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Abstract

In this paper a system capable of obtaining the 3D pose of dlen@bot using a ring of cali-
brated cameras attached to the environment is proposedsyBtem robustly tracks point fiducials
in the image plane of the set of cameras generated by thesolgid shape in motion. Each fiducial
is identified with a point belonging to a sparse 3D geomdtritadel of robot’s structure. Such
model allows direct pose estimation from image measuresreerd it can be easily enriched at each
iteration with new points as the robot motion evolves. Thecpss is divided in an initialization
step, where the structure of the robot is obtained and an@step, which is solved using sequential
Bayesian inference. The approach allows to model propertgdainty in measurements and esti-
mations, at the same time it serves as a regularizationisepse estimation. The proposed system

is verified using simulated and real data.

Index Terms

Computer Vision, Intelligent Spaces, Robotics

. INTRODUCTION

I OCALIZATION of mobile robots in indoor environments usingsansor network still re-

mains to be a hot topic . The short distances involved in tbalipation, jointly with the
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structural elements found inside buildings, avoids in naddhe cases to adapt the same radio
technology that successfully made possible to partiallyesoutdoor localization. Instead, the
special conditions of indoor localization requires diéfiet approaches as it fits better with short
range sensors such as vision, ultrasounds, or recentiywitle band (UWB) sensors.

We propose in this paper a method to retrieve the pose of alenaitiot using vision sensors
that are attached to the indoor environment. The cameras ffart of a sensor network known
as “Intelligent Space” [1] [2] [3]. The idea behind is to péasensors in a bounded area, which
are connected to a centralized system which analyze themiatton and make decisions. A set of
“agents” such as robots, display screens or any other efectdevice, are remotely controlled by
the environment to accomplish a certain task. Knowing wiseich agents are, specially mobile
robots, with enough accuracy and robustly is quite impafi@nalmost any oriented application

of “Intelligent Spaces” like human assistance, robot dlegysurveillance and more.

A. Previous Works

Despite the potential of using camera networks to localotots, there are relatively few
publications on this area compared to those in which the carmeniquely inside the robot [4] [5].
Some examples of robot localization with camera networkdesfound in the literature, where the
robot is equipped with artificial landmarks, either acti§ [7] or passive ones [8] [9]. In other
works a model of the robot, either geometrical or of appeaafilO] [11], is learnt previously
to the tracking task. In [12] and [13], the position of staditd dynamic objects is obtained
by multiple camera fusion inside an occupancy grid. An appeze model is used afterwards to
ascertain which object is each robot. Despite the technigee for tracking, the common point
of many of the proposals found in the topic comes from the tiaat rich knowledge is obtained

previously to the tracking, in a supervised task.
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B. Localization based on Natural Appearance

In this paper we present a localization system which notsssrg relies on invasive beaconing
or previous supervised learning tasks. Instead of that, wpgse a system that does not need
artificial landmarks placed on the robot or any initiallynead CAD model of its structure. The
system needs only as prior information, the rigidity asstiompin the geometry of the object to
track and the calibration parameters from the set of cameras

Obtaining the pose of a mobile robot using cameras, in theratgsof other information,
requires to define a common coordinate origin attached toothet’s volume from which to refer
the pose. As a consequence, in general terms, the pose temeabvered without recovering also
geometrical information that defines the robot’s coordraigin. In most of the cases the robot's
geometry is easily observed in the images as points, linasyother tractable entity, whose three-
dimensional equivalent is possible to be inferred from iepigjections. As a consequence, in this
paper the robot’s pose is jointly obtained with a set of tkdgeensional points from the robot’s
structure.

The computer vision community has developed a set of wideed solutions for the prob-
lem of obtaining rigid structure from motion. There are mamplications of both sequential [5]
[14] and batch approaches [15] [16] [17] and it is considexedainly solved problem. Most of
these methods are focused on scene reconstruction usingiagmmamera, so that the geometry
completely surrounds it, instead of occupying a small amholihe main efforts are spent at the
moment on the creation of unsupervised methods for reasigin, which are able to manage
with high amount of information (thousand of points in huedls of different views) or incomplete
data sets.

Usually online methods can be split up into two parts. Birsth unsupervised initialization

algorithm is used to set up geometry from motion using a medfierence. Using auto-calibration
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techniques [18] the camera parameters are obtained in$ledlay are unknown. The second step,
which is online, combines the previous time estimation ttawbobject pose given the geometry

[17]. The intention of this paper is to show how to adapt sygtreaches to compute the pose and
structure of the robot.

In [19] a system with the same objectives that the presenempayhich performs robot lo-
calization using a single camera is proposed. In such pedles initialization is solved using a
“bundle adjustment” approach which needs the odometryrmm&dion from the robot to serve as
metric information. The online solution is solved using aust method to avoid outliers allows
the system to work under oclussions and false matchings @dper extends the proposal made
in [19] and extend it to work with several cameras, explotimg especial assumptions necessary
in such case. The statistical approach is maintained irptiper as the basis to achieve the online
pose and structure of the robot.

The paper is organized as follows: §H the objectives and a general schema of the proposal
is presented. The problem of measuring information withdhmera is explained iflll. The
initialization of pose and geometry of the robot from seleeaneras is presented §V. In §V
the Online algorithm which obtains robot’s pose given imagasurements is explained. Finally

in §VI and §VII both the experimental results and the conclusions ofoyeer are discussed.

1. OBJECTIVES ANDPROPOSEDAPPROACH

The objective of this paper is to obtain the pose, and coregtyustructure, of a mobile robot
which is seen by a set of calibrated cameras fixed to the emvieat. The pose of the robot and
the extrinsic parameters of the cameras are referred tolalgbmordinate origirOy,, which is
set up in a calibration step. We propose a system capableo€irg the information previously
required from the object to localize. Unlike the single caarsolution presented in [19], where the

odometry readings are necessary in the set up, the propesanted in this paper take advantage
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of using several cameras, removing the need of additiof@nmation apart from the images.

Our proposal to indoor localization consists of a seriesifiém@nt blocks specialized in re-
trieving and filtering the information available from thawaras in order to obtain the pose of the
robot. The processes are divided into those which competpdke of the robot online and those
contributing to set up the information required by the oalaigorithm (Initialization processes).

In Fig. 1 a schematic view of the entire algorithm is given
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Fig. 1. Algorithm’s schematic view

1. Initialization of Pose and Geometry: Initially, neither the pose nor the structure of the
robot are known and so a method to ascertain both is propdsetiort trajectory of the
robot is sufficient to get enough accuracy in pose and streickonportant issues concerning
immunity against outliers, accuracy in function of robottpand number of cameras is
addressed in this block.

2. Online Pose Computation: The online computation assumes that the initializati@p st
was successful, so the structure and last pose are avaitabtemputing the next one.
This block must be robust to avoid false matchings betweernrdbot’s structure and its
measurements.

3. Onlinelnitialization of New Geometry: Apart from obtaining the pose online, the system
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is able to increase the knowledge about robot’'s from thaainbt in the initialization.
The goal is to use the information given at any time by then@nfirocess to include new
robot’s geometry points that were not previously known.s8tep provides a simultaneous
approach for structure and motion retrieval.

4. Measurement Process: The measurements with the set of cameras provide the gus i
the known structure points from the robot in the image plaemethod of natural marker
tracking is proposed which combines an interest point detedth a tracker of points.

5. Information fusion: This block combines the solution to pose given by all avddaneth-
ods. In this proposal its inclusion is given as a matter afitgldut its implementation is

not detailed.

A. Definitions and Notation Used

Robot’s pose at timé is described by a vectak,. Usually for 3D motion (6 D.O.F) the
vector is composed of 3 position components and 3 oriemtatiglesX, = (xx, yx, 2, @, 3,7). For
wheeled robots whose motion lie on a plane vector posis reduced to 3 components;, yx, «).
Motion modelX; = f(X,_1,U,) obtains actual position with respect to previous time aedrtput
Uy given by odometry (i.e. angular speed and linear speed abthat), if available. The kind of
motion model is tightly coupled with the robot’s hardwarel éime odometry measurements. In our
proposal, it is not essential to know exactly how the robovese but if available it can be useful
to increase the convergence of the algorithms.

The geometry of the robot is composed by a sparse s&t®b pointsM = {M*! ... MV}
referred always from a local coordinate origin describeddbpot’'s poseX,. The points are static
in time due to robot’s rigidness, and thus, no temporal sddins required. FunctioMg‘(k =
t(Xy, M") uses actual posE; to express\/* in the global coordinate origi@y that X, is referred

to (see Fig. 2).



Pizarro et al.: LOCALIZATION AND RECONSTRUCTION OF MOBILE@BOTS USING A CAMERA RING 7

Camera’s

Reference
m

Mk,

World’s
Reference

3D Model
of Points

Reference £

Fig. 2. Spatial relationship between world’s coordinaigiarOyy, robot’s coordinate origil®r and camera’s coor-
dinate originO¢.

The augmented vectoY, which is the state vector of the system, is defined as theatenc

nation in one column vector of both the pasg and the set of static structure poioits:
X = (Xp, M*, - MY) (1)

The camera sensor is modelled by a perfect “pin-hole” modetdbed by its 3x4 projec-
tion matrix P, which encodes intrinsic and extrinsic parameters. Theecamrojection model
is expressed by the non-homogeneous transformatierh,( My, P) which converts a 3D point
My expressed in a global coordinate orighy, into its 2D projectiory in the image plane using

camera parameters.

I1l. M EASUREMENT OFNATURAL MARKERS

On most of natural objects we can find points whose image giiojeis able to be tracked in
the image plane independently of the position the objectipies and based on local properties
found in the image. (i.e lines, corners or color blobs). Eysints are considered natural markers,
as they serve as reference points in the image plane thate@adily relate with their three-
dimensional counterparts. The set of methods focused okitiganatural markers have become

a very successful and deeply studied topic in the litergf2@¢ [21], as they represent the basic
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measurements of most of existent reconstruction methods.
The process of tracking is roughly divided into two main stejpe detection of image candi-

dates of being natural markers, and the process of theitifb@tion under different viewpoints.

A. Detection of Natural Markers

The development of stable interest point detectors has seeressfully achieved since the
first corner detectors where applied. The works propose@2j gnd later improved by the widely
known “Harris” detector [23] have been extensively used angnvision geometry tasks. The
“Harris” detector has proved to be stable enough under &tyadf projective transformations,
allowing its use as a reliable natural marker detector. Thenrdrawback of the “Harris” corner
comes from its sensitiveness to image scale, failing toati@&orner in objects at very different
distances from the camera. In [24] a scale invariant versidhe “Harris” detector was proposed,
yielding to a very robust and reliable marker detector whwdhbe used in this paper.

Given an intensity imagé(u,v), the multiscale Harris detector gives a numbengfpoints
encoded in the sef = <y1 yNo) which are candidates of being points belonging to robot’s

structure.

B. Matching of Natural Markers

The process of matching consists of describing each fiduwéalided in the set” such that
it can be identified in subsequent images taken at differbjeictis poses. In the literature there
is a vast knowledge on how to efficiently track fiducials [2%]6] [24], by using appearance
information retrieved around the point detected (i.e texpatch).

Among them, the most used nowadays was proposed in [24] @heecronym SIFT. It has
been extensively used in many tasks as Structure From M¢&iBNI) or object recognition.

The SIFT method consists on finding a quasi-affine invariascdptord:, which represents
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each point/:. Instead of directly using image appearance, the desciigptibtained by codifying
the appearance using a set of orientation histograms framaad fexture patch around the point.
The orientation histograms are referred to the principi@mation found in the patch, so that the
same descriptor is obtained under different transformatié simple Euclidean distance is enough
for finding a correspondence between descriptors of the gané Each descriptor is associated
to a scale detected by multiscale “Harris” and a principadrdation.
In general the SIFT method introduce false matchings whest afsdescriptors are used to

identify their new position in input images. Those false chatgs are named “outliers” and their

number or identity are not available using only image appeee (see Fig. 3).

OUTLIER

Fig. 3. Matching of natural markers, represented as fins linetween two positions of the robot viewed in the same
camera.

In the rest of the paper, the way the method SIFT is applieefisi the background with the
intention of not blurring the concept. However, the measumets and their identification with the

robot’s structure are based on descriptor matching, anthiaysare susceptible to contain outliers.

IV. INITIALIZATION OF POSE AND GEOMETRY

In this section the initialization of the pose and geomefithe mobile robot by a minimum of
a pair of cameras is assessed. Due to the wide-baseline w@tian, where two cameras can give

complementary views of the robot's geometry, we proposaisidection a structure from motion
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scheme of reconstruction. The basic idea is that each cagiver®a series of tracks corresponding
to the geometry they seen, taken from a short sequence ajtibéin motion. Such information is
combined to give the common solution to the robot’s pose haddconstruction of the geometry
seen by all cameras. In this approach, the matching of ptiimtaigh several cameras is not
necessary and it is replaced by tracks on each camera dubdbmmtion, which is generally a
better posed problem.

To find the solution, we propose to use a “Bundle Adjustmeathhique, which is able to
optimally and efficiently reconstruct the position and stawe of the robot using image measure-
ments. The presented method obtains the solution for thefsstigmented vectors along the
initialization sequence&, - -- , X that minimize the error between measurements in the image
plane and the expected measurements obtained by using pra@getion models and the structure

points included inX}.

A. Preliminary definitions

The initialization sequence consists of a sefofime samples starting from= 0 where the
robot is in motion. The pose vector,, - -- , X define the position and orientation of the robot
at each time sample of the trajectory. Whenever the odonsgstem is available in the robot, a
noisy measurement of eaéhh i =1,---, K gives an estimation of the pose using the recursive
motion modelf and the starting pos&,.

There is a set oV > 2 cameras involved in the initialization process and, foritgurposes,
all the cameras observe the robot in the sequence. On ea@radet say camera, a set of NV,
points from the robot’s structure are tracked using the Stf€ethod commented in Ill. We cannot
assure that for different cameras the number of detectedure@aents remain constant so, in
general V,, is function of the camera index.

At frame k and with the camera the measurement vector consist of the following:
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ve=(uh ™) v = (o), 2)
where for clarity, the upper index of the vectof refers to the camera index, and the oneg/in
states for the number of detected feature, removing theemde to the camera which is left
implicit. The global measurement vectoy, is the concatenation in a single column vector of all
the measurements from all cameras.

YL:<\<Y11 y&) <Y1Nc yifyc))T -

J/ (. J/
~~

~
Cameral Cameran

Each single measuremeyitat timek is a function of the parameters of the camera it belongs

to, the pose vectak, and its respective point/’/ of the object’s structure.

vi = h(t(Xx, M7), P,) + v} vi, = N(0,5,), (4)

where the correspondence of’ with the ith point seen by the camerais given by the

following default ordering in the augmented vector:

X;‘j:(Xk (]\/[1 ]\/[Nl) (MT ]V[r+NNC)>7 )

Cameral CameraN .

wherer = SN TN

n=1
B. Building the Cost Function

The complete set of unknowns is composed of the set of pogée imajectoryXy, - , X
and the 3D coordinates of the points seen by the caniérag =1, - -- »ZnNil N,. All parameters

are packed together into the objective vecbor

= (Xpo Xpe, M, MY)  N=3"N, (6)

n=1
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A cost function is built in function of> to compare the error between the real measurement of

vectorY;, with its estimation, here named &g, and obtained using the projection models (4):

= (Y, — YL)TEF(YL — YL)? (7)
whereX:; represents the covariance matrix of vect@r which is a diagonal block matrix,

where each block represents the noise of a single measuréiperihe expression (7) can be

rewritten into the following addition of terms:
K )
=) Wk = 905 (g — )" (8)

In [19], a similar approach is made by using a single camenagkier in that case the; mod-
els the growing error behavior of the odometry estimatignt 8 included as a metric reference in
the algorithm.

The minimum of (7) with respect t® gives the value required to reconstruct the entire initial-
ization trajectory. To reach the minimum, the iterativeimization method Levenberg-Mardquardt
is used. The analytical expression of the first and secondatieres of (7) with respect to the un-

knowns are required to compute a single step of the optimizat

B.1 Outliers Rejection

As the tracking used in the initialization is based on imagpearance matching it is very
probable the presence of erroneous measurements ivigiddich do not correspond to any 3D
point from the robot’s structure. The identification of symints, called “outliers” is decisive for
a successfully initialization.

The cost function (7) is designed to model possible Gausigarations of the solution com-

pared to the measurements, which are suitable to contage.n®he distribution of outliers gen-
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erally does not fit into such modelling and so their presendle optimization yields to a biased
solution. The solution to that situation comes from usinglaust cost function capable of mod-
elling the outlier distribution, removing its influence imet solution. The equivalent cost function

results in the following:

Ne Np

E="3> pllyi — )% i — 90", ©)

k=1 n=1 i=1

wherep(s) can be any increasing function witf0) = 0 and £ (0) = 1 (See [27] for more
details). The following; is proposed in this paper, which models the outliers as a lGadistri-

bution:

S

=3 (10

p(s) =b?log 1+

wherel? is used as a control parameter which determines for whioerafis the function is
approximated by a quadratic function, and which range isiclemed as outliers.
One of the main drawbacks of using robust cost functionsdasrtbreasing of the nonlinearity

of the problem, which generally affects the convergencegnties of the algorithm.

B.2 Initialization before optimization

The optimization method to minimize the cost function regsiia guess value for the solution
® from which start iterating. It is preferable to chose a vahseclose as possible to the real
solution, so that the probability to reach the global minimincreases.

A very simple proposal is made in this paper to get an initisdgs of the solution. It consists
of the following steps:

« For each time instant and camera: the center of mass of the points encoded’jnis

obtained. [(}).
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« The position of the robot at timé z,, y., 2, not including the orientation parameters
ax, Bk, Yk, IS Obtained by camera triangulation of the center of mass calculated, sup-
posing they represent the same point in the three-dimealsspace.

« Once the set ok + 1 positions are available,, vy, 20, - - - Tk, yx, 2K, the set of orientations
0o, Bo, Y0, , 0K, B, 7x are set so that they follow the kind of motion we expect in the
object. Generally the objects present a non-holonomicanpso we aligned the orienta-
tions, following the curvature of the motion. However, i tbase that the object’s motion
is entirely holonomic, a random value can be used instead.

« The geometry of the robat/!,--- , M¥ is initialized randomly around a volume bounded
by a sphere of radiu®, which can be obtained by calculating the minimum sphere tha
covers the image measurements of all cameras at a speaifie.fra

In the case that the odometry readings are available, oalinthal poseX, and the geometry

of the robot are guessed as was mentioned before. Afterdbimnation the motion model and the

odometry reading&’;, - - - ,Ux generate the rest of posas,---, Xx.

C. Obtaining the Gaussian equivalent of the solution

Once the minimum of (7) is reached, it is desirable to obtagndovariance matriX{. of the
vector X ¢, in order to connect the initialization step with the onlaggproach of the next section.

The covariance matriX¢ of the optimized parametes is easily obtained by using a local
approximation of the terny’ — Y in the vicinity of the minimum. The resulting results from

the following close expression:

Yo = (JTSL) T, (11)

where.J is the Jacobian matrix df with respect to parametefis The Jacobian is available

from the optimization method, in which is used to computeitiation steps.
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By truncating both the solutiof and its covariance matriXq, the augmented vectdf;. and

its covariance matrix}. are obtained.

V. ONLINE ALGORITHM

In this section the solution t&} given the last pose information is derived. The fact thét las
frame information is available and the assumption of softiombetween frames allows to greatly
simplify the problem.

A special emphasis is given in this document to the fact thapaocess handled by the system
is considered a random entity, in fact a Gaussian distobudefined at each case by its mean vector
and covariance matrix. The problem of obtaining pose anttsire, encoded X} given image
observationg’, and the last pose informatioki;_, is viewed from the point of view of statistical
inference, which means searching for the posterior prdibadistribution p(X|Y1,---,Yx). That
distribution gives the best estimation &f' given all the past knowledge available.

The online approach is divided into three steps:

« Estimation Step: using the previous posg;?_; and the motion model a Gaussian distribu-

tion which infers the next state is giveX,|Y1, -+, Yk).

« Robust Layer: the correspondence problem in this point easily fails, s@&ch camera a
number of unlabeled outliers pollute the measurement vég¢taUsing a robust algorithm
and the information contained in the state vector, the engtiare discarded before the next
step.

« Correction Step: using an outlier-free measurement vector, we are confidamdd all the
information available to obtain the target posterior disttionp(X|Y,- -, Yx)

In all three steps we would manage the idea of propagatinigtsta over non-linear functions

(f andh). We show how to face the problem using first order expansasnis offers more com-

pactness and is more readable. However as is stated in [di@] gine other methods for Gaussian
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propagation (e.g. the Unscented Transformation) withebetiatistical performance and that are

less biased than the first order expansion we show here.

A. Estimation Step

The estimation step uses the motion models available totinéenext pose of the robot. Such
transit is often a process of uncertainty addition, as theananformation is not given accurately
or only linear motion models are available. It includes adatp of the mean and covariance of the

last pose as follows:

Xie—1 = 9" (X5, Uk) (12)
tho = JxZh 1 Ix + I Ew o, (13)

where Jx and Jy are the first derivatives of the functigsf with respect toXy , and Uy
respectively. Usually/x in odometry systems is the identity, so at this step the ¢awee matrix

ZCL

#x—1 results to be bigger in terms of eigenvalues, which meanertainty.

It must be noticed that the motion modglleaves untouched the structure points contained in

the state vector as we suppose that the object is rigid.

B. Correction Step

The correction step removes the added uncertainty in tiaa&sbn by using image measure-
ments. It passes from the distributipfX | Y7, - -, Y;_1) to the target distributiop( X | Y7, - -+, Y),
which includes the last measurement.

It is mandatory to remark that the measurement vector initie@process’, does not share
the same structure that the one used in the initializatiocgsses, where each camera observes
a separated set of points. Instead, due to robot’s motignpaimt is suitable to be seen by any

camera and a group of cameras can see the same point.
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Using the estimation shown in (12), and knowing the corragpace between measurements

with the camera and structure point of the state vector, stimated measurement is given:

Yipeos = h4(X2) (14)
s = i Shjp_1n+ v (15)
Yxay = Egpp_1Jh, (16)

where.J,, is the Jacobian matrix of the functids with respect toX; andXy is block diagonal
matrix with X, on each block.
The correction step itself is a linear correction’fj, , andxy,, , by means of the Kalman

gain Kg:

Ko = zxayz;kl‘kil (17)
Xi = Xgjpo1 + Ka(Ye — Yip-1) (18)
Y = i|k_1 - KGZ§¢1Y (19)

As it is stated in (19) the resultingg is reduced compared LT which means that after

the correction step, the uncertainty is “smaller”.

C. Robust Layer

The robust layer has the objective of removing bad measurefremY’, to avoid inconsistent
updates ofX in the correction step. We propose and extend the same idpaged in [19], in
which a RANSAC algorithm [28] is used between the estimatind correction step. The general
idea is to found among the measured dgta set which is agree in the solution &f they will

give at the correction step.



Pizarro et al.: LOCALIZATION AND RECONSTRUCTION OF MOBILE@BOTS USING A CAMERA RING 18

In the literature, the RANSAC algorithm uses a close formigoh for the problem of inferring
X} given the measurement$ or alternatively a geometrical constraint that can be figiech as
fundamental matrixes or the trifocal tensors. In this paperpropose to avoid such complex
structures and to take advantage of the versatility whi¢arefthe Kalman filter. We make no
distinction of which measurement comes for which camerd,implement RANSAC sampling
over the entire set of measuremelts For each subset af, used in RANSAC, the correction step
is used to obtain the most voted:. This approach allows for example to include the informatio
of all cameras at once without needing of camera groupirgy @mbinations of two for fitting
fundamental matrixes).
Some previous definitions are needed prior to use introdéd¢SAC:
« ¢ is the expected probability of “outliers” inside measureise
« From the measurement vectigr which has in generaVy elements, groups of measure-
ments, denoted a5 are selected randomly.
« Itis defined asX}; = F'(X},, ,,Y}’) which computes the pos€; using a minimum number
s of measurements. This function is implemented using theection step expressions
shown in B reduced to use measures grouped insfde
« The functiond = D(X¢,y;) gives the Mahalanobis distandebetween a single measure-
menty; taken fromY;, and its estimatioy; using Xy
d = (y, — 0%, (v — 98)" (20)
whereZy;-C is obtained by propagating the statistical propertie¥ pthrough the projection
model.
« The probability of finding at least a set ©omeasurements* free from “outliers” is defined

asp (e.gp = 0.99).

! The upperindex must not be misled with the notation we used in IV in which tpperindex was used to indicate the camera
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« N;, is the number of correct correspondences associated to al tkipd
« NPestas the biggest number of inliers found in a set of correspoceteassociated to the
best solution forX;. .

« The number of iterationd’*, necessary to achieyehas a close form:

it lOg(l _p)
N = gt — =) 1)

Finally the general RANSAC method is presented in Algorithm

Algorithm 1 RANSAC
1. N* =0, Nt =0, X¢,,, N=1,p=0.99.

2. while N** < min(N,N%_ ) do

3: Random sampling of!,---y” to obtain a set’* with s elements.

a: A model hypothesis is obtainedl = g,(Y*, X*) and the set™ = {m; ||g(X,y’, M*)| <
dpmaz } With size Ny,.

5: if N, > NPest then

6: X2, =X e=N,,/N.
. it __ log(1—p)

£ N = et--

& endif

0: Nt =N +1

10: end while

The number of measurementsised to randomly samplg, is defined to be = 4 as this is
the minimum required to compute the pose of a 3D object usiragie measurements.
VI. RESULTS

Our proposal is tested using synthetic generated data ahdmwages taken in a room with

four cameras.
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A. Synthetic data

The synthetic data is generated artificially according godbnditions which will be encoun-
tered in a real configuration. A maximum 6f. = 8 cameras are situated approximately forming
a rectangle ofm x 3m as it is shown in Fig. 4. The robot’s geometry is formed by ao$@bints
randomly distributed inside a cylindrical volume of half @ter of radius and one meter height.
The robot follows a differential motion model over the grdyslane, ruled by its angular, and
linear speed, encoded inJ, = (wy(°/s),vx(mm/s))T. The vectorU, is affected by a motion
noise with covarianc®,, = diag(c? = 1,02 = 10) The pose of the robot is thus composed of the
2D position in the ground plangry, y) and the single orientation angle. The measurement
noise is fixed taXy = 10 - Ir«». The intrinsic parameters of each camera are variationisasfet
encountered in a low cost sensor with) x 480 pixels of resolution with a CCD sensor f3”
size and a optic with a focal length 6fnm. The trajectory described by the robot consists of a
circumference of radiugm’ which takes place inside the common area viewed by the camera

Both the initialization and online experiments run usinglstrajectory, so that we can compare

the accuracy in fair circumstance.

1000
2000 y(mm)
3000

4000

1000 5
X(mm)®  _1000

Fig. 4. Distribution of cameras and robot’s trajectory usedenerate synthetic data.

The experiments are divided on those dedicated to thelin&tion method proposed and those
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used to test the online algorithm.

A.1l Initialization method

In this experiments we consider that each cameobserves a numbey¥,, = 6 points from
the robot’s structure. The trajectory is downsampled, sb &h= 50 positions. We observe that
adding more time samples does not achieve better accuracy.

The following experiments are proposed:

« Errorin pose (Fig. 6.a) and geometry (Fig. 6.c) versus % dfeys in the measurements.

« Errorin pose (Fig. 6.b) and geometry (Fig. 6.d) versus % otliexs in the measurements,

when the robust cost function is used.

« Errorin pose (Fig. 5.e) and geometry versus (Fig. 6.f) % efdincular path made.
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Fig. 5. Experiments of the initialization method using $\atic data.
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A.2 Online method

The robust approach of the initialization algorithm is usedet up the pose and geometry
X¢-. The online algorithm covers the circular path startingesée online algorithm ended.

The following experiments are proposed:

« Error in pose and geometry versus % of outliers without rolayer. (Fig. 6.a)

« Errorin pose and geometry versus % of outliers. (Fig. 6.b)

« Error in pose and geometry versus time. (Fig. 6.c)
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Fig. 6. Experiments of the online method using synthetiadat

N
=}
3

R &

IS
NS
[ S

w%
@ @ @
8 8 ¥

o
=
1)

B. Real Results

The real experiment is compound of four cameras (see Fij.filliag the same area showed
in the initialization, and a mobile robot which presentalse same kind of motion model used
for the synthetic data. In Fig. 7.a, Fig. 7.b, Fig. 7.d and Fige, the projection of the three-
dimensional model (Fig. 7.d) obtained from the robot is show each of the four cameras.

In Fig. 8 the trajectory obtained using our proposal is shavempared to the one obtained
using odometry from the robot, which is highly noisy. Usinganual annotation procedure, it has

been assessed that the estimation given by our proposdllgased in the whole trajectory.
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Fig. 7. Experiments of the initialization method using reata.
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Fig. 8. Comparison between the online estimation and thenetly system.

VIlI. CONCLUSIONS

This paper has proposed a system that achieves robot latwaiizising several cameras with-
out needing invasive beaconing on the robot or supervisedileg tasks. Compared to the single
camera solution, proposed in [19], which this paper extetidsusage of several cameras allows
to avoid the needed of using odometry systems in the robatyrstage of the algorithm, which

reduces the required knowledge from the object to localize.
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The two steps which compound the system, initializatiorobbit’s pose and geometry, and the
online process are designed so that they are robust agagrnsttusion of outliers in the algorithm,
which is of importance to achieve a reliable solution.

The tests using synthetic data show that the more the cantkealsetter in general becomes
the algorithm in terms of accuracy in both geometry and pstiemation. The algorithm is tested
using in real conditions, performing the localization ofodot using four cameras inside a room.
Using visual inspection , the solution do not present biaslong trajectory and behaves well even
when the object is far from the cameras. Our proposal showrmigng results as a reliable robot
localization system, but also any other rigid object. Thieesgion to tackle multiple robots is quite
straightforward using our approach, as the robust lay&@walo efficiently remove measurements

that do not behave like individual rigid objects.
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