
  

  

 
Abstract—This paper reports a local positioning systems for 

mobile robots based on merging the information from the 
internal odometer sensor of the mobile robot and the 
measurements from a set of external ultrasonic beacons. The 
cumulative errors of the odometer localization are corrected by 
using the positioning data obtained with an ultrasonic local 
positioning system (ULPS). It consists of four beacons placed at 
known positions of the ceiling, all of them emitting periodically 
and simultaneously. To avoid interferences among the 
simultaneous emissions, Direct Sequence Code Division 
Multiple Access (DS-CDMA) techniques have been used. The 
arrival instant from each beacon emission is detected by a 
mobile robot, which obtains its position by hyperbolic 
trilateration. Then, a Bayesian localization technique 
(implemented by a particle filter) is used to merge these 
measurements with those obtained with the odometer and 
produce a better estimation of the robot’s position. 

  

I. INTRODUCTION 

Indoor local positioning of objects and people is required 
on in-building context-aware applications [1]. From the 
different possibilities, Ultrasonic Local Positioning Systems 
(ULPS) provide high accuracy (with errors below the 
centimeter in some cases) at close ranges and allow the use of 
low cost sensors [1-4]. Nevertheless there are still many 
factors that influence the performance of those ULPS: 
frequency response and bandwidth of the transducers, 
characteristics of the multiple access method employed to 
emit the ultrasonic signals, multipath propagation, near-far 
effect, non-line of sight paths, etc. [5]. To mitigate these 
effects, this work proposes the fusion by means of Bayesian 
techniques of the positioning data coming from the ULPS and 
the  inner odometer sensor of the robot. 

The internal odometer of the robot allows estimating the 
position and orientation of the robot by integrating the 
number of left and right driving wheel rotations. These low 
cost sensors suffer from cumulative errors, so they are usually 
used together with an absolute positioning technique, such as 
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an ULPS. By fusing the odometry with the ULPS location 
data the uncertainties and errors due to wheel slippage, the 
encoder pulse counting or due to small obstructions on the 
floor can be significantly reduced [6]. Thus, it is possible to 
obtain a better estimation of the position, without increasing 
the system cost.  

Bayesian methods can be used to merge the information 
from the ULPS with that coming from the odometer [7]. 
These methods use statistical distributions to estimate the 
position from the mobile robot from a set of numerous 
measurements, dealing with the uncertainty associated to real 
measurements and allowing to incorporate the a priori 
knowledge of the system.  From the different implementation 
options (Kalman filters, multiypothesis tracking, the grid-
based approach, etc. [8]), the particle filter is an efficient 
technique which reduces the computation requirements by 
focusing in the area with higher position probability. 

This work uses a particle filter for fusing the odometry and 
the measurements of a Code Division Multiple Access 
(CDMA) based ULPS. The rest of the paper is organized as 
follows: Section II describes the ULPS. Section III introduces 
some details about the measurements performed by the ULPS 
and the odometer sensor. Section IV presents a basic 
framework of Bayesian localization methods and particle 
filters. Section V deals with the particle filter implementation. 
Simulated and real experiments are shown in Section VI. 
Finally, conclusions are discussed in Section VII.  

II. ARQUITECTURE OF THE ULPS 

Fig. 1 is a photograph of the ULPS used for the real tests. 
It has four beacons (B1 to B4- note that the one in the middle 
is not used) oriented downward and placed at known 
positions in the ceiling of a rectangular room, with a height of 
3.45 m and into a 0.67 m x 0.75 m surface. The beacons are 
hardware synchronized and together cover an area of 20m2 
over the floor. CDMA techniques based on complementary 
sets of sequences (CSS) [9] have been used to achieve 
multiuser access and increase the robustness to noise and 
precision in the distance measurements. Thus, each beacon is 
assigned a different complementary set, uncorrelated with 
those assigned to the others beacons. All the beacons emit 
simultaneously and periodically their corresponding sets. 

Inside the operating area, a mobile robot correlates the 
received signal with the complementary codes that identify 
the beacons to obtain the arrival instant of each one of the 
emissions. Then, computes the difference in times of arrival 
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among a reference beacon and the others to obtain its position 
by hyperbolic trilateration. That avoids the use of additional 
hardware, such as radiofrequency or infrared signals to 
synchronize emitters and receivers. 

At the emission stage, the transducers employed are 
piezoelectric polymer by MSI, and have a resonant frequency 
of 40 kHz with a 8 kHz bandwidth [10]. On the other hand, 
the receiver on board the mobile robot is a WM-61 Panasonic 
omnidirectional electret microphone [11], which has a flat 
frequency response between 20 Hz and 45 kHz.  

III. SENSORY INFORMATION FROM THE LPS 

A.  Ultrasonic measurements 
As mentioned in the previous section, the position of the 

mobile robot is calculated by hyperbolic trilateration. 
Specifically, a Caley-Menger bideterminant-based algorithm 
[12] has been used, since it offers a good Dilution of 
Precision (PDOP) with a low computational cost. 

The beacons distribution, all at the same height in the 
ceiling, entails a high positioning error in the Z axis. Since the 
height of the mobile robot is known, the aforementioned error 
can be overcomed restraining the 3D-positioning to 2D-
positioning (X and Y). 

B.  Odometer measurements 
The mobile robot employed in this paper is the 

Pioneer3DX [14], which moves using two wheels with 
differential traction. The robot also has a caster wheel to 
ensure the stability of the structure. The linear (vi) and angular 
(wi) motion are generated from the differences in the rotation 
speeds between the left and right wheels. The subscript 
i={r,l} indicates the right or left wheel, respectively. 

Assuming that the radius of both wheels is r and  the 
separation between them is L, the equations that link the 
linear and angular motion with the rotation speed of the 
wheels are: 
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L
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Thus, the motion equations of a robot at time k can be 
computed from the position at time k-1 as is indicated in (2), 
where Ts is the sampling period: 
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IV. BAYESIAN LOCALIZATION METHODS 

A. Overview 
The high levels of uncertainty in the ultrasonic and 

odometric measurements suggest the use of Bayesian 
probabilistic models to perform the location and tracking of 
the mobile robot. These techniques estimate the position of 
the mobile robot taking into account that uncertainty. As a 
result, these methods are able to recover from failures and are 
more robust to noise and measurement errors. The Bayesian 
probabilistic navigation methods are based on two 
fundamental statistical concepts: the Bayes theorem and 
Markov chains [15]. 

When a system that can be in a finite number of states, Xi, 
(where the probability distribution of all states in the instant 
k-1, Xk-1, is known), is applied a control signal, Uk-1; it is 
possible, by using the law of the total probability, to obtain 
the a priori probability that the new system state is 

k
iX following (3) (this stage is known as prediction stage):  
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If, at the same time, the measurement Zk is obtained, this 
probability can be updated by using the Bayes theorem  
following (4) (this stage is known as update stage): 

( ) ( ) ( )
( )11

1111
11

,/

,/,,/
,,/ −−

−−−−
−− = kkk

kkk
i

kkk
i

k
kkkk

i UXZP
UXXPUXXZPUXZXP (4) 

( )11 ,,/ −− kkk
i

k UXXZP  is unknown, but assuming that the 

system follows a Markov process, that is, that the current state 
only depends on the previous state, then 
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This process is repeated for all possible values of the state 
Xi; thus, the probability of being in each of the possible states 
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Figure1. Experimental set-up. 
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at the current time can be calculated from the probability 
distribution at time k. The denominator in (5) is the same in 
all the possible states Xi, and acts as a normalization factor. 
Thus, ( ) ( )11 ,// −− kkk

i
k
i

k UXXPXZP  is usually computed for 

all the possible values of Xi to obtain a normalization factor 
η that makes the sum of all of them being one. Hence eq. (5) 
can be rewrited as: 

( ) ( ) ( )111111 ,/,,/,,/ −−−−−− = kkk
i

kkk
i

kkkkk
i UXXPUXXZPUXZXP η (6)

According to this criterion, at each time k there is no 
absolute certainty of being in a specific state Xi, instead there 
is a probability of being in each possible state. That is, there is 
a distribution of probabilities, denoted as system state belief 
distribution. 

The main problem of the Bayesian filters for continuous 
variables is that the computation of the integrals and 
multiplications of the belief probability density function 
requires a high computational load, what makes these models 
very difficult to use in real time systems. In order to reduce 
the computational complexity, a method based on particle 
filters has been employed [8].  

B. Particle Filter 
A particle filter is an estimation of the system state belief 

probability density using a Monte-Carlo simulation [16]. To 
implement this filter a set of initial particles is defined. Each 
particle has associated a possible value of the system state, xl, 
and a weight, wl, that represents the probability of being in 
this state. Thus, the set of particles k

Nlll wx ..1},{ = , represents 

the belief probability density at time k. The number of 
particles must be high enough to adequately represent the 
belief probability density function. 

In the prediction stage, a new set of particles is created 
from the previous set of particles 1

..1},{ −
=

k
Nlll wx . For this 

purpose, the set of particles at time k-1 is randomly sampled 
according to the weights of each particle, wl. Once a particle 
is selected 1},{ −k

ll wx , its state, 1−k
lx , is modified by using the 

statistical action model, ( )11 ,/ −− kk
l

k
l uxxP , to obtain the new 

particle state k
lx . The sampling process is performed N times 

to obtain the new set of states, k
Nllx ..1}{ = . 

The new weights of the particles are obtained in the 
update stage by using the perception model ( )k

l
k xZP / . Each 

state k
lx is assigned a weight proportional to the probability of 

getting the observation Zk, being in the state k
lx : 

)/( k
l

kk
l xZPw η=  (9)

Where η is a normalization factor. A new set of particles 
that represents the belief of the probability density function at 
time k is obtained. Fig. 2 shows the block diagram of a 
particle filter.  

 

Figure 2. Block diagram of a particle filter. 

Using this method, the weights of the states that less 
match with the observations, have lower values, making their 
particles less likely of being choosed for the next stage. Thus, 
the particles tend to have values closer to the actual system 
state, in agreeing with the observation performed. 

The initialization of the particle filter to obtain the first set 
of particles should be carried out considering the available 
information of the initial position of the mobile robot. 
Therefore, if the initial position of the robot is unknown, the 
initial value of the particles should be completely random, 
following a uniform distribution among all the possible values 
of the state 0

lx . Its associated weight should be the same for 

all the particles 0 1 , 1...lw N l N= ∀ =  where N is the number 

of particles. 

If there is available some information about the initial 
position of the robot, a large number of particles should be 
placed close to this value. Finally, if the initial position of the 
robot is known, all particles should be placed in this position.  

One of the drawbacks of the particle filter is that to ensure 
the convergence and to reliably represents the belief 
probability density function of the robot, a large number of 
particles are required, what implies a high computational 
load. However, when the system evolves and a large number 
of measurements are available, the particles are concentrated 
around the actual value of the system state, therefore the filter 
converges and the number of particles can be reduced. On the 
other hand, when the observed measurements start to disagree 
with the state where the particles are concentrated, it would be 
necessary to increase the number of particles, and to distribute 
uniformly some of them among all the possible values of the 
system state in order make the filter converge again. In [16] it 
is proposed how to modify the particle filter in order to solve 
the convergence problems.   

V. IMPLEMENTATION OF THE PARTICLE FILTER 

In order to implement the particle filter, the location 
information provided by the ULPS is considered as the 
environment measurement. As well as this, its statistical 
model is considered as the observation model. The odometry 
and its statistical distribution are used as the action model. 

Proceedings of the 2012 IEEE Intelligent Vehicles Symposium Workshops

ISBN: 978-84-695-3472-4 3



  

The vector state of the system is the robot position and 
orientation: 

[ ]TyxP θ=  (10)

The robot linear and angular speed read from the 
odometer are the measures for the action model, Uk-1. 
Therefore the robot motion model (section III.B) is applied to 
each of the particles computed during the sampling stage. 

On the other hand, the positions obtained by the ULPS are 
the observation data, Zk. The statistical distribution between 
the measured position and the actual one is considered a two-
dimensional Gaussian in the X and Y axes. In this Gaussian 
the standard deviation is the product between the HDOP 
(Horizontal Dilution Of Precision) in the point and the 
standard deviation in the measured distance. Hence, the 
weight, wl, for the particle whose state is Pl=[xl yl θl] can be 
computed as indicated in (11), assuming that the data Pz=[xz, 
yz] have been measured: 
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Where η is a normalization factor, HDOP(xl,yl) is the 
HDOP in the position (xl,yl), and σd is the standard deviation 
in the measured distance. 

Since in the initialization of the particle filter the robot 
position is unknown, it is assumed a random distribution of 
the particles in all the coverage area. After each filter 
iteration, the robot position is the mean of all particles 
positions adjusted according to their weights. 

In order to weight the angles of the particles to obtain the 
robot orientation, and since the ULPS does not provide angle 
information, the following steps are proposed: 

• The estimated value of the angle is taken from the 
previous iteration, θk-1. 

• The current angle is predicted assuming an ideal 
behavior of the odometer: 

sakpredk T⋅Ω+= −1, θθ  (12)

• The standard deviation of the angular speed of each 
particle is obtained as a function of the linear speed 
of the robot, as indicated in (13): 
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Where vl is the robot linear speed, and Ka is a 
constant. For linear speed values below 0.015 m/s it 
is assumed that the robot is not in motion and the 
standard deviation is set to a maximum value. 

• Each particle, ( ){ }llll wyxP ,,, θ= , of the new set of 

particles modifies its weight according to a Gaussian 
distribution with mean θk,pred  and standard deviation 
σa: 
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One of the main drawbacks of this kind of filters is its 
computational load. In the initial moments there is a big 
uncertainty about the mobile robot position, so a large number 
of particles are required to ensure the filter convergence. 
However, when the particles are concentrated into a small 
area, their amount can be reduced since the tracking of the 
mobile robot does not have a high level of uncertainty. 
Therefore, an adaptive particle filter has been implemented. 
In this filter the resampling process can be interrupted when 
the sum of the particles weights are higher than a 
predetermined threshold Vermax, so the number of particles in 
the system can be reduced. It has also been established a 
maximum threshold for the number of particles. 

VI. RESULTS 

This section presents some location and tracking results. 
The tests have been carried out using the following values for 
the different parameters: sample period, Ts=200ms; maximum 
number of particles, Nmax=8000; maximum likelihood, 
Vermax=750; angular standard deviation, Ka=0.03*π rad s/m.   

A. Simulation Results 
In order to test the proposed particle filter a circular path 

has been simulated: v_lin=0.1 and v_ang=π/100 rd/sg. The 
trajectory starts in the test position [0 0]. No errors in the 
odometry has been considered for this test, and therefore the 
measurement errors correspond to the location algorithm 
σd=1cm. 

Fig. 3 shows the path that the robot is asked to do (red 
line), the trajectory estimated by the particle filter (green line), 
and the points where the ULPS location algorithm estimates 
the position of the robot (blue circles). It can be observed that, 
at the beginning, the particle filter has trouble following the 
right trajectory of the robot, but after a few iterations is able 
to follow the robot path. 

 

Figure 3.  Trajectory obtained by the Particle Filter considering that the 
odometry measurements do not have errors. 
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Fig. 4 shows the same path considering a standard 
deviation in the linear speed of 25% from the robot 
magnitude, and an angular standard deviation of 200 rad/s. 
Furthermore, during the trajectory it has been included an 
impulsive noise in the robot linear speed during 2 seconds. It 
can be observed that, despite the errors in the odometer and 
the impulsive noise, the particle filter is able to follow the 
correct robot path. 

 

Figure 4.  Trajectory obtained by the particle filter considering that the 
odometer has errors. 

B. Real results 
To test the proposed particle filter in a real scenario, the 

mobile robot has been tracking during 45 seconds in the 
ultrasonic ULPS described in the section II. The particle filter 
algorithm has been computed offline by using the data 
provided by the ULPS and by the odometer. 

Fig. 5 shows the robot positions obtained with the ULPS 
(blue circles), and the trajectory obtained with the particle 
filter (green line). The conclusions are similar to those of the 
simulation case. 

 

Figure 5.  Particle filter and ultrasound trajectories obtained in the real tests. 

 

The particle filter does not need to weight the orientation 
of the particles to obtain a good estimation of the orientation. 
The particles that have a bad orientation are not going to 
match the observation when the filter evolves because of the 
motion model. However, when the robot is in motion, the 
trajectory obtained when the orientation is weighted is softer 
than that obtained without considering the robot orientation. 
The differences among weight or not the orientation 
estimation in the particle filter can be seen in the real test 
depicted in Fig. 6, where the robot has follow a longer 
trajectory than that of Fig. 5 and where the wheels have been 
forced to slip in a specific zone.  

 

Figure 6.  Comparison of the particle filter results with and without the 
orientation estimation. 

For a better illustration, Fig. 7 depicts a zoom of the 
trajectory in Fig. 6. If the orientation is used in the particle 
filter, the final estimated trajectory is more similar to that 
obtained with the ultrasounds. 

  

Figure 7.  Zoom of the trajectories obtained in Fig. 6. 
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VII. CONCLUSION 

In this paper, the position estimation coming from an 
ultrasonic local positioning system has been merged with 
that coming from the inner sensors of a mobile robot. The 
fusion has been done by means of Bayesian techniques (an 
adaptative particle filter). First results with the systems show 
a better position estimation, even in those positions which 
are more affected by the multipath or where is not possible to 
receive the ultrasonic signals. 
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