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Abstract 

This document presents a summary of the thesis “Motion segmentation and 3D 

positioning of mobile robots in an intelligent space, using an array of static cameras” 

developed by the PhD candidate Cristina Losada.  The main objective of the thesis is to 

obtain the motion segmentation and 3D localization of multiple mobile robots in an 

intelligent space using a multi-camera sensor system. The set of calibrated and 

synchronized cameras are placed in fixed positions within the environment (intelligent 

space). The proposed algorithm for motion segmentation and 3D localization does not 

rely on previous knowledge or invasive landmarks on board the robots. It is based on 

the minimization of an objective function that combines information from all the 

cameras. The proposed objective function depends on three groups of variables: the 

segmentation boundaries, the motion parameters and the depth. For the objective 

function minimization, we use a greedy iterative algorithm with tree steps that, after 

initialization of segmentation boundaries and depth, are repeated until convergence. 

1. Introduction and thesis objectives 

A common problem in the field of autonomous robots is to obtain the position and 

orientation of the robots within the environment with sufficient accuracy. Several 

methods have been developed to carry out this task. The localization methods can be 

classified into two groups: those that require sensors on board the robots and those that 

incorporate sensors within the work environment [Pizarro et al. 2009] 

The use of sensors within the environment presents several advantages: it allows 

reducing the complexity of the electronic onboard the robots and facilitates 

simultaneous navigation of multiple mobile robots within the same environment without 

increasing the complexity of the infrastructure. Moreover, the information obtained 

from the robots movement is more complete, thereby it is possible to obtain information 

about the position of all of the robots, facilitating the cooperation between them. This 

alternative includes intelligent environments [Lee et al. 2001], [Steinhaus et al. 2004] 

characterized by the use of an array of sensors located in fixed positions and distributed 

strategically to cover the entire field ofmovement of the robots. The information 
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provided by the sensors should allow the localization of the robots and other mobile 

objects accurately.  

The sensor system in this thesis is based on an array of calibrated and synchronized 

cameras. There are several methods to locate mobile robots using an external camera 

array. The most significant approaches can be divided into two groups, depending on 

the previous knowledge about the robots that is required by the method. The first group 

includes those works that make use of strong prior knowledge by using artificial 

landmarks attached to the robots [Sogo et al. 1999], [Fernandez et al. 2007]. The second 

group includes the works that use the natural appearance of the robots and the camera 

geometry to obtain the positions [Pizarro et al. 2009].  

The proposal presented in this thesis is included in the second group. It uses a set of 

calibrated cameras, placed in fixed positions within the environment to obtain the 

position of the robots and their orientation. This proposal does not rely on previous 

knowledge or invasive landmarks. Robots segmentation and position are obtained 

through the minimization of an objective function. There are many works that use an 

objective function [Sekkati & Mitiche 2006a], [Sekkati and Mitiche 2006b]. However, 

these works present several disadvantages such as high computational cost or reliance 

on the initial values of the variables. Moreover, these methods are not robust because 

they use information from a single camera.  

In an intelligent space, two types of agents can be found: controlled agents (mobile 

robots) and uncontrolled ones (potential users and obstacles). The proposed solution 

allows the location of mobile elements, even if they are not robots, however, this thesis 

is focused on the mobile agents that are controlled by the intelligent space. For this 

reason, in this document we will only refer to mobile robots. 

The solution proposed in this thesis allows the detection, segmentation and 3D 

positioning of a variable number of mobile robots, in an intelligent space. It does not 

rely on previous knowledge or invasive landmarks on board the robots.  

The mobile robots we want to segment are equipped with odometric sensors 

onboard. The measurements of these sensors are transmitted via radio to the intelligent 

space. Thus, if it is necessary, the odometric sensor information can be included in the 

algorithm for motion segmentation and 3D positioning, in order to improve its 

performance. 
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The sensor system used in this work is based on a set of calibrated and 

synchronized cameras placed in fixed positions within the environment (Intelligent 

Space of University of Alcalá, ISPACE-UAH). These cameras are distributed 

strategically to cover the entire field of movement of the robots. The software 

architecture chosen is a client-server system using common TCP/IP connections, where 

some servers receive commands and requests from a client. Figure 1 shows a general 

diagram of the proposed hardware/software architecture.  

 
Figure 1. General diagram of the hardware/software architecture in the ISPACE-UAH. 

2. Proposed system for motion segmentation and 3D positioning  

In order to achieve the objectives proposed in this thesis, under the conditions 

described above, it is necessary to carry out a set of tasks. These tasks allow us to solve 

the different problems that arise within the line of research in this thesis. The ultimate 

goal of all tasks is the development of a comprehensive system that allows obtaining the 

motion segmentation and 3D positioning of multiple mobile robots, in an intelligent 

space, with enough accuracy. The proposed solution must be robust against lighting 

changes, shadows or occlusions in the images acquired by the different cameras in the 

intelligent space. Figure 2 shows a general block diagram that includes the different 

stages involved in the process.  
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Figure 2. General block diagram of the proposed method for motion segmentation and 3D positioning of 
multiple mobile robots in an intelligent space.  

Using the work of Sekkati and Mitiche [Sekkati & Mitiche 2006b] as a starting 

point, in this work motion segmentation and 3D localization are obtained through the 

minimization of an objective function. The objective function proposed in [Sekkati & 

Mitiche 2006b] (shown in equation (1)) depends on three groups of variables: a set of 

curves that defines the mobile robot segmentation boundaries in the image plane 
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As can be observed in equation (1), the objective function proposed by Sekkati and 

Mitiche in [Sekkati & Mitiche 2006b] contains three different terms. The first term 

measures the conformity of the 3D interpretation within each region of segmentation to 

the image sequence spatiotemporal variations. This measure is given by the three-

dimensional brightness constraint for rigid objects proposed in [Sekkati & Mitiche 

2006b] and shown in equation (2). The remaining two terms in equation (1) are 

regularization terms, one for depth via a boundary preserving function (g(a)) and the 

other one for segmentation boundaries. 
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In equation (2), s and q are two vectors that depend on the image spatiotemporal 

derivatives [Ix, Iy, It], the coordinates of each point in the image plane (x, y) and the 

focal lengths fx, fy.  
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In [Sekkati & Mitiche 2006b], the minimization of the objective function (1) is 

carried out using a greedy algorithm that consists of three iterated steps. After the 

initialization of the segmentation boundaries and depth, the three steps are repeated until 

the convergence of the algorithm. In each step, two of the three groups of variables are 

fixed, and the equation is solved for the remaining one. After minimization, motion 

segmentation of the mobile robots is obtained. However, proposal of [Sekkati & 

Mitiche 2006b] presents several disadvantages such as high computational cost, or 

reliance on the initial values of the variables (segmentation boundaries and depth). 

Moreover, this method is not robust, and it does not allow obtaining 3D position of the 

mobile robots because it uses information from a single camera.  

Since there are multiple cameras available in the intelligent space, we have 

proposed a new objective function that includes information of all the cameras. The 

minimization of the proposed function allows us to obtain both motion segmentation 

and 3D position of multiple mobile robots in an intelligent space. The use of multiple 

cameras increases notably the robustness of the system. It also improves the accuracy of 

the results (segmentation and 3D positioning).  

2.1.  Objective function for a Multi-camera Sensor System 

The coordinates of a point P = (X, Y, Z)T can be expressed in the different 

coordinate systems in ISPACE-UAH: world, robot and camera coordinate systems. It is 

important to define the different coordinate systems and its relationships to obtain the 

objective function for the multi-camera sensor system. There is a global reference 

system named “world coordinate system” and represented by Γw. There is also a local 

reference system associated with each camera (Γci, i=1,…,nc) whose origin is located in 

the center of projection. These coordinate systems are represented in Figure 3, where 
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the world coordinate system (Γw) has been represented in red color and the coordinate 

systems associated to the cameras (Γci) have been represented in blue.  

 
Figure 3. Coordinate systems in the intelligent space (ISPACE-UAH): World coordinate system (Γw) in 
red color. Camera coordinate system (Γci i = 1,2,…,nc) in blue color. Robot coordinate system (Γr) in 
green color.  

Cameras are modelled as pinhole cameras. This is a simple model that describes the 

mathematical relationship between the coordinates of a 3D point in the camera 

coordinate system (Γc) and its projection onto the image plane in an ideal camera 

without lenses through the expressions in equation (3) where fx and fy are the camera 

focal lengths along x and y axis.  
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If the origin of the image coordinate system is not in the center of the image plane, 

the displacement (s1,s2) from the origin to the center of the image plane is included in 

the projection equations, obtaining the perspective projection equation (4).  
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Before presenting the objective function for multiple cameras, it is necessary to 

describe the 3D brightness constraint for multiple cameras, that is a generalization of the 

3D brightness constraint for a single camera presented in [Sekkati & Mitiche 2006b].  

Let Pw=(Xw, Yw, Zw)T be the 3D coordinates of point P on a mobile robot related to 

the world coordinate system Γw. Let ( )Tz
w

y
w

x
ww vvv=v  and ( )Tz

w
y
w

x
ww ωωω=ω  be, 

respectively, the components of the linear and angular velocity of the robot motion in 

Γw. Then, the velocity of P, relative to Γw, is given by equation (6).  
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In the same way, if Pc=(Xc, Yc, Zc)T are the coordinates of P relative to Γc and 
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cc ωωω=ω  are the components of the linear and angular 

velocity of the robot motion in Γc. The velocity of P relative to Γc is given by equation 

(7): 
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Let Rwc be the (3x3) rotation matrix and Twc the (1x3) translation vector that 

represent the coordinate transformation from the world coordinate system (Γw) to the 

camera coordinate system (Γc). The coordinate transformation is carried out using the 

expression in equation (8).  

c wc w wc= +P R P T  (8) 

Deriving the equation (8) with respect to time, and substituting the expressions of 

the velocities in Γw (equation (6)) and Γc (equation (7)), equation (9) is obtained.  
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Taking into account that cross product Pω×  can be expressed as a scalar product 
Pω ⋅ˆ , where ω̂  is the following antisymmetric matrix: 
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equation (9) can be rewritten to obtain equation (10), where the components of linear 

and angular velocities in Γc (vc, ωc) are expressed as a function of the components of 

velocity in Γw (vw, ωw) and the transformation matrices (Rwc, Twc).  
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Let (x, y) be the coordinates of the projection of a point P on the image plane, the 

derivative of the perspective projection equations (equation (4)) with respect to time, 

and the subsequent substitution of the expression of the velocity components of P in Γc 

allows us to obtain the following equations for motion components in the image 

plane ( )yx &&, :  
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where i
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following vectors:  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

yc

y
wc

x
x
wc

z
wcx

cx
x

yc

y
wc

u f
y

Z
tfxttf

Zf
xf

f
y

Z
tx 12

q  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−=

xc

x
wc

y
xc

x
wcy

wc
z
wcy

cy
yv f

x
Z
t

f
f
x

Z
t

yyttf
Zf

yf 12

q  

The substitution of the velocity components in the image plane ( )yx &&,  in the well 

known brightness constraint ( 0=++ tyx IyIxI && ) allows to obtain a 3D brightness 

constraint for rigid objects in terms of the linear and angular velocity components in Γw 

(vw and ωw). This constraint is shown in equation (13). 
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where the matrices s, q and r in equation (13) are given, respectively, by equations (14), 

(15) and (16): 

( )( )yxyyxx yIxIIfIf +−=s  (14) 

( ) ( )( )yf
f

xf
f

yxf
x

xuyxf
y

yv IxIyIyIxIfIyIxIf
u

v

v

u

uv
⋅+⋅−⋅+⋅+⋅+⋅−−=q  (15) 

( )
( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

−+−
=

0
0

0

xuyv

xuyx

yvyx

IfIf
IfyIxI
IfyIxI

r  (16) 



Ph.D Thesis Extended Abstract 

9 

3D brightness constraint in equation (13) must be satisfied in all of the nc cameras. 

Knowing it, we define a new 3D brightness constraint for rigid objects which includes 

all the information provided by the nc cameras available in the intelligent space  

(equation (17)).  
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cniNk ,,2,1;,,2,1 KK ==  
(17) 

Constraint in equation (17) is defined for each region, in each camera. If there are 

N-1 robots in a scene, the scene is divided into N regions (region N corresponds to the 

background). We have added two subscripts to denote a region: subscript k 

(k=1,2,…,N), which indicates the region in each image, and subscript i (i=1,2,…,nc) 

which indicates the camera. It is worth pointing out that the components of the linear 

and angular velocity in the world coordinate system do not include the subscript i to 

indicate the camera because these velocities are equal for the nc cameras.  

The objective function for the multi-camera sensor system proposed in this work, 

equation (18), depends on three groups of variables:  

• A set of N-1 curves { } cni
Nkki

,,1
1,,1

K

K

=
−=γ  that divide each image in N regions. These 

curves define the boundaries of the segmentation in the images acquired by 

each camera.  

• The components of the linear and angular velocities { }N
kwk 1=v , { }N

kwk 1=ω  of the 

(N-1) mobile robots and background. These velocities are related to the world 

reference system Γw and are equal for the nc cameras.  

• The depth (distance from each 3D point P to each camera). The value of depth 

in each point coincides with the Zci coordinate of the point P related to the 

coordinate system of the camera i Γci. 
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In equation (18), kiψ  is the 3D brightness constraint (defined in equation (17)) for 

the pixels inside the curve k in the image acquired by the camera i; λ y μ are positive 
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and real constants to weigh the contribution of the terms in the objective function (18) 

and ),( yx ∂∂=∇  is the spatial gradient operator. 

As in the objective function for one camera (equation (1)), the first term in (18) 

measures the conformity of 3D interpretation to the sequence spatiotemporal variations 

in each region through the 3D brightness constraint for a multi-camera sensor system. 

The second integral is a regularization term of smoothness of depth, and the third 

integral is a regularization term of the N-1 boundaries. 

2.2.  Objective function minimization 

The objective function in equation (18) includes information of all the cameras in 

the intelligent space. In this work, objective function minimization is carried out using a 

greedy algorithm that, after the initialization of the variables, consists of three iterative 

steps. Before the minimization, it is necessary to initialize the curves that define the 

contours of the segmentation and depth in the images acquired by each camera. Both, 

the initialization process and the minimization algorithm are explained below. 

a)  Obtaining 3D motion parameters by least-squares method 

In the first step the curves that define the contours of the N-1 mobile robots on the 

scene acquired by each camera are fixed. The value of the depth (Zc) of each point on 

each camera image plane is also fixed. So, the energy to minimize, defined as a function 

of the components of the linear and angular velocities related to Γw, reduces to (19).  
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Since the 3D brightness constraint for nc cameras (17) depends linearly on vwk and 

ωwk, 3D motion parameters may be obtained using the linear least squares method.  

b)  Estimating the depth using the gradient descent method 

In the second step, the function to be minimized in order to recover the depth is 

shown in (20). In this function, χki is the characteristic function of region k in the image 

acquired by the camera i (Ωki). 
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Given a set of curves { } 1
1
−
=

N
kkiγ  that divides the image acquired by each of the nc 

cameras into N regions { }N
kki 1=Ω , the derivative of (20) with respect to the depth, for 

each region k in each of the available cameras is given by (21).   
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The Neumann boundary condition is added to these equations: 0=∂∂ nZ , where n is 

the unit normal vector to the boundary of the region Ωk. The descent equations for any 

region and for any camera are shown in (22). In these equations τ indicates the 

algorithm execution time and g’ is the ordinary derivative of the boundary preserving 

function g.  
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There are different boundary preserving functions (g(a)) in the literature. In this 

thesis some of these functions have been studied, concluding that all boundary 

preserving functions are equally valid, although they require a proper adjustment of the 

constant μ. For simplicity, in this thesis, the quadratic function (g(a) = a2) has been 

used.  

c)  Curve evolution for 3D motion segmentation 

In this step the depth Zci and 3D motion parameters { }N
kwkwk 1, =ωv  in Γw are fixed. 

Then, the energy to be minimized with respect to the curves that define the mobile robot 

contours { } cni
Nkki
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−=γ  in each image, is shown in equation (23), where 
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For multiple region segmentation, the following derivative, for the images acquired 

for each of the nc cameras, are obtained:  
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And the corresponding Euler-Lagrange descent equations:  
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In (24) and (25) 
kiγκ  is the mean curvature of contour defined by kiγ , nki is the exterior 

unit normal function to the curve kiγ  and functions ϕki are defined by equation (26).  

( )( ) ( )( )ss kijikjkiki γξγϕ
≠

= min  (26) 

For the implementation of (25), each curve kiγ  is represented by the zero level set 

of a function Φki, the interior of kiγ  corresponds to the set {Φki >0} and the exterior 

points of kiγ  correspond to {Φki <0}. So, the following system of coupled partial 

differential equations are obtained:  

( ) ( ) ( )( ) ( )
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xxxxx λκϕξτ
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where the mean curvature 
kiΦκ  is given by: ( )kikidiv Φ∇Φ∇  and the function ( )xkiϕ  is 

shown in (28). 
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 (28) 

After initialization, the three stages described above are repeated until the algorithm 

convergence. The algorithm converges when the computed variables cease to evolve 

significantly.  

3. Curve and depth initialization 

The proposed method for motion segmentation and 3D positioning requires the 

initialization of several variables:  

• A set of N-1 curves { } cni
Nkki

,,1
1,,1

K

K

=
−=γ  that divide each image in N regions. These 

curves define the boundaries of the segmentation in the images acquired by 

each camera.  

• The depth (distance from each 3D point P to each camera). The value of depth 

in each point coincides with the Zci coordinate of the point P related to the 

coordinate system of the camera i, Γci. 
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It is also necessary to estimate the number of mobile robots in the scene.  

The initialization process is very important due to the high reliance of the results on 

the initial values of the variables.  This process includes three different steps: in the first 

step, we obtain the initial curves. Since cameras are located in fixed position within the 

intelligent space, the N-1 initial curves are obtained using GPCA (Generalized Principal 

Components Analysis) [Jieping et al. 2004]. Then, the initial depth (relative to each 

camera coordinate system Γci) is obtained using Visual Hull 3D [Laurentini 1991] 

which allows obtaining a 3D occupancy grid (composed by cubes with size Δh) in Γw 

from the initial segmentation boundaries, that have been computed previously using 

GPCA. Finally, an extended version of the k-means algorithm is used to estimate the 

number of mobile robots in the scene. The three steps are described below.  

3.1.  Curve Initialization 

As previously mentioned, GPCA [Jieping et al. 2004] is used in this work to obtain 

a background model for each of the nc cameras. Background modelling is carried out 

from a set of Ni background images iN
jj 1}{ =I  that do not contain any mobile robot. Using 

GPCA we obtain two transformation matrices, Lci and Rci, for each camera. These 

matrices are calculated in each camera, and they represent the background model. Since 

the cameras are placed in fixed positions within the environment, the background 

modelling stage needs to be carried out only once, and it can be done off-line.  

Both, the number of images (Ni) considered to create the background model and the 

number of principal components (d), determine the quality of the transformed image. In 

this sense, several experimental tests have been carried out. In these tests, different 

image sequences acquired in the ISPCE-UAH have been used. These experimental tests 

have allowed us to conclude that 10 images and 1 eigenvector are enough to build a 

suitable background model under the conditions raised in this thesis (interior 

environment with artificial lighting).  

GPCA [Jieping et al. 2004] is also used to initialize the segmentation boundaries by 

comparing each image to the background model. In this stage, each image is projected 

(equation (29)) to the GPCA space using the matrices L and R (that have been obtained 

previously). After that, the image is reconstructed (equation (30)). In these two 
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equations M represents the mean of the Ni images that have been used to obtain the 

background model.  

RMILI )( −= T
T  (29) 

MRLII += T
TR  (30) 

Then, the reconstruction error is computed. This error is defined as the difference 

between the reconstructed (IR) and the original (I) image and can be calculated 

subtracting the images pixel-to-pixel, but this approach is not robust against noise. 

Therefore, we define a set of pixels (window) around each pixel (with dimensions qxq) 

called Фwi in the original image an wiΦ̂ in the reconstructed image, and we obtain the 

reconstruction error for these windows, using equation (31).  

In order to setting up the window size (q), several experimental tests with different 

images belonging to different image sequences acquired in the ISPACE-UAH have 

been carried out. As a result of the experimental tests, it has been decided to use a 

window size of 3x3 pixels for the calculation of the reconstruction error. This window 

size allows reducing the noise in the input images, without increasing excessively the 

time required for the calculation of the reconstruction error.  

wiwiwi ΦΦ ˆ−=ε  (31) 

Pixels whose reconstruction error (calculated using equation (31)) is higher than a 

threshold are candidates to belong to a mobile robot, because in those pixels there is an 

important difference between the current image and the background model. The value 

of the threshold is very important. In this line, an adaptive threshold has been defined as 

a function of the difference between the average intensity of the input image (I) and the 

average intensity of the background images ( fondo
mediaI ) [Losada et al. 2009]. This adaptive 

threshold is defined in equation (32) 
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 (32) 

The adaptive threshold defined in (32) has been validated by means of a set of 

experimental tests. These experimental tests have been carried out using several image 

sequences, with different characteristics, acquired in the ISPACE-UAH. In order to 
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evaluate the effect of the lighting changes, the test image sequences include both, 

artificial and natural changes in the intensity of the images.  

After setting the threshold, the proposed solution for curve initialization allows us 

to obtain the initial curves by using GPCA. A block diagram including all the stages is 

shown in Figure 4. All these stages have to be executed for each camera to obtain the set 

of initial curves  { } cni
Nkki

,,1
1,,1

K

K

=
−=γ  for each one.  

 
Figure 4. General block diagram of the proposed method for curve initialization using GPCA. 

In order to reduce the effect of the shadows casted by different objects, we have 

added a final step to remove them. When the robots move in a plane, it is possible to 

remove shadows easily by removing the pixels whose height in Γw is zero. However, we 

have decided to consider the case of robots that are moving in a not flat surface. Under 

these conditions, shadow removal is done by projecting each input image to an 

illumination-invariant space [Finlayson et al. 2002], [Finlayson et al. 2006].  

Before projecting the input images, it is necessary to determine the projection 

direction. This direction can be obtained through the color calibration of the cameras. 

[Finlayson et al. 2002]. In this thesis we have not calibrated the cameras, so, the 

invariant direction is set by entropy minimization [Finlayson et al. 2004].  

It is necessary to highlight that the use of the proposed solution for the initialization 

of the curves improves the quality of the initial curves with respect to the use of circles 

(as proposed in the work [Sekkati & Mitiche 2006a] or [Sekkati & Mitiche 2006b]) 

because the initial curves are closer to the real contours of the robots. This involves a 

reduction in the number of iterations of the algorithm when minimizing the objective 

function, with the consequent reduction in the processing time.  
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3.2.  Depth initialization 

After curve initialization, Visual Hull 3D [Laurentini 1991] is used to obtain a 3D 

occupancy grid (composed of cubes of size hΔ ) in Γw from the initial segmentation 

boundaries computed previously. Figure 5 shows an occupancy grid obtained by using 

VH3D. This grid has been obtained from the curves shown in the images of the same 

figure.  

   

 
Figure 5. Input images belonging to a test image sequence, initial curves obtained using GPCA and 3D 
occupancy grid obtained from the initial curves by using VH3D.  

The 3D coordinates of the occupied cell are projected from Γw to each camera 

coordinate system Γci (i=1,…,nc) through the transformation matrices (Rwci and Twci) to 

obtain a set of points on the mobile robots in Γci. This process provides an effective 

method for depth initialization in each camera. Figure 6 presents a block diagram 

including the main steps in the depth initialization process.  

 
 

Figure 6. General block diagram of the proposed method for depth initialization using GPCA. 
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The algorithm used for motion segmentation and 3D positioning requires previous 

knowledge about the number of mobile robots. In order to estimate this value, we have 

included a clustering algorithm in the initialization process. In this stage, we project the 

coordinates of the occupied cell in the 3D occupancy grid obtained using Visual Hull 

3D onto XY plane in Γw. Then, we cluster the 2D data using an extended version of k-

means [Lloyd 1982], [Kanungo et al. 2002]. This clustering algorithm allows us to 

obtain a good estimation of the number of robots in the scene, and a division of the 

initial curves in each image.  

After the classification algorithm, we obtain an estimation of the number of mobile 

robots. That information can be used in the stages of motion segmentation and 3D 

positioning. Moreover, 3D points corresponding to the occupied positions are classified 

according to the element to which they belong (Figure 7(a)). This classification allows 

dividing the initial curves obtained by using GPCA. As a result of that we obtain a set 

of curves, identified according to the robot (or mobile element) they correspond with, as 

shown in Figure 7(b).  

 
(a) 

   
 (b)  

Figure 7. (a) Results of the classification obtained by applying k-means clustering to the occupied 
positions in the occupancy grid shown in Figure 5.(a). (b) Initial curves obtained after estimating the 
number of robots, from the classified samples in Γw. 
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4. Identification and tracking of multiple mobile robots 

As a result of the stages of curves and depth initialization and motion segmentation 

we obtain a set of samples belonging to each mobile robot in the scene. After the motion 

segmentation and 3D position estimation of all mobile objects in the scene, the 

identification of the robots is obtained by comparing the components of the linear 

velocity estimated by the motion segmentation algorithm and the components of the 

linear velocity measured by the odometric sensors onboard the robots. It is possible 

because the mobile robots are controlled by the intelligent space.  

To that end, we have a set of nr velocities ( ){ } rn

i
i
mz

i
my

i
mx

i
m vvv

1
,,

=
=v  which have been 

measured by the odometric sensor onboard the robots. We also have a set of velocities 

( ){ } 1

1
,, −

=
=

N

j
j

ez
j

ey
j

ex
j
e vvvv  for each of the N-1 clusters 1:1 −= NjG  in Γw, which have been 

estimated by the algorithm based on the minimization of an objective function. For each 

controlled agent, roboti (i=1,2,…,nr), we obtain the set of points { } 1
1
−

=

N
jjG  that 

corresponds to each robot. The correspondence between { } 1
1
−

=

N
jjG  and roboti is given by 

(33). 

( ) ( ) r
j

ey
i
my

j
ex

i
mx

Nj
ij nivvvvjRobotG ,,2,1minarg 22

1,,2,1
K

K

=
⎭
⎬
⎫

⎩
⎨
⎧ −+−=⇔∈

−=
 (33) 

Thus, it is possible to identify which set of points { } 1
1
−

=

N
jjG  corresponds to each 

mobile robot. This also allows the discrimination between the controlled agents and 

other mobile elements (users or obstacles) that may be present in the ISPACE-UAH. 

In order to track the mobile robots an eXtended Particle Filter with Classification 

Process (XPFCP) [Marron 2008] is used. The choice of XPFCP against the basic 

particle filter (PF) or the extended particle filter (XPF) is due to its multimodal nature. 

The XPFCP allows tracking a variable number of robots with a single estimator, 

without increasing the state vector. 

In order to characterize the evolution of the position and velocity of each mobile 

robot we want to follow, a generic discrete first-order model is used. This model is 

obtained from the 3D coordinates that define the position of the robots and their linear 

velocity components along Xw and Yw axis in Γw. Thus, we define the state xt  and 

measurement yt vectors in t through the 5x1 vectors shown in equations (34) and (35) 

respectively. 
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[ ]Tw
ty

w
txtwtwtwt vvZYX ,,,,,=x  (34) 

[ ]Tw
ty

w
txtwtwtwt vvZYX ,,,,,=y  (35) 

For each of the 3D measures obtained from the stage of motion segmentation and 

positioning of the mobile robots, it is obtained a measurement vector. This vector is 

composed by the 3D coordinates of the measurement and the linear velocity 

components along the Xw and Yw axis in Γw of the set of measurements { } 1
1
−

=

N
jjG  the 

measurement belongs to. These vectors are added to the XPFCP in the re-initialization 

step. 

The XPFCP provides a set of measurements that are clustered according to the 

robot they correspond to. This set of measurements provides a good estimation for the 

position of each robot in the next image that is incorporated into the initialization step. 

Specifically, the information provided by XPFCP is incorporated to the step where we 

obtain the occupancy grid by using VH3D. It is also included in the stage of estimation 

of the number of mobile robots by using k-means. This feedback allows reducing 

significantly the time spent in the initialization of variables. 

5. Experimental results 

In order to validate the proposed system, several experiments have been carried out 

in the ISPACE-UAH. In these experiments we have used four five-hundred image 

sequences. These sequences have been acquired using three of the four cameras in the 

ISPACE-UAH. Figure 8 shows one scene belonging to each sequence. As can be 

noticed in Figure 8, sequences 1 and 2 contain one robot. The main difference between 

the images belonging to sequences 1 and 2 is that the image sequence 2 includes real 

lighting changes. It is worth noting that the image sequence 1 has been used to set up 

the values of the different parameters involved in the proposed solution. Sequence 3 

contains two mobile robots and sequence 4 includes a robot, a user, and some obstacles.  

The proposed algorithm for motion segmentation and 3D localization using a multi-

camera sensor system has been used to obtain motion segmentation and 3D position for 

each couple of images in each sequence. All the experiments shown in this work have 

been carried out on Intel® core 2, 6600 with 2.4 GHz using Matlab. 
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(a) 

   
(b) 

   
(c) 

   
(d) 

Figure 8. Images belonging to the test sequences, acquired by fixed cameras in the ISPACE-UAH. (a) 
Images belonging to the sequence 1 (b) Images belonging to the sequence 2 (c) Images belonging to the 
sequence 3. (d) Images belonging to the sequence 3.  

To start with the results, the boundaries of the motion segmentation in two images 
belonging to the sequence 1 (Figure 8(a)), the sequence 2 (Figure 8 (b)), the sequence 3 
(Figure 8(c)) and the sequence 4 (Figure 8(d)) respectively are shown in Figure 9. The 
estimated trajectory is also shown in these figures. In all the images, the segmentation 
boundary is close to the real contour of the mobile robot in the image plane.  
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 9. Boundaries of the segmentation obtained after the objective function minimization for two 
images belonging to each test sequences. (a) Sequence 1 (Figure 8(a)). (b) Sequence 2 (Figure 8(b)). (c) 
Sequence 3 (Figure 8(c)). (d) Sequence 4 (Figure 8(d)). 
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The proposed algorithm for multiple cameras also allows obtaining a 3D 

reconstruction of the mobile robots. Figure 10 shows the result of the 3D reconstruction 

obtained by using VH3D with the boundaries of the segmentation shown in Figure 9.  

  
(a) (b) 

  
(c) 

  
(d) 

Figure 10. 3D reconstruction for two images belonging to each test sequences. (a) Sequence 1 (Figure 
8(a)). (b) Sequence 2 (Figure 8(b)). (c) Sequence 3 (Figure 8(c)). (d) Sequence 4 (Figure 8(d)). 

With regard to 3D positioning, Figure 11 shows the projection, onto the image 

plane, of the 3D trajectory of the mobile robot estimated by the algorithm and measured 

by the odometric sensors on board the robots. The represented trajectory has been 

calculated using 100 images belonging to sequences 1, 2 and 3. The trajectories shown 
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in Figure 11 are obtained by projecting the estimated trajectory in Γw, obtained using the 

proposed algorithm, onto the image plane of the camera 1. 

  
(a) (b) 

 
(c) 

Figure 11. 3D trajectory estimated by the algorithm and measured by the odometric sensors on board the 
robots projected onto the image plane. (a) Images belonging to the sequence 1 (Figure 8(a)). (b) Images 
belonging to the sequence 2 (Figure 8(b)). (c) Images belonging to the sequence 3 (Figure 8(c)) 

These trajectories can also be represented in the world coordinate system. The 

coordinates of the centroid of the points belonging to each robot are projected onto the 

plane (Xw, Yw) in Γw to obtain the 3D position. The result of this projection for a 500 

images belonging to the sequence 3 is shown in Figure 12.  
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Figure 12. 3D trajectory estimated by the algorithm and measured by the odometric sensors on board the 
robots on the Xw, Yw plane obtained from 500 images belonging to the sequence 3.  
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As can be observed in Figure 12, the estimated trajectories are closer to the 

measurements of the odometric sensors as the number of cameras increases. This fact 

can also be observed in the positioning error calculated as the difference between the 

estimated and the measured positions along Xw and Yw axis, using equation (36): 

22
pypxp εεε +=  (36) 

The positioning error, calculated for 100 images belonging to the sequences 1, 2 

and 3, has been represented in Figure 13.  
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(c) 

Figure 13. Positioning error (in millimetres) of the mobile robots, calculated using equation (36). (a) 
Robot in the image sequence 1 (b) Robot in the image sequence 2 (c) Robots in the image sequence 3. 

Finally, the average value of the positioning error for 100 images represented in 

Figure 13 is shown in Figure. 
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Figure 14. Average value of the positioning error for 100 images belonging to the sequences 1, 2 and 3.  

6. Summary of the conclusions and contributions of the thesis 

After describing each stage that form the proposed solution, the main conclusions 

and contributions of this thesis are summarized. 

A method for obtaining the motion segmentation and 3D localization of multiple 

mobile robots in an intelligent space using a multi-camera sensor system has been 

proposed. The sensor system consists of a set of calibrated and synchronized cameras 

placed in fixed positions within the environment (in our case, the ISPACE-UAH). 

Motion segmentation and 3D position of the mobile robots are obtained through the 

minimization of an objective function that incorporates information from the multi-

camera sensor.  

In this thesis, the importance of the correct initialization of variables (curves that 

define the contours of the segmentation and depth) has been exposed. The initial values 

of these variables determine both the processing time, and the results of the 

segmentation and 3D positioning. The initial curves are obtained using GPCA. GPCA 

allows to model the background of the scene and to compare each input image with the 

generated background model. Regarding to depth, Visual Hull 3D allows us to relate the 

information from all the cameras. It provides a good alternative for estimating the initial 

value of the depth at each point of the image. 

After the motion segmentation and 3D position estimation of all mobile objects in 

the scene, the identification of the robots is carried out by comparing the linear velocity 
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components along Xw and Yw axis estimated by the motion segmentation algorithm and 

the linear velocity components along x and y axis measured by the odometric sensors 

onboard the robots. It is possible because the mobile robots are controlled by the 

intelligent space. Moreover, in this stage, it is also possible to discriminate between the 

controlled agents and other mobile elements (users or obstacles) that may be present in 

the ISPACE-UAH. 

The proposed solution is completed with a tracking step based on a eXtended 

Particle Filter with Classification Process (XPFCP). The XPFCP allows tracking a 

variable number of mobile robots by using a single estimator, without increasing the 

state vector length. The information provided by XPFCP is incorporated into the 

initialization step. This feedback allows reducing significantly the time spent in the 

initialization of variables. 

Several experimental tests have been carried out in the ISPACE-UAH and the 

obtained results validate the proposal. It has been demonstrated that the use of a multi-

camera sensor increases significantly the accuracy of the 3D localization of the mobile 

robots against the use of a single camera.  

The most outstanding contributions of the thesis are listed below. 

• Proposal of an objective function for multiple cameras, and the 

corresponding minimization algorithm. 

• Proposal of a solution that allows carrying out the fusion of the results when 

the objective function minimization is run independently for each camera.  

Because of the importance of a correct initialization of the variables involved in the 

objective function, an important part of the efforts has been focused on finding 

alternatives for initialization. In this sense, several contributions have been made. These 

contributions allow obtaining motion segmentation and 3D positioning of the mobile 

robots in a smaller number of iterations of the minimization algorithm. They also allow 

increasing the robustness of the proposal solutions against lighting changes.  

• It has been proposed a solution based on GPCA, that allows obtaining a set of 

initial curves that are close to the real contours of mobile robots. 

• It has been set out an adaptive threshold for the reconstruction error. This 

adaptive threshold is based on the difference between the average intensity of 
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the input image and the average intensity of the images used to obtain the 

background model of the scene. It allows increasing the robustness of the curve 

initialization process against lighting changes.  

• It has been proposed to use VH3D to relate the information from all available 

cameras in the world coordinates system Γw. It provides a good estimation of 

the initial depth. 

• It has been proposed a solution, based on an extended version of k-means, to 

estimate the number of mobile robots present in the scene. 

• Finally, it has been proposed the feedback of the information obtained from the 

XPFCP (estimation of the position of each mobile robot in the next image) to 

the stage of initialization of variables. It allows reducing the processing time of 

the initialization stage. 

7. Future work 

Upon finishing the thesis, it is interesting to emphasize some of the future lines that 

can be raised from this work. 

• The most immediate task is the implementation of the different proposed 

solutions in real time. 

• The solution proposed for motion segmentation and 3D positioning is restricted 

to rigid objects, another interesting line of future work is the creation of a new 

algorithm that also considers deformable objects. 

• The proposal in this thesis has been evaluated in a small space (ISPACE-UAH) 

and it has not been considered the possibility of covering a larger space with 

multiple cameras, so that robots can be located even if they leave the ISPACE-

UAH. This is a line of future work that has a special interest towards the 

implementation of such systems in buildings with multiple rooms. 

• Finally, another interesting line of future work is to replace the present cameras 

by Time-Of-Flight (TOF) cameras. These cameras allow acquiring both 

intensity and range data into a single device and simplify the determination of 

geometrical properties of the scene. In this line, the use of Time-Of-Flight 
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(TOF) cameras can also be considered in order to improve the accuracy of the 

3D positioning.  
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