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Abstract

In this paper a system capable of obtaining the 3D pose of a mobile robot using a ring of cali-

brated cameras attached to the environment is proposed. Thesystem robustly tracks point fiducials

in the image plane of the set of cameras generated by the robot’s rigid shape in motion. Each fiducial

is identified with a point belonging to a sparse 3D geometrical model of robot’s structure. Such

model allows direct pose estimation from image measurements and it can be easily enriched at each

iteration with new points as the robot motion evolves. The process is divided in an initialization

step, where the structure of the robot is obtained and an online step, which is solved using sequential

Bayesian inference. The approach allows to model properly uncertainty in measurements and esti-

mations, at the same time it serves as a regularization step in pose estimation. The proposed system

is verified using simulated and real data.

Index Terms

Computer Vision, Intelligent Spaces, Robotics

I. INTRODUCTION

L
OCALIZATION of mobile robots in indoor environments using asensor network still re-

mains to be a hot topic . The short distances involved in the localization, jointly with the
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structural elements found inside buildings, avoids in mostof the cases to adapt the same radio

technology that successfully made possible to partially solve outdoor localization. Instead, the

special conditions of indoor localization requires different approaches as it fits better with short

range sensors such as vision, ultrasounds, or recently ultra wide band (UWB) sensors.

We propose in this paper a method to retrieve the pose of a mobile robot using vision sensors

that are attached to the indoor environment. The cameras form part of a sensor network known

as “Intelligent Space” [1] [2] [3]. The idea behind is to place sensors in a bounded area, which

are connected to a centralized system which analyze the information and make decisions. A set of

“agents” such as robots, display screens or any other electronic device, are remotely controlled by

the environment to accomplish a certain task. Knowing wheresuch agents are, specially mobile

robots, with enough accuracy and robustly is quite important for almost any oriented application

of “Intelligent Spaces” like human assistance, robot cleaning, surveillance and more.

A. Previous Works

Despite the potential of using camera networks to localize robots, there are relatively few

publications on this area compared to those in which the camera is uniquely inside the robot [4] [5].

Some examples of robot localization with camera networks can be found in the literature, where the

robot is equipped with artificial landmarks, either active [6] [7] or passive ones [8] [9]. In other

works a model of the robot, either geometrical or of appearance [10] [11], is learnt previously

to the tracking task. In [12] and [13], the position of staticand dynamic objects is obtained

by multiple camera fusion inside an occupancy grid. An appearance model is used afterwards to

ascertain which object is each robot. Despite the techniqueused for tracking, the common point

of many of the proposals found in the topic comes from the factthat rich knowledge is obtained

previously to the tracking, in a supervised task.



Pizarro et al.: LOCALIZATION AND RECONSTRUCTION OF MOBILE ROBOTS USING A CAMERA RING 3

B. Localization based on Natural Appearance

In this paper we present a localization system which not necessary relies on invasive beaconing

or previous supervised learning tasks. Instead of that, we propose a system that does not need

artificial landmarks placed on the robot or any initially learned CAD model of its structure. The

system needs only as prior information, the rigidity assumption in the geometry of the object to

track and the calibration parameters from the set of cameras.

Obtaining the pose of a mobile robot using cameras, in the absence of other information,

requires to define a common coordinate origin attached to therobot’s volume from which to refer

the pose. As a consequence, in general terms, the pose cannotbe recovered without recovering also

geometrical information that defines the robot’s coordinate origin. In most of the cases the robot’s

geometry is easily observed in the images as points, lines orany other tractable entity, whose three-

dimensional equivalent is possible to be inferred from image projections. As a consequence, in this

paper the robot’s pose is jointly obtained with a set of three-dimensional points from the robot’s

structure.

The computer vision community has developed a set of wide accepted solutions for the prob-

lem of obtaining rigid structure from motion. There are manypublications of both sequential [5]

[14] and batch approaches [15] [16] [17] and it is considereda mainly solved problem. Most of

these methods are focused on scene reconstruction using a moving camera, so that the geometry

completely surrounds it, instead of occupying a small amount. The main efforts are spent at the

moment on the creation of unsupervised methods for reconstruction, which are able to manage

with high amount of information (thousand of points in hundreds of different views) or incomplete

data sets.

Usually online methods can be split up into two parts. Firstly, an unsupervised initialization

algorithm is used to set up geometry from motion using a metric reference. Using auto-calibration
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techniques [18] the camera parameters are obtained in the case they are unknown. The second step,

which is online, combines the previous time estimation to obtain object pose given the geometry

[17]. The intention of this paper is to show how to adapt such approaches to compute the pose and

structure of the robot.

In [19] a system with the same objectives that the present paper, which performs robot lo-

calization using a single camera is proposed. In such proposal the initialization is solved using a

“bundle adjustment” approach which needs the odometry information from the robot to serve as

metric information. The online solution is solved using a robust method to avoid outliers allows

the system to work under oclussions and false matchings. This paper extends the proposal made

in [19] and extend it to work with several cameras, exploringthe especial assumptions necessary

in such case. The statistical approach is maintained in thispaper as the basis to achieve the online

pose and structure of the robot.

The paper is organized as follows: In§II the objectives and a general schema of the proposal

is presented. The problem of measuring information with thecamera is explained in§III. The

initialization of pose and geometry of the robot from several cameras is presented in§IV. In §V

the Online algorithm which obtains robot’s pose given imagemeasurements is explained. Finally

in §VI and§VII both the experimental results and the conclusions of thepaper are discussed.

II. OBJECTIVES AND PROPOSEDAPPROACH

The objective of this paper is to obtain the pose, and consequently structure, of a mobile robot

which is seen by a set of calibrated cameras fixed to the environment. The pose of the robot and

the extrinsic parameters of the cameras are referred to a global coordinate originOW , which is

set up in a calibration step. We propose a system capable of reducing the information previously

required from the object to localize. Unlike the single camera solution presented in [19], where the

odometry readings are necessary in the set up, the proposal presented in this paper take advantage
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of using several cameras, removing the need of additional information apart from the images.

Our proposal to indoor localization consists of a series of different blocks specialized in re-

trieving and filtering the information available from the cameras in order to obtain the pose of the

robot. The processes are divided into those which compute the pose of the robot online and those

contributing to set up the information required by the online algorithm (Initialization processes).

In Fig. 1 a schematic view of the entire algorithm is given

Fig. 1. Algorithm’s schematic view

1. Initialization of Pose and Geometry: Initially, neither the pose nor the structure of the

robot are known and so a method to ascertain both is proposed.A short trajectory of the

robot is sufficient to get enough accuracy in pose and structure. Important issues concerning

immunity against outliers, accuracy in function of robot path and number of cameras is

addressed in this block.

2. Online Pose Computation: The online computation assumes that the initialization step

was successful, so the structure and last pose are availablefor computing the next one.

This block must be robust to avoid false matchings between the robot’s structure and its

measurements.

3. Online Initialization of New Geometry: Apart from obtaining the pose online, the system
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is able to increase the knowledge about robot’s from that obtained in the initialization.

The goal is to use the information given at any time by the online process to include new

robot’s geometry points that were not previously known. This step provides a simultaneous

approach for structure and motion retrieval.

4. Measurement Process: The measurements with the set of cameras provide the positions of

the known structure points from the robot in the image plane.A method of natural marker

tracking is proposed which combines an interest point detector with a tracker of points.

5. Information fusion: This block combines the solution to pose given by all available meth-

ods. In this proposal its inclusion is given as a matter of clarity but its implementation is

not detailed.

A. Definitions and Notation Used

Robot’s pose at timek is described by a vectorXk. Usually for 3D motion (6 D.O.F) the

vector is composed of 3 position components and 3 orientation anglesXk = (xk,yk, zk,α,β,γ). For

wheeled robots whose motion lie on a plane vector poseXk is reduced to 3 components(xk,yk,α).

Motion modelXk = f(Xk−1,Uk) obtains actual position with respect to previous time and the input

Uk given by odometry (i.e. angular speed and linear speed of therobot), if available. The kind of

motion model is tightly coupled with the robot’s hardware and the odometry measurements. In our

proposal, it is not essential to know exactly how the robot moves, but if available it can be useful

to increase the convergence of the algorithms.

The geometry of the robot is composed by a sparse set ofN 3D pointsM = {M1, · · · ,MN}

referred always from a local coordinate origin described byrobot’s poseXk. The points are static

in time due to robot’s rigidness, and thus, no temporal subindex is required. FunctionM i
Xk

=

t(Xk,M
i) uses actual poseXk to expressM i in the global coordinate originOW thatXk is referred

to (see Fig. 2).
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Fig. 2. Spatial relationship between world’s coordinate origin OW , robot’s coordinate originOR and camera’s coor-
dinate originOC .

The augmented vectorXa
k , which is the state vector of the system, is defined as the concate-

nation in one column vector of both the poseXk and the set of static structure pointsM:

Xa
k =

(
Xk, M

1, · · ·MN
)

(1)

The camera sensor is modelled by a perfect “pin-hole” model described by its 3x4 projec-

tion matrix P , which encodes intrinsic and extrinsic parameters. The camera projection model

is expressed by the non-homogeneous transformationy = h(MX , P ) which converts a 3D point

MX expressed in a global coordinate originOW into its 2D projectiony in the image plane using

camera parametersP .

III. M EASUREMENT OFNATURAL MARKERS

On most of natural objects we can find points whose image projection is able to be tracked in

the image plane independently of the position the object occupies and based on local properties

found in the image. (i.e lines, corners or color blobs). Those points are considered natural markers,

as they serve as reference points in the image plane that can be easily relate with their three-

dimensional counterparts. The set of methods focused on tracking natural markers have become

a very successful and deeply studied topic in the literature[20] [21], as they represent the basic
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measurements of most of existent reconstruction methods.

The process of tracking is roughly divided into two main steps: the detection of image candi-

dates of being natural markers, and the process of their identification under different viewpoints.

A. Detection of Natural Markers

The development of stable interest point detectors has beensuccessfully achieved since the

first corner detectors where applied. The works proposed in [22] and later improved by the widely

known “Harris” detector [23] have been extensively used in many vision geometry tasks. The

“Harris” detector has proved to be stable enough under a variety of projective transformations,

allowing its use as a reliable natural marker detector. The main drawback of the “Harris” corner

comes from its sensitiveness to image scale, failing to detect a corner in objects at very different

distances from the camera. In [24] a scale invariant versionof the “Harris” detector was proposed,

yielding to a very robust and reliable marker detector whichwill be used in this paper.

Given an intensity imageI(u,v), the multiscale Harris detector gives a number ofNo points

encoded in the setC =
(

y1 · · · yNo

)

which are candidates of being points belonging to robot’s

structure.

B. Matching of Natural Markers

The process of matching consists of describing each fiducialincluded in the setC such that

it can be identified in subsequent images taken at different object’s poses. In the literature there

is a vast knowledge on how to efficiently track fiducials [25] [26] [24], by using appearance

information retrieved around the point detected (i.e texture patch).

Among them, the most used nowadays was proposed in [24] underthe acronym SIFT. It has

been extensively used in many tasks as Structure From Motion(SFM) or object recognition.

The SIFT method consists on finding a quasi-affine invariant descriptordi
k which represents
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each pointyi
k. Instead of directly using image appearance, the descriptor is obtained by codifying

the appearance using a set of orientation histograms from a local texture patch around the point.

The orientation histograms are referred to the principal orientation found in the patch, so that the

same descriptor is obtained under different transformations. A simple Euclidean distance is enough

for finding a correspondence between descriptors of the samepoint. Each descriptor is associated

to a scale detected by multiscale “Harris” and a principal orientation.

In general the SIFT method introduce false matchings when a set of descriptors are used to

identify their new position in input images. Those false matchings are named “outliers” and their

number or identity are not available using only image appearance (see Fig. 3).

CORRECT MATCHING

OUTLIER

Fig. 3. Matching of natural markers, represented as fine lines, between two positions of the robot viewed in the same
camera.

In the rest of the paper, the way the method SIFT is applied is left in the background with the

intention of not blurring the concept. However, the measurements and their identification with the

robot’s structure are based on descriptor matching, an thusthey are susceptible to contain outliers.

IV. I NITIALIZATION OF POSE AND GEOMETRY

In this section the initialization of the pose and geometry of the mobile robot by a minimum of

a pair of cameras is assessed. Due to the wide-baseline configuration, where two cameras can give

complementary views of the robot’s geometry, we propose in this section a structure from motion
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scheme of reconstruction. The basic idea is that each cameragives a series of tracks corresponding

to the geometry they seen, taken from a short sequence of the robot in motion. Such information is

combined to give the common solution to the robot’s pose and the reconstruction of the geometry

seen by all cameras. In this approach, the matching of pointsthrough several cameras is not

necessary and it is replaced by tracks on each camera due to robot motion, which is generally a

better posed problem.

To find the solution, we propose to use a “Bundle Adjustment” technique, which is able to

optimally and efficiently reconstruct the position and structure of the robot using image measure-

ments. The presented method obtains the solution for the setof augmented vectors along the

initialization sequenceXa
0 , · · · ,Xa

K that minimize the error between measurements in the image

plane and the expected measurements obtained by using imageprojection models and the structure

points included inXa
k .

A. Preliminary definitions

The initialization sequence consists of a set ofK time samples starting fromk = 0 where the

robot is in motion. The pose vectorsX0, · · · ,XK define the position and orientation of the robot

at each time sample of the trajectory. Whenever the odometrysystem is available in the robot, a

noisy measurement of eachUi i = 1, · · · ,K gives an estimation of the pose using the recursive

motion modelf and the starting poseX0.

There is a set ofNC > 2 cameras involved in the initialization process and, for clarity purposes,

all the cameras observe the robot in the sequence. On each camera, let say cameran, a set ofNn

points from the robot’s structure are tracked using the SIFTmethod commented in III. We cannot

assure that for different cameras the number of detected measurements remain constant so, in

general,Nn is function of the camera index.

At framek and with the cameran the measurement vector consist of the following:
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Y n
k =

(

y1
k · · · yNn

k

)

yi
k = (ui

k, v
i
k), (2)

where for clarity, the upper index of the vectorY n
k refers to the camera index, and the one inyi

k

states for the number of detected feature, removing the reference to the cameran which is left

implicit. The global measurement vectorYL is the concatenation in a single column vector of all

the measurements from all cameras.

YL =

((

Y 1
1 · · · Y 1

K

)

︸ ︷︷ ︸

Camera1

· · ·
(

Y Nc

1 · · · Y Nc

K

)

︸ ︷︷ ︸

Cameran

)T

(3)

Each single measurementyi
k at timek is a function of the parameters of the camera it belongs

to, the pose vectorXk and its respective pointM j of the object’s structure.

yi
k = h(t(Xk, M

j), Pn) + vi
k v

i

k
= N(0, Σv), (4)

where the correspondence ofM j with the ith point seen by the cameran is given by the

following default ordering in the augmented vector:

Xa

k =

(

Xk

(

M1 · · · MN1

)

︸ ︷︷ ︸

Camera1

· · ·
(

M r · · · M r+NNc

)

︸ ︷︷ ︸

CameraNc

)

, (5)

wherer =
∑Nc−1

n=1 Nn.

B. Building the Cost Function

The complete set of unknowns is composed of the set of poses inthe trajectoryX0, · · · ,XK

and the 3D coordinates of the points seen by the camerasM j , j = 1, · · · ,
∑Nc

n=1 Nn. All parameters

are packed together into the objective vectorΦ:

Φ =
(

X0, ·,XK ,M1, · · · ,MN

)

N =

Nc∑

n=1

Nn (6)
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A cost function is built in function ofΦ to compare the error between the real measurement of

vectorYL with its estimation, here named asŶL, and obtained using the projection models (4):

ǫ2 = (YL − ŶL)T Σ−1
L (YL − ŶL), (7)

whereΣL represents the covariance matrix of vectorYL, which is a diagonal block matrix,

where each block represents the noise of a single measurement Σv. The expression (7) can be

rewritten into the following addition of terms:

ǫ2 =
K∑

k=1

Nc∑

n=1

Nn∑

i=1

, (yi
k − ŷi

k)Σ
−1
v (yi

k − ŷi
k)

T (8)

,

In [19], a similar approach is made by using a single camera, however in that case theΣL mod-

els the growing error behavior of the odometry estimation, as it is included as a metric reference in

the algorithm.

The minimum of (7) with respect toΦ gives the value required to reconstruct the entire initial-

ization trajectory. To reach the minimum, the iterative optimization method Levenberg-Mardquardt

is used. The analytical expression of the first and second derivatives of (7) with respect to the un-

knowns are required to compute a single step of the optimization.

B.1 Outliers Rejection

As the tracking used in the initialization is based on image appearance matching it is very

probable the presence of erroneous measurements insideYL which do not correspond to any 3D

point from the robot’s structure. The identification of suchpoints, called “outliers” is decisive for

a successfully initialization.

The cost function (7) is designed to model possible Gaussiandeviations of the solution com-

pared to the measurements, which are suitable to contain noise. The distribution of outliers gen-
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erally does not fit into such modelling and so their presence in the optimization yields to a biased

solution. The solution to that situation comes from using a robust cost function capable of mod-

elling the outlier distribution, removing its influence in the solution. The equivalent cost function

results in the following:

ǫ2 =
K∑

k=1

Nc∑

n=1

Nn∑

i=1

ρ((yi
k − ŷi

k)Σ
−1
v (yi

k − ŷi
k)

T ), (9)

whereρ(s) can be any increasing function withρ(0) = 0 and d
ds

ρ(0) = 1 (See [27] for more

details). The followingρi is proposed in this paper, which models the outliers as a Cauchy distri-

bution:

ρ(s) = b2 log 1 +
s

b2
, (10)

whereb2 is used as a control parameter which determines for which range ofs the function is

approximated by a quadratic function, and which range is considered as outliers.

One of the main drawbacks of using robust cost functions is the increasing of the nonlinearity

of the problem, which generally affects the convergence properties of the algorithm.

B.2 Initialization before optimization

The optimization method to minimize the cost function requires a guess value for the solution

Φ from which start iterating. It is preferable to chose a valueas close as possible to the real

solution, so that the probability to reach the global minimum increases.

A very simple proposal is made in this paper to get an initial guess of the solution. It consists

of the following steps:

• For each time instantk and cameran the center of mass of the points encoded inY n
k is

obtained. (µn
k).
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• The position of the robot at timek xk, yk, zk, not including the orientation parameters

αk, βk, γk, is obtained by camera triangulation of theNc center of mass calculated, sup-

posing they represent the same point in the three-dimensional space.

• Once the set ofK +1 positions are availablex0,y0, z0, · · ·xK ,yK , zK , the set of orientations

θ0, β0, γ0, · · · , θK , βK , γK are set so that they follow the kind of motion we expect in the

object. Generally the objects present a non-holonomic motion, so we aligned the orienta-

tions, following the curvature of the motion. However, in the case that the object’s motion

is entirely holonomic, a random value can be used instead.

• The geometry of the robotM1, · · · ,MN is initialized randomly around a volume bounded

by a sphere of radiusR, which can be obtained by calculating the minimum sphere that

covers the image measurements of all cameras at a specific frame.

In the case that the odometry readings are available, only the initial poseX0 and the geometry

of the robot are guessed as was mentioned before. After theirestimation the motion model and the

odometry readingsU1, · · · ,UK generate the rest of posesX1, · · · ,XK .

C. Obtaining the Gaussian equivalent of the solution

Once the minimum of (7) is reached, it is desirable to obtain the covariance matrixΣa
K of the

vectorXa
K , in order to connect the initialization step with the onlineapproach of the next section.

The covariance matrixΣΦ of the optimized parametersΦ is easily obtained by using a local

approximation of the termY − Ŷ in the vicinity of the minimum. The resultingΣΦ results from

the following close expression:

ΣΦ = (JT ΣLJ)−1, (11)

whereJ is the Jacobian matrix of̂Y with respect to parametersΦ. The Jacobian is available

from the optimization method, in which is used to compute theiteration steps.
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By truncating both the solutionΦ and its covariance matrixΣΦ, the augmented vectorXa
K and

its covariance matrixΣa
K are obtained.

V. ONLINE ALGORITHM

In this section the solution toXa
k given the last pose information is derived. The fact that last

frame information is available and the assumption of soft motion between frames allows to greatly

simplify the problem.

A special emphasis is given in this document to the fact that any process handled by the system

is considered a random entity, in fact a Gaussian distribution defined at each case by its mean vector

and covariance matrix. The problem of obtaining pose and structure, encoded inXa
k given image

observationsYk and the last pose informationXa
k−1 is viewed from the point of view of statistical

inference, which means searching for the posterior probability distributionp(Xa
k |Y1, · · · ,Yk). That

distribution gives the best estimation ofXa
k given all the past knowledge available.

The online approach is divided into three steps:

• Estimation Step: using the previous poseXa
k−1 and the motion model a Gaussian distribu-

tion which infers the next state is givenp(Xk|Y1, · · · ,YK).

• Robust Layer: the correspondence problem in this point easily fails, so for each camera a

number of unlabeled outliers pollute the measurement vector Yk. Using a robust algorithm

and the information contained in the state vector, the outliers are discarded before the next

step.

• Correction Step: using an outlier-free measurement vector, we are confident to use all the

information available to obtain the target posterior distributionp(Xa
k |Y1, · · · ,Yk)

In all three steps we would manage the idea of propagating statistics over non-linear functions

(f andh). We show how to face the problem using first order expansionsas it offers more com-

pactness and is more readable. However as is stated in [19] there are other methods for Gaussian
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propagation (e.g. the Unscented Transformation) with better statistical performance and that are

less biased than the first order expansion we show here.

A. Estimation Step

The estimation step uses the motion models available to infer the next pose of the robot. Such

transit is often a process of uncertainty addition, as the motion information is not given accurately

or only linear motion models are available. It includes an update of the mean and covariance of the

last pose as follows:

Xa
k|k−1 = ga(Xa

k ,Uk) (12)

Σa
k|k−1 = JT

XΣa
k−1JX + JT

U ΣW JU , (13)

whereJX and JU are the first derivatives of the functionga with respect toXa
k−1 and Uk

respectively. UsuallyJX in odometry systems is the identity, so at this step the covariance matrix

Σa
k|k−1 results to be bigger in terms of eigenvalues, which means uncertainty.

It must be noticed that the motion modelga leaves untouched the structure points contained in

the state vector as we suppose that the object is rigid.

B. Correction Step

The correction step removes the added uncertainty in the estimation by using image measure-

ments. It passes from the distributionp(Xa
k |Y1, · · · ,Yk−1) to the target distributionp(Xa

k |Y1, · · · ,Yk),

which includes the last measurement.

It is mandatory to remark that the measurement vector in the online processYk does not share

the same structure that the one used in the initialization processes, where each camera observes

a separated set of points. Instead, due to robot’s motion, any point is suitable to be seen by any

camera and a group of cameras can see the same point.
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Using the estimation shown in (12), and knowing the correspondence between measurements

with the camera and structure point of the state vector, the estimated measurement is given:

Yk|k−1 = ha(Xa
k ) (14)

ΣYk|k−1
= JT

h Σa
k|k−1Jh + ΣV (15)

ΣXaY = Σa
k|k−1Jh, (16)

whereJh is the Jacobian matrix of the functionha with respect toXa
k andΣV is block diagonal

matrix withΣv on each block.

The correction step itself is a linear correction ofXa
k|k−1 andΣa

k|k−1 by means of the Kalman

gainKG:

KG = ΣXaY Σ−1
Yk|k−1

(17)

Xa
k = Xa

k|k−1 + KG(Yk −Yk|k−1) (18)

Σa
k = Σa

k|k−1 −KGΣT
XaY (19)

As it is stated in (19) the resultingΣa
k is reduced compared toΣa

k|k−1 which means that after

the correction step, the uncertainty is “smaller”.

C. Robust Layer

The robust layer has the objective of removing bad measurements fromYk to avoid inconsistent

updates ofXa
k in the correction step. We propose and extend the same idea proposed in [19], in

which a RANSAC algorithm [28] is used between the estimationand correction step. The general

idea is to found among the measured dataYk a set which is agree in the solution ofXa
k they will

give at the correction step.
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In the literature, the RANSAC algorithm uses a close form solution for the problem of inferring

Xa
k given the measurementsYk or alternatively a geometrical constraint that can be fittedsuch as

fundamental matrixes or the trifocal tensors. In this paperwe propose to avoid such complex

structures and to take advantage of the versatility which offers the Kalman filter. We make no

distinction of which measurement comes for which camera, and implement RANSAC sampling

over the entire set of measurementsYk. For each subset ofYk used in RANSAC, the correction step

is used to obtain the most votedXa
k . This approach allows for example to include the information

of all cameras at once without needing of camera grouping (e.g. combinations of two for fitting

fundamental matrixes).

Some previous definitions are needed prior to use introduce RANSAC:

• ǫ is the expected probability of “outliers” inside measurements.

• From the measurement vectorYk which has in generalNY elements, groups ofs measure-

ments, denoted asY s
k are selected randomly.1.

• It is defined asXa
k = F (Xa

k|k−1,Y
s
k ) which computes the poseXa

k using a minimum number

s of measurements. This function is implemented using the correction step expressions

shown in B reduced to use measures grouped insideY s
k .

• The functiond = D(Xa
k , yi

k) gives the Mahalanobis distanced between a single measure-

mentyi
k taken fromYk and its estimation̂yi

k usingXa
k .

d = (yi
k − ŷi

k)Σ
−1
yi

k

(yi
k − ŷi

k)
T , (20)

whereΣyi

k

is obtained by propagating the statistical properties ofXa
k through the projection

model.

• The probability of finding at least a set ofs measurementsY s free from “outliers” is defined

asp (e.gp = 0.99).
1 The upperindexs must not be misled with the notation we used in IV in which the upperindex was used to indicate the camera
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• Nin is the number of correct correspondences associated to a model Xk

• Nbest
in as the biggest number of inliers found in a set of correspondences associated to the

best solution forXa
best.

• The number of iterationsN it, necessary to achievep has a close form:

N it =
log(1 − p)

log(1 − (1 − ǫ)s)
(21)

Finally the general RANSAC method is presented in Algorithm1:

Algorithm 1 RANSAC

1: N it = 0, N best
in = 0, Xa

best, N = 1, p = 0.99.

2: while N it < min(N,N it
max) do

3: Random sampling ofy1, · · ·yN to obtain a setY s with s elements.

4: A model hypothesis is obtainedX = gd(Y
s,Xa) and the setY in = {mi | |g(X,yi,M i)| <

dmax} with sizeNin.

5: if Nin > N best
in then

6: Xa
best = Xa, ǫ = Nin/N .

7: N it = log(1−p)
log(1−(1−ǫ)s)

8: end if

9: N it = N it + 1

10: end while

The number of measurementss used to randomly sampleYk is defined to bes = 4 as this is

the minimum required to compute the pose of a 3D object using image measurements.

VI. RESULTS

Our proposal is tested using synthetic generated data and real images taken in a room with

four cameras.
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A. Synthetic data

The synthetic data is generated artificially according to the conditions which will be encoun-

tered in a real configuration. A maximum ofNc = 8 cameras are situated approximately forming

a rectangle of2m× 3m as it is shown in Fig. 4. The robot’s geometry is formed by a setof points

randomly distributed inside a cylindrical volume of half a meter of radius and one meter height.

The robot follows a differential motion model over the ground plane, ruled by its angularωk and

linear speedvk encoded inUk = (ωk(
o/s), vk(mm/s))T . The vectorUk is affected by a motion

noise with covarianceΣw = diag(σ2
v = 1,σ2

ω = 10) The pose of the robot is thus composed of the

2D position in the ground plane(xk, yk) and the single orientation angleθk. The measurement

noise is fixed toΣV = 10 · I2×2. The intrinsic parameters of each camera are variations of those

encountered in a low cost sensor with640× 480 pixels of resolution with a CCD sensor of1/3′′

size and a optic with a focal length of6mm. The trajectory described by the robot consists of a

circumference of radius2m′ which takes place inside the common area viewed by the cameras.

Both the initialization and online experiments run using such trajectory, so that we can compare

the accuracy in fair circumstance.
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Fig. 4. Distribution of cameras and robot’s trajectory usedto generate synthetic data.

The experiments are divided on those dedicated to the initialization method proposed and those
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used to test the online algorithm.

A.1 Initialization method

In this experiments we consider that each cameran observes a numberNn = 6 points from

the robot’s structure. The trajectory is downsampled, so that K = 50 positions. We observe that

adding more time samples does not achieve better accuracy.

The following experiments are proposed:

• Error in pose (Fig. 6.a) and geometry (Fig. 6.c) versus % of outliers in the measurements.

• Error in pose (Fig. 6.b) and geometry (Fig. 6.d) versus % of outliers in the measurements,

when the robust cost function is used.

• Error in pose (Fig. 5.e) and geometry versus (Fig. 6.f) % of the circular path made.
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Fig. 5. Experiments of the initialization method using synthetic data.
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A.2 Online method

The robust approach of the initialization algorithm is usedto set up the pose and geometry

Xa
K . The online algorithm covers the circular path starting were the online algorithm ended.

The following experiments are proposed:

• Error in pose and geometry versus % of outliers without robust layer. (Fig. 6.a)

• Error in pose and geometry versus % of outliers. (Fig. 6.b)

• Error in pose and geometry versus time. (Fig. 6.c)
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Fig. 6. Experiments of the online method using synthetic data.

B. Real Results

The real experiment is compound of four cameras (see Fig. 7.c), filling the same area showed

in the initialization, and a mobile robot which presents also the same kind of motion model used

for the synthetic data. In Fig. 7.a, Fig. 7.b, Fig. 7.d and Fig. 7.e, the projection of the three-

dimensional model (Fig. 7.d) obtained from the robot is shown on each of the four cameras.

In Fig. 8 the trajectory obtained using our proposal is shown, compared to the one obtained

using odometry from the robot, which is highly noisy. Using amanual annotation procedure, it has

been assessed that the estimation given by our proposal is not biased in the whole trajectory.



Pizarro et al.: LOCALIZATION AND RECONSTRUCTION OF MOBILE ROBOTS USING A CAMERA RING 23

M
1M

2

M
3 M

4

M
5M
6
M

7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

(a)

M
1

M
2

M
3

M
4

M
5

M
6M

7 M
8

M
9M

10

M
11

M
12

M
13

M
14M

15

(b)

−2000

0

2000

4000

−2000
0

2000
0

1000

2000

3000

2

x (mm)

1

3

y (mm)

4

z 
(m

m
) Initialization 

Trajectory

Robot’s Model

(c)

M
1

M
2

M
3

M
4

M
5

M
6M

7
M

8

M
9M

10

M
11

M
12

M
13

M
14M

15

(d)

M
1M

2

M
3

M
4

M
5 M

6
M

7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

(e)
−400

−200
0

200
400

−500

0

500
0

500

1000

M
9

M
10

M
5

M
1

M
2

M
15

M
7

M
8

M
6

M
4

X(mm)

M
3

M
14

M
12

M
13

M
11

Y(mm)

Z
(m

m
)

(f)

Fig. 7. Experiments of the initialization method using realdata.
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Fig. 8. Comparison between the online estimation and the odometry system.

VII. CONCLUSIONS

This paper has proposed a system that achieves robot localization using several cameras with-

out needing invasive beaconing on the robot or supervised learning tasks. Compared to the single

camera solution, proposed in [19], which this paper extends, the usage of several cameras allows

to avoid the needed of using odometry systems in the robot in any stage of the algorithm, which

reduces the required knowledge from the object to localize.
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The two steps which compound the system, initialization of robot’s pose and geometry, and the

online process are designed so that they are robust against the inclusion of outliers in the algorithm,

which is of importance to achieve a reliable solution.

The tests using synthetic data show that the more the cameras, the better in general becomes

the algorithm in terms of accuracy in both geometry and pose estimation. The algorithm is tested

using in real conditions, performing the localization of a robot using four cameras inside a room.

Using visual inspection , the solution do not present bias ina long trajectory and behaves well even

when the object is far from the cameras. Our proposal shows promising results as a reliable robot

localization system, but also any other rigid object. The extension to tackle multiple robots is quite

straightforward using our approach, as the robust layers allows to efficiently remove measurements

that do not behave like individual rigid objects.
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