 
measurements in Figure 6.15 than in Figure 6.16, resulting in a smaller estimate 
variance. 
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Figure 6.15: Estimates and centers of measures when R is 100 times greater. 
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Figure 6.16: Estimates and centers of measures when R is 100 times smaller.    
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6.4 Object probability 
 
The object probability plot informs about the probability of where to find an 
obstacle in the scene at each time step. The normalized probabilities in Figure 6.17 
correspond to the measures in the xz-projection plot in Figure 6.18. As it can be seen 
in the object probability plot the probability is high in the positions where measures 
exist and zero otherwise.  
 

 
Figure 6.17: Object probability.    
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Figure 6.18: xz-projection plot.  
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7. Conclusions 
 
 
The presented results shows that the objectives presented in the beginning of the 
thesis are fulfilled. The tracking of multiple objects is done with one Kalman filter 
for each target and the PDAF associates the measurements to different tracks by 
using the Euclidean distance, a validation gate and the measure probability. 
 
Since the real background truth is unavailable the true accuracy of the tracking 
algorithm can not be obtained. But by comparing the estimated states to the manual 
background truth, it is showed that the implemented tracking algorithm is working 
correctly.  
 
The tracking algorithm is capable of tracking a varying number of multiple objects 
including different solutions to the problems that can occur.  
 

• The initiation of new tracks is working correctly; candidates are validated 
when new targets enter the scene and treated as false alarms when outliers 
appear.  

 
• The problem with occlusion is also solved correctly; the tracks are continued 

during occlusion and when a target is absent for too long its track is 
removed. 

 
• The crossing phenomenon is solved automatically by the developed Kalman 

model and the problem that arise when two objects move close to each other 
is solved by tuning of the validation gate radius. 
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Still the tracking algorithm is far from perfect and can be improved in many ways 
which is presented in the following section, future works. The accuracy of the 
tracking algorithm depends on the value of different parameters and the appearance 
of the scene. A parameter that is ideal in one situation may not work as well in 
another environment.   
 

7.1 Future Works 
 
As mentioned in the objectives, Chapter 2, it is possible to use an only estimator for 
all the objects instead of one Kalman filter for each track. This can be done by 
increase the size of the state vector so that it fits all objects. This state vector has to 
be dynamic since the number of objects is changing with time. 
 
Also, since the process is linear and the noise is assumed to be Gaussian, Kalman 
filtering is used. In other situations another tracking algorithm might have to be 
used. For example if the process or the measurement relationship to the process is 
non-linear the Kalman filter can be replaced with an extended Kalman filter, EKF. 
This filter linearizes about the current mean and covariance [1].  
 
The association algorithm can be improved by using a reassociation step. In the 
developed association algorithm, when a new track is created, only the not yet 
assigned measurements are compared to this track. This means that previously 
assigned measures may have been assigned to the wrong track. If a reassociation 
step is used, the distances from all measurements to all tracks are recalculated and if 
an already assigned measurement is closer to a new track, it is reassigned. The 
question is how many times the measures should be reassociated. The accuracy of 
the association algorithm has to be weighed against the preferred execution time. 
 
Another approach on how to solve the association is presented in [13]. Here the 
association is done using a ‘k-means’ clustering method. This segmentation 
algorithm increases the robustness of the estimation procedure in different points. 
 
The Kalman filtering can be improved by using velocity smoothing, which is 
implemented in Part II [17]. A critical factor for the prediction step of the Kalman 
filter is the velocity. The right size and direction for this is crucial for a good 
approximation. In a real environment the size and direction of the velocity can 
change rapidly, which makes the tracking more difficult. This problem can be 
reduced by smoothing the velocity. This means that instead of using the current time 
steps velocity, the velocities from the last two time steps, or more, are summarized 
and then divided by the number of summarized velocities. 
 
The parameters discussed in the algorithm ( 0,, PRQ , validation gate radius and 
limits of the validation/removal counters) could be updated dynamically depending 
on different situations. For example the values in the Q  matrix could be updated 
with change in dynamics and the validation gate radius could change with different 
sizes of objects.  
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III. USER MANUAL 
 
 
In this section all the information needed to test the tracking algorithm developed in 
this thesis is described. To execute the implemented tracking algorithm some of the 
specifications in Section IV are necessary: a PC installed with Windows XP and 
Matlab 6.5.  
  

1. Necessary files 
 
To run the Matlab implementation the following m-files are needed: 
 

• main.m 
• constants.m 
• initiate.m 
• association.m 
• kman.m 
• visualize.m 
• trans.m 

 
The input data is stored in the following .dat-files and to show the video, the 
corresponding .str-files are necessary: 
 

• data001.dat, left001.str 
• data004.dat, left004.str 
• data009.dat, left009.str 
• data010.dat, left010.str 
• data041.dat, left041.str 
• data061.dat, left061.str 
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2. How to execute the program 
 
The following steps explain how to execute the program. All the files in the previous 
chapter should be saved in the same folder. 
 

1. Open Matlab 6.5 
 

2. In the field “Current Directory” choose the folder that contains the files. 
 

3. Choose file>>open, and open the main.m file 
 

4. To execute the program choose “Run” or press F5. 
 

3. How to set/change the parameters 
 
To set or change the following parameters locate the desired parameter in its 
corresponding file: 
 

• The input files can be changed in the main.m file by changing the .dat and 
.str file that is read by fopen. 

 
• The speed of the program can be slowed down by changing the parameter 

pause() in main.m 
 

• The Kalman prediction and correction matrices can be found in constants.m. 
The matrices G and H are represented by A and B, and the matrix C by H. 

 
• The process noise matrix can be adjusted in constants.m by changing the Q 

and the measurement noise matrix can be adjusted in kman.m by changing 
the R.  

 
• The initial value of the estimation error covariance matrix P0 can be changed 

by manipulating P_corrected in initiate.m. 
 

• The time steps counted by the validation and removal counters are set by 
VAL and DEL in constants.m. 

 
• The size of the validation gate is determined by the parameter RADIUS in 

constants.m. 
 

4. Monitoring 
 
The outputs are plotted in Figure No.1 that contains both the video image and the 
2D projection plot. The object probability is plotted in Figure No.2. The number of 
objects and the number of candidates for validation and removal are shown at the 
bottom of the projection plot in Figure No.1.  
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5. Definitions of the functions 
 

 
%========================================================================== 
%   MAIN.M - TRACKING OF MULTIPLE OBJECTS  
% 
%   function [] = main() 
% 
%   global FILE_SIZE DEL 
% 
%   Tracking multiple objects in a scene using Kalman filters and a  
%   probabilistic data association filter. 
% 
%   GLOBAL PARAMETERS 
%   FILE_SIZE:          Contains the size of the input video image (width&height) 
%   DEL:                Number of time steps for the removal counter 
%========================================================================== 
 
 
 
%========================================================================== 
%   CONSTANTS.M - DEFINING CONSTANTS  
% 
%   function [] = constants() 
% 
%   Defining global constants: 
%   Kalman matrixes, coordinate transformation parameters,     
%   image parameters, axis coordinates, colors of the tracks, 
%   validation and removal counting time 
%========================================================================== 
 
 
 
%========================================================================== 
%   INITIATE.M - INITIATE TRACKS AND PREDICT STATE 
% 
%   function [initialized, state_corrected, state_predicted, P_predicted, 
FLAG_empty,... 
%   FLAG_new, length_, probability, y] = initiate(data, ym, length_) 
% 
%   global A B Q RADIUS; 
% 
%   Initiate tracks from measures. The first measure is defined as a candidate  
%   track. For the rest of the measures the distances to the existing     
%   candidate tracks are computed. If the distance is bigger than the      
%   validation gate, RADIUS, a new candidate track is created, otherwise 
%   the measure is assigned to the closest candidate. 
% 
%   Then the state is predicted. 
% 
% 
%   GLOBAL PARAMETERS: 
%   A, B:               Kalman matrixes to predict the state 
%   Q:                  Process noise matrix 
%   RADIUS:             Validation gate radius 
%    
%   INPUT AND OUTPUT PARAMETERS: 
%   initialized:        Flag for telling if tracks have to be initiated 
%   state_corrected:    Array of corrected states (x and z) 
%   state_predicted:    Array of predicted states (x and z) 
%   P_predicted:        The predicted estimation error covariance matrix 
%   FLAG_empty:         Removal counter 
%   FLAG_new:           Validation counter 
%   length_:            Length of array with xz-states 
%   probability:        Each measures probability based on the distance 
%   y:                  Mean of the y-coordinates associated to each target 
%   data:               Containes the input x and z coordinates of the measures 
%   ym:                 Contains the input y coordinates of the measures 
%========================================================================== 
 
 
 
%========================================================================== 
%   ASSOCIATION.M - ASSOCIATION ALGORITHM  
% 
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%   function [centers_measures, length_, n_objects, state_predicted, FLAG_empty,  
%   FLAG_new, probability, y, v] =association(data,state_predicted, length_,  
%   n_objects, FLAG_empty, FLAG_new, c3) 
% 
%   global RADIUS DEL VAL 
% 
%   Association of measures to tracks. The distance to each existing track 
%   is calculated. If it is bigger than the validation gate, RADIUS, a new 
%   track is created, otherwise it is assigned to the closest track. 
%   
%   After association, validation and removal counters are checked and the  
%   innovation and centers of measures are calculated. 
% 
% 
%   GLOBAL PARAMETERS: 
%   RADIUS:             Validation gate radius 
%   DEL:                Number of time steps for the removal counter 
%   VAL:                Number of time steps for the validation counter 
% 
%   INPUT AND OUTPUT PARAMETERS: 
%   centers_measures:   Mean of each track's associated measures 
%   length_:            Length of array with xz-states 
%   n_objects:          Number of tracks 
%   state_predicted:    Array of predicted states (x and z) 
%   FLAG_empty:         Removal counter 
%   FLAG_new:           Validation counter 
%   probability:        Each measures probability based on the distance 
%   y:                  Mean of the y-coordinates associated to each target 
%   v:                  Combined innovation 
%   data:               Containes the input x and z coordinates of the measures 
%   c3:                 Contains the input y coordinates of the measures 
%========================================================================== 
 
 
 
%========================================================================== 
%   KMAN.M - KALMAN FILTERING  
% 
%   function [state_predicted, P_predicted, state_corrected,P_corrected] = 
%   kman(centers_measures, state_predicted, P_predicted,   
length_,state_corrected_old,v) 
% 
%   global A B H Q T; 
% 
%   One Kalman filter is used for each target to track. The correction of the   
%   states is done first, then the velocities are updated and finally the   
%   states of the next time step is predicted.   
%    
% 
%   GLOBAL PARAMETERS: 
%   A, B, H:            Kalman matrixes to estimate the state 
%   Q:                  Process noise matrix 
%   T:                  Sample time 
%    
%   INPUT AND OUTPUT PARAMETERS: 
%   state_predicted:    Array of predicted states (x and z) 
%   P_predicted:        The predicted estimation error covariance matrix 
%   state_corrected:    Array of corrected states  (x and z) 
%   P_corrected:        The corrected estimation error covariance matrix 
%   centers_measures:   Mean of each track's associated measures 
%   length_:            Length of array with xz-states 
%   state_corrected_old:Array of corrected states from previous time step 
%   v:                  Combined innovation 
%========================================================================== 
 
 
 
%========================================================================== 
%   VISUALIZE.M - PLOTS THE MEASURES, TRACKS AND OBJECT PROBABILITY  
% 
%   function [] = visualize(data, state_corrected, FLAG_empty, FLAG_new, length_, 
% probability, n_objects) 
% 
%   global X_MIN X_MAX Z_MIN Z_MAX Y_MIN Y_MAX COLORS RADIUS DEL; 
% 
%   Plotting of the measures and the circles of the corrected states in the  
%   projection plane. The number of candidates for validation or removal 
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%   are calculated and displayed in the same plot together with the actual 
%   number of tracks. Another plot shows the normalized probability of 
%   finding an object in the scene. 
%     
%    
%   GLOBAL PARAMETERS: 
%   X_MIN, X_MAX:       Size of x-axis 
%   Z_MIN Z_MAX:        Size of z-axis 
%   Y_MIN Y_MAX:        Size of y-axis 
%   COLORS:             Colors of circles 
%   RADIUS:             Validation gate radius 
%   DEL:                Number of time steps for the removal counter 
%    
%   INPUT PARAMETERS: 
%   data:               Containes the input x and z coordinates of the measures 
%   state_corrected:    Array of corrected states  (x and z) 
%   FLAG_empty:         Removal counter 
%   FLAG_new:           Validation counter 
%   length_:            Length of array with xz-states 
%   probability:        Each measures probability based on the distance 
%   n_objects           Number of tracks 
%========================================================================== 
 
 
 
%========================================================================== 
%   TRANSF.M - TRANSFORMATION FROM CARTESIAN COORDINATES TO IMAGE COORDINATES  
% 
%   function transf(c, I, state_corrected, length, FLAG_empty, FLAG_new, hight) 
% 
%   global FXL FYL U0L V0L TRAS_Y ROTATION_SCC RADIUS 
% 
%   Shows the video and transforms the measures into image coordinates. The    
%   rectangles that represents the tracks are calculated and then transformed.  
%   Then the measures and rectangles are plotted in the video image. 
%      
%    
%   GLOBAL PARAMETERS: 
%   FXL, FYL, U0L, V0L: Intrinsic transformation parameters                 
%   TRAS_Y:             Extrinsic translation matrix              
%   ROTATION_SCC:       Extrinsic rotation matrix                   
%   RADIUS:             Validation gate radius 
%    
%   INPUT PARAMETERS: 
%   c                   Input measures 
%   I                   Input video image 
%   state_corrected:    Array of corrected states  (x and z) 
%   length:             Length of array with xz-states 
%   FLAG_empty:         Removal counter 
%   FLAG_new:           Validation counter 
%   hight:              Means of the y-coordinates 
%========================================================================== 
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IV. SPECIFICATIONS 
 
 
In this section the hardware and software used for the implementation and 
simulations presented in this project are presented. 
 

1. Hardware 
 

• Packard Bell Notebook 
 

Microprocessor AMD Turion 64  
Speed   1,58 GHz 
RAM   896 MB RAM 

   Disk   80 Gb 
   Monitor  17” LCD 

 
• Printer Xerox Document Center 340 
 

Printer type  Laser 
Speed   40 ppm 
Resolution  600 dpi 
Communications Standard TCP/IP 

 



TRACKING MULTIPLE OBJECTS WITH KALMAN FILTERS – PART I 

Johanna Broddfelt SPECIFICATIONS 62 

2. Software 
 

• Operating Systems 
Windows XP Professional Version 2002, SP2   

 
• Office 2003 (English) 

Microsoft Office Professional Edition 2003, version 
11.5604.5606. 
 

• Matlab 
Matlab 6.5.0.180913a, Release 13 

 
• Antivirus Systems 

Panda Titanium Antivirus 2005, version 4.02.01. 
Norton Antivirus 2005, version 11.0.11.4 
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V. PROGRAM CODE 
 
 

1. main.m 
 
 
function [] = main(file) 
clear all; 
tic; 
 
%CALL FUNCTION TO DEFINE CONSTANTS 
constants; 
 
global FILE_SIZE DEL; 
 
 
%===========================INITIALIZATION================================= 
%Number of objects. 
n_objects=0; 
length_=0; 
%flag for telling if initial objects have been found in empty scen 
initialized=0; 
%frame number 
frame=1; 
 
 
%==========================OPEN FILE TO READ=============================== 
 
pf=fopen('left004.str'); 
fid=fopen('data004.dat'); 
ne=fread(fid,1,'int32'); 
 
while isempty(ne)==0 && feof(pf)==0, 
    I=fread(pf,FILE_SIZE); 
    c=fread(fid,[3 ne],'float32'); 
    data=c(1:2,:)'; 
     
 
 
 
    %====================================================================== 
    %   IF EMPTY SCENE FIND OBJECTS & PREDICT FIRST POSITION 
    %====================================================================== 
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    %if frame contains measurements and no object has been found yet 
    if ne~=0 && initialized==0; 
         
        [initialized, state_corrected, state_predicted, P_predicted, FLAG_empty,... 
                FLAG_new, length_, probability, y]=initiate(data, c(3,:), length_); 
 
 
    %====================================================================== 
    %   ASSOCIATION & KALMAN FILTERING  
    %====================================================================== 
 
    else 
        if initialized==1 
            y_old=y; 
             
 
            %===================ASSOCIATION FUNCTION======================= 
 
            [centers_measures, length_, n_objects, state_predicted,... 
                    FLAG_empty, FLAG_new, probability, y, v] =... 
                association(data, state_predicted, length_, n_objects,... 
                    FLAG_empty, FLAG_new, c(3,:)); 
             
            n=1; 
            for m=1:2:2*length_ 
                if FLAG_new(n)==2 && FLAG_empty(n)==0 
                    state_corrected(1,m:(m+1))=centers_measures(1,m:(m+1)); 
                end 
                n=n+1;    
            end 
   
 
            %=====================KALMAN FUNCTION========================== 
            if length_ ~=0 
                [state_predicted,P_predicted,state_corrected, P_corrected]=... 
                    kman(centers_measures, state_predicted,P_predicted,length_,... 
                    state_corrected,v); 
            end 
             
            for i=1:size(FLAG_empty,2) 
                if FLAG_empty(i)<DEL && FLAG_empty(i)~=0 
                    y(i)=y_old(i); 
                end 
            end 
        end 
 
    end 
 
 
    %======IF SCENE EMPY THEN CLEAR & NEXT ITER FIND OBJECTS IN SCENE======== 
 
      if n_objects==0 && length_==0 
        clear state_corrected; 
        clear dist_to_obj; 
        clear state_predicted; 
        P_predicted=1*eye(2); 
        initialized=0; 
    else 
         
 
        %====================================================================== 
        %   VISUALIZATION OF DATA 
        %====================================================================== 
 
        visualize(data, state_corrected, FLAG_empty, FLAG_new, length_, ... 
            probability, n_objects); 
         
        transf(c, I, state_corrected, length_, FLAG_empty, ... 
            FLAG_new, y);    
    end 
 
     
     pause(0.05);     
%    MAKE MOVIE 
%    film_mov(frame) = getframe; 
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    %UPDATE FRAME 
    frame=frame+1; 
    ne=fread(fid,1,'int32'); 
end; 
 
%create an avi movie that is saved in the current map 
% movie2avi(film_mov, 'video010');  
 
fclose(fid); 
fclose(pf); 
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2. constants.m 
 
 
function [] = constants() 
 
%================DEFINITION OF CONSTANTS========================= 
 
%KALMAN PARAMETRS 
global A B H Q; 
A=eye(2); 
B=eye(2); 
H=eye(2); 
Q=1*eye(2); 
 
%TIME 
global T; 
T=0.066; 
 
%IMAGE PARAMETERS 
global WIDTH HIGHT FILE_SIZE; 
WIDTH=320; 
HIGHT=240; 
FILE_SIZE=[WIDTH HIGHT]; 
 
%INTRINSIC PARAMETERS, LEFT CAMERA 
global FXL FYL U0L V0L; 
FXL = 430.79014; FYL = 431.72027; 
U0L = 151.26555; V0L = 117.03242; 
 
%CAMERA ROTATION ANGLES 
alpha = 0.94972*3.14159/180; 
beta = 0.019508; 
phi = -0.014053; 
 
%TRANSLATION OF Y-AXIS 
global TRAS_Y; 
TRAS_Y=970; 
 
%ROTATION MATRIX 
global ROTATION_SCC; 
ROTATION_SCC=... 
        [cos(beta)*cos(phi) -cos(beta)*sin(phi) sin(beta);... 
        sin(alpha)*sin(beta)*cos(phi)+cos(alpha)*sin(phi)... 
        sin(alpha)*sin(beta)*sin(phi)+cos(alpha)*cos(phi)... 
        -sin(alpha)*cos(beta);... 
        -cos(alpha)*sin(beta)*cos(phi)+sin(alpha)*sin(phi)... 
        cos(alpha)*sin(beta)*sin(phi)+sin(alpha)*cos(phi)... 
        cos(alpha)*cos(beta)]; 
 
%AXIS COORDINATES 
global X_MIN X_MAX Z_MIN Z_MAX Y_MIN Y_MAX; 
X_MIN = -8000;  
X_MAX = 8000; 
Z_MIN = 500;  
Z_MAX = 20500; 
Y_MIN = 100;  
Y_MAX = 2100; 
 
%DEF FOR THE OBJECTS 
global COLORS RADIUS DEL VAL; 
COLORS = {'g' 'b' 'c' 'm' 'k' 'y' 'g' 'b' 'c' 'm' 'k' 'y'}; 
RADIUS=800; 
DEL=10;  
VAL=4; 
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3. initiate.m 
 
 
function [initialized, state_corrected, state_predicted, P_predicted, FLAG_empty,... 
        FLAG_new, length_, probability, y] = initiate(data, ym, length_) 
 
global A B Q RADIUS; 
   
    length_ = length_ + 1;     
     
    %save the measure's position as object center 
    centers(length_:length_+1) = data(1,:);  
     
    %data_org contains the measures associated to each object 
    for m = [1:length_]   
        data_organized{m} = []; 
        y_org{m}=[]; 
    end  
  
     
    %====================================================================== 
    %   ASSIGNMENT 
    %====================================================================== 
     
    for m = [1:size(data,1)]     
         
        %calculate the distance from each measure to each object 
        n=1; 
        for i = [1:2:2*length_]    
            dist_to_obj(:,n) =... 
                sqrt((data(:,1)-centers(:,i)).^2 +...  
                (data(:,2)-centers(:,i+1)).^2); 
            n=n+1; 
        end 
         
        %find the shortest distance 
        minimum = min(dist_to_obj(m,:));   
        %find the column that contains the shortest distance 
        column = find(dist_to_obj(m,:) == minimum);  
        probability(m,1)=exp(-dist_to_obj(m,column)/1000); 
         
         
        %===============ADD MEASURE TO EXISTING OBJECT================= 
        if dist_to_obj(m,column)<RADIUS    
            data_organized{column} = [data_organized{column};... 
                    data(m,:) dist_to_obj(m,column)]; 
            y_org{column} = [y_org{column}; ym(m)]; 
            centers(1,2*column-1:2*column) =... 
                mean(data_organized{column}(:,1:2),1); 
             
        %==================DEFINE MEASURE AS NEW OBJECT================ 
        else    %otherwise define new object 
            length_ = length_ + 1;             
            %saves the measure's position as object center 
            centers(2*length_-1:2*length_) = data(m,:);      
            data_organized{length_} = [data(m,:) dist_to_obj(m,column)]; 
            y_org{length_} = ym(m); 
        end 
    end 
     
    %calculate mean of y-coordinates assigned to each object 
    for n=1:length_ 
            y(n)=mean(y_org{n}); 
    end 
     
     
    %========================INITIALIZATION================================ 
     
    velocities=zeros(2,length_); %initial velocities is set to zero 
    state_corrected=centers; 
    initialized=1; %init obj has been found >> go to Kalman filtering 
    FLAG_empty=zeros(1, length_); %flag that inicates if remove obj 
    FLAG_new=2*ones(1,length_); %flag that indicates if obj validated 
    P_corrected=1*eye(2); %initial error_cov 
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    %====================================================================== 
    %   PREDICTION t=0 
    %====================================================================== 
     
    n=1; 
    for m=1:2:2*length_ 
        X_corrected(1,1)=state_corrected(m); 
        X_corrected(2,1)=state_corrected(m+1); 
        V=velocities(:,n); 
         
        X_predicted=A*[X_corrected]+B*V; 
        P_predicted=A*P_corrected*A'+Q; 
         
        state_predicted(m) = X_predicted(1,1); 
        state_predicted(m+1) = X_predicted(2,1); 
        n=n+1; 
    end 
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4. association.m 
 
 
function [centers_measures, length_, n_objects, state_predicted, FLAG_empty, 
FLAG_new, probability, y, v] =... 
    association(data,state_predicted, length_, n_objects, FLAG_empty, FLAG_new, c3) 
 
global RADIUS DEL VAL 
 
 
%========================================================================== 
%   CALCULATION OF DISTANCE 
%========================================================================== 
 
for m = [1:length_] 
    data_organized{m} = []; 
    y_org{m}=[]; 
end 
probability=[]; 
y=[]; 
 
if isempty(data)==0 
     
    n=1; 
    for m = [1:2:2*length_] 
        distance(:,n) =... 
            sqrt((data(:,1)-state_predicted(:,m)).^2 +... 
            (data(:,2)-state_predicted(:,m+1)).^2); 
        n=n+1; 
    end 
     
     
    %====================================================================== 
    %   ASSIGNMENT 
    %======================================================================   
     
     
    for m = [1:size(data,1)] 
         
        %finds the shortest distance 
        minimum = min(distance(m,:));  
        %finds the column that contains the shortest distance 
        column =find(distance(m,:) == minimum); 
        %calculates the probability that a measure belongs to a certain object 
        probability(m,1)=exp(-distance(m,column)/1000); 
             
         
        %==============ADD MEASURE TO EXISTING OBJECT========================== 
        %if distance is close to an existing object then associate 
        if distance(m,column)<RADIUS 
            data_organized{column} = [data_organized{column}; data(m,:)... 
                    distance(m,column)/1000]; 
            y_org{column} = [y_org{column}; c3(m)]; 
            %if objects was created in this iteration calc new mean & distance 
            if FLAG_new(column)==1  
                state_predicted(2*column-1:2*column)=... 
                    mean(data_organized{column}(:,1:2),1); 
                distance(:,column)=sqrt((data(:,1)-state_predicted(:,2*column-1)).^2 
+... 
                    (data(:,2)-state_predicted(:,2*column)).^2); 
            end 
         
             
        %==================DEFINE MEASURE AS NEW OBJECT==========================     
        else     
            %find empty place "i" in "data_organized" 
            i=1; 
            while FLAG_empty(i)<DEL 
                i=i+1; 
                if i>length_ break 
                end 
            end 
             
            data_organized{i}=[]; 
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            data_organized{i}=[data(m,:) distance(m,column)/1000]; 
            y_org{i}=[]; 
            y_org{i} = [c3(m)]; 
            FLAG_new(i)=1; 
            FLAG_empty(i)=0; 
            state_predicted(2*i-1:2*i)=data(m,:); 
            %if data placed in new element in data_organized then increase length_ 
            %if data placed in existing empty place, keep length_ 
            if i>length_ 
                length_ = length_ + 1; 
            end 
            distance(:,i) =sqrt((data(:,1)-data(m,1)).^2 + (data(:,2)-
data(m,2)).^2); 
        end  
    end 
     
end 
 
 
%========================================================================== 
%   CALCULATE CENTERS OF ORGANIZED DATA & INNOVATION  
%   & VALIDATE or REMOVE OBJECTS 
%========================================================================== 
 
n=1; 
for m = [1:2:2*length_] 
     
    %IF NO MEASURES ASSOCIATED WITH OBJECT 
    if isempty(data_organized{n})==1 
        if FLAG_empty(n)<(DEL+1) 
            FLAG_empty(n)=FLAG_empty(n)+1; 
        end 
         
        %decrease number of objects (only if validated & gone for 10 frames) 
        if FLAG_empty(n)==DEL 
            if FLAG_new(n)==0 
                n_objects=n_objects-1; 
            end 
            data_organized{n}=[]; 
            state_predicted(1,m:m+1)=[0 0]; 
            FLAG_new(n)=0; 
        end     
         
        centers_measures(1,m:(m+1)) = state_predicted(1,m:(m+1)); 
        v(1:2,n)=[0;0]; %no measures, gives probability=0, innovation=0 
         
         
    %IF MEASURES ASSOCIATED WITH OBJECT     
    else %calc center of measures 
        centers_measures(1,m:(m+1)) = mean(data_organized{n}(:,1:2),1); 
        y(n)=mean(y_org{n}); 
        FLAG_empty(n)=0; 
         
        %if candidate for 4 frames then validate and inc. no objects 
        if FLAG_new(n)==VAL 
            n_objects = n_objects + 1; 
            FLAG_new(n)=0; 
        end 
         
        %keeps track on the number of frames present but not valid 
        if FLAG_new(n)~=0 
            FLAG_new(n)=FLAG_new(n)+1; 
        end 
         
        %combined innovation 
        data_organized{n}(:,3)=normpdf((data_organized{n}(:,3)),0,1)/... 
            (sum(normpdf((data_organized{n}(:,3)),0,1))); 
        for m=1:length(data_organized{n}(:,3)) 
            v_m(1,m)=data_organized{n}(m,3)*... 
                (data_organized{n}(m,1)-state_predicted(2*n-1)); 
            v_m(2,m)=data_organized{n}(m,3)*... 
                (data_organized{n}(m,2)-state_predicted(2*n)); 
        end 
         
        v(1:2,n)=[sum(v_m(1,:));sum(v_m(2,:))]; 
    end 
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    n = n + 1; 
end 
 
 
%decrease length_ if object at the end hasn't existed last 10 iterations 
for i=length_:-1:1 
    if FLAG_empty(i)>=DEL && i==length_ 
        length_=length_-1; 
        FLAG_empty=FLAG_empty(1:i-1); 
        FLAG_new=FLAG_new(1:i-1); 
    end 
end 
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5. kman.m 
 
 
function [state_predicted, P_predicted, state_corrected, P_corrected] =... 
   kman(centers_measures, state_predicted, P_predicted, length_, 
state_corrected_old, v) 
 
global A B H Q T; 
 
 
%========================================================================== 
%   CORRECTION 
%========================================================================== 
n=1; 
% P_corrected=1*eye(2); 
for m=1:2:2*(length_) 
        X_predicted(1,1)=state_predicted(m); 
        X_predicted(2,1)=state_predicted(m+1); 
        R=0.1*eye(2); 
         
        K=P_predicted*H'/(H*P_predicted*H'+R); 
        X_corrected = X_predicted + K*v(:,n); 
        P_corrected=(eye(2)-K*H)*P_predicted; 
        state_corrected(m) = X_corrected(1,1); 
        state_corrected(m+1) = X_corrected(2,1); 
        n=n+1; 
end 
 
 
%========================================================================== 
%   UPDATE VELOCITIES 
%========================================================================== 
velocities_x=[]; velocities_z=[]; velocities=[]; 
 
n=1; 
t=toc; 
while t<0.066 
         t=toc; 
end 
for m=1:2:2*length_ 
            velocities_x(n)= (centers_measures(m)-state_corrected_old(m))/t; 
            velocities_z(n)= (centers_measures(m+1)-state_corrected_old(m+1))/t; 
            velocities=[velocities_x; velocities_z]; 
            n=n+1;      
end          
tic; 
 
%========================================================================== 
%   PREDICTION 
%========================================================================== 
clear state_predicted; 
clear P_predicted; 
 
n=1; 
for m=1:2:2*length_ 
    X_corrected(1,1)=state_corrected(m); 
    X_corrected(2,1)=state_corrected(m+1); 
    V=velocities(:,n); 
     
    X_predicted=A*[X_corrected]+B*V*T; 
    P_predicted=A*P_corrected*A'+Q; 
    state_predicted(m) = X_predicted(1,1); 
    state_predicted(m+1) = X_predicted(2,1); 
    n=n+1; 
end 
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6. visualize.m 
 
 
function [] = visualize(data, state_corrected, FLAG_empty, FLAG_new, length_, 
probability, n_objects) 
 
global X_MIN X_MAX Z_MIN Z_MAX Y_MIN Y_MAX COLORS RADIUS DEL; 
 
 
%============================CANDIDATES==================================== 
can_in=0; 
can_out=0; 
 
for i=1:length_ 
    if FLAG_new(i)~=0 && FLAG_empty(i)==0 
        can_in=can_in+1; 
    end 
    if FLAG_empty(i)>0 && FLAG_empty(i)<DEL && FLAG_new(i)==0 
        can_out=can_out+1; 
    end 
end 
str=sprintf('n_ocan in=%d   n_oobjects=%d   n_ocan out=%d',... 
    can_in, n_objects,  can_out); 
 
 
 
%========================================================================= 
%   2D-PLOT 
%========================================================================== 
 
%============PLOT THE MEASURES============== 
figure(1); 
clf(1); 
subplot('position',[0.12 0.03 0.84 0.47]) 
plot(data(:,1),data(:,2),'r*'); 
axis([X_MIN X_MAX Z_MIN Z_MAX]); 
xlabel('x'); ylabel('z'); 
title('Tracking objects 2D'); 
grid; 
hold on 
 
%===========PLOT THE CIRCLES================ 
k = 1; 
theta = linspace(0,2*pi,100);  
for m = [1:2:2*length_] 
    if (state_corrected(m)&&state_corrected(m+1))~=0 &&... 
            FLAG_empty(k)<DEL && FLAG_new(k)==0 
        x = RADIUS*cos(theta)+state_corrected(m);   % generate x-coordinate 
        z = RADIUS*sin(theta)+state_corrected(m+1); % generate y-coordinate 
        plot(x,z, COLORS{k}); 
        number=sprintf('%d',(m+1)/2); 
        text(state_corrected(m)+400,state_corrected(m+1)+400,number); 
    end 
    k = k + 1; 
end 
 
 
%========================================================================== 
%   PROBABILITY PLOT 
%========================================================================== 
 
[hx,vx]=hist(data(:,1),50); 
[hz,vz]=hist(data(:,2),50); 
 
if ~isempty(data) 
    figure(2); 
    clf(2); 
    vz(1)=min(data(:,2)); vz(end)=max(data(:,2)); vz(end+1)=Inf; 
    vx(1)=min(data(:,1)); vx(end)=max(data(:,1)); vx(end+1)=Inf; 
    density=zeros(50,50); 
    resta=[]; 
    for i=1:50  
        indexx=find((data(:,1)>=vx(i))&(data(:,1)<min([vx(i+1) max(vx)]))); 
        if ~isempty(indexx) 
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            for j=1:length(indexx) 
                resta=abs(vz-data(indexx(j),2)); 
                [foo,indexz]=min(resta); 
                density(i,indexz)=density(i,indexz)+probability(indexx(j));  
            end; 
        end; 
    end; 
    foo=max(max(density)); 
    if foo~=0 
        density=density/foo; 
        surf(vx(1:end-1), vz(1:end-1), density'); 
        xlabel('x'); ylabel('z'); zlabel('probability');  
        title('3D a posterior normalized probability of obstacle') 
        hold on; 
        plot3(0,0,0,'r*'); 
        view([-10 30]); 
        axis([X_MIN,X_MAX,Z_MIN,Z_MAX,0,1]); 
        hold off; 
    else 
        disp('w total is zero'); 
    end; 
end 
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7. transf.m 
 
function transf(c, I, state_corrected, length, FLAG_empty, FLAG_new, hight) 
 
global FXL FYL U0L V0L TRAS_Y ROTATION_SCC RADIUS  
 
 
y=TRAS_Y-c(3,:); 
c(3,:)=c(2,:); 
c(2,:)=y; 
 
%==================SHOW THE FILM===================== 
figure(1); 
subplot('position',[0.12 0.5 0.84 0.5]) 
imshow(uint8((I'))); 
hold on; 
 
 
%==============TRANSFORM THE MEASURES================ 
SCCmatr=ROTATION_SCC*c; 
U=round(FXL*(SCCmatr(1,:)./SCCmatr(3,:)) + U0L); 
V=round(FYL*(SCCmatr(2,:)./SCCmatr(3,:)) + V0L); 
 
%===============PLOT THE MEASURES==================== 
plot(U,V,'r*'); 
axis([0 320 0 240]); 
title('Tracking objects 3D'); 
 
 
%========CREATE THE CORNERS OF THE RECTANGLES======== 
n=1; 
for m=1:2:2*length 
    rect1(1,n) = state_corrected(m)-RADIUS/2; 
            rect2(1,n) = state_corrected(m)+RADIUS/2; 
    rect1(3,n) = state_corrected(m+1)-RADIUS/2; 
            rect2(3,n) = state_corrected(m+1)+RADIUS/2; 
    rect1(2,n) = -hight(n); 
            rect2(2,n) = 2*TRAS_Y-hight(n); 
    n=n+1; 
end 
 
%=========TRANSFORM THE CORNERS OF THE RECTANGLES==== 
SCC_mean=ROTATION_SCC*rect1; 
U_mean=round(FXL*(SCC_mean(1,:)./SCC_mean(3,:)) +U0L); 
V_mean=240-round(FYL*(SCC_mean(2,:)./SCC_mean(3,:)) +V0L); 
 
SCC_1=ROTATION_SCC*rect1; 
U1=round(FXL*(SCC_1(1,:)./SCC_1(3,:)) +U0L); 
V1=round(FYL*(SCC_1(2,:)./SCC_1(3,:)) +V0L); 
 
SCC_2=ROTATION_SCC*rect2; 
U2=round(FXL*(SCC_2(1,:)./SCC_2(3,:)) +U0L); 
V2=round(FYL*(SCC_2(2,:)./SCC_2(3,:)) +V0L); 
 
U_width=U2-U1; 
V_width=V1-V2; 
 
%==============PLOT THE RECTANGLES=================== 
n=1; 
for m=1:2:2*length 
    if (state_corrected(m)&&state_corrected(m+1))~=0 && FLAG_empty(n)<10 && 
FLAG_new(n)==0 
        rectangle('Position',[U1(n),V1(n),abs(U_width(n)),abs(V_width(n))]) 
        number=sprintf('%d',(m+1)/2); 
        text(U2(n)-10,V1(n)+10,number); 
    end 
    n=n+1; 
end 
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VI. BUDGET 
 
In this section different costs for the project are described and summed together. 
 
 

1. Cost for laboratory equipment   
 

Items Quantity Total 

PC 1 920 € 

Matlab 6.5 1 600 € 

Windows XP 1 200 € 

Microsoft Office 1 400 € 

Printer 1 100 € 

Office Material - 50 € 

 
 

 

Total cost for laboratory equipment…………….: 2270.00 € 
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2. Cost for manual work 
 

Function Number of hours €/h Total 

Engineering 800 60.00 48000 € 

Writing 100 12.00 1200 € 

 

 
 

3. Total cost for project implementation 
 

Concept Total 

Cost for laboratory equipment 2270.00 € 

Cost for manual work 49200.00 € 

 

 
 

4. Industrial benefit 
 
For industrial benefits, 20 % of the total cost for project implementation is applied. 
 

 
 

5. Budget for fulfillment of the contract 
 

Concept Total 

Cost for project implementation 51470.00 € 

Cost for industrial benefits 10294.00 € 

 

Total cost for manual work……………………….: 49200 € 

Total cost for project implementation……………………….: 51470.00 € 

Total cost of industrial benefits……………………….: 10294.00 € 
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6. Writing honorary 
 
For the writing honorary you calculate 7% of the total cost for project 
implementation. 

 
 

7. Total amount of the budget 
 

Concept Total 

Cost of project 61764.00 € 

Writing honorary 3602.90 € 

Total 65366.90 € 

16% of VAT 10458.70 € 

 

 
 
 

Total cost for fulfillment of the contract…………………….: 61764.00 € 

Writing honorary……………………….: 3602.90 € 

TOTAL AMOUNT……………………….: 75825.60 € 
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