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Abstract- This paper presents a method for obtaining the 3D
motion segmentation and 3D localization of mobile robots using an
array of calibrated cameras that are placed in fixed positions
within the environment. This proposal does not rely on previous
knowledge or invasive landmarks on board the robots.

The proposal is based on the minimization of an objective
function. This function includes information of all the cameras
and depends on three groups of variables: the segmentation
boundaries, the 3D rigid motion parameters (linear and angular
velocity components) and depth (distance to the cameras). For the
objective function minimization, we use a greedy algorithm that,
after initialization, consists of threeiterative steps.

The use of multiple cameras increases notably the system
robustness against occlusions and lighting changes. The accuracy
of the resultsis also improved with regard to the methods where a
single camera isused.

. INTRODUCTION

A common problem in the field of autonomous robo

guiadance is to obtain the position and orientatidnthe
robots within the environment with sufficient acacy.
Several methods have been developed to carry sutak.
The localization methods can be classified into groups:
those that require sensors on board the robotsharse that
incorporate sensors within the work environmente $hcond
alternative allows to reduce the complexity of tobots. It
also facilitates simultaneous navigation of mudiplobots
within the same environment. This alternative idelsi
“intelligent environments” [1][2] characterized Iblye use of

an array of sensors located in fixed positions bé t

environment. These sensors are distributed stratibgito

cover the entire field of movement of the robot.eT

information provided by the sensors should allowldcate
the robots and other mobile objects accurately.

There are several methods to guide mobile robadte)
external camera array. The most significant apgreacan
be divided into two groups. The criterion is based the
previous knowledge about the robot that is requigdthe
method. The first group includes those works thakenuse

of strong prior knowledge by using artificial landrks
attached to the robot [3]. The second group induttee
works that are capable of using the robot natuppearance
and the camera geometry to obtain the position [4].

The proposal presented in this paper is includedhin
second group. It obtains the robot position ancraation
using a set of calibrated cameras that are planefixéd
positions within the environment. This proposal slaet rely
on previous knowledge or invasive landmarks. Robot
segmentation and position are obtained through the
minimization of an objective function. There arenyavorks
which use an objective function [5][6]. Howeverese works
present several disadvantages such as high conagmatatost
or reliance on the initial values of the variabl&foreover,
these methods are not robust because they usenation
from a single camera.

This work has been structured as follows: sectibn |
presents the proposed system for 3D motion segt@mtnd
3D localization of mobile robots. This is made hyet
{ninimization of an objective function. Section Hescribes
the objective function. The objective function nmigation is
described in section IV. Section V shows several
experimental results and, finally, section VI prasehe main
conclusions.

Il. PROPOSEDSYSTEM

This paper proposes a system that allows the motion
segmentation and 3D localization of mobile robdiased
only on the images acquired by an arraynptalibrated and
synchronized cameras located in fixed positionsiwithe
environment (intelligent space).

h Using the work in [5] as a starting point, the roati

segmentation and 3D localization are obtained tjinoan
objective function minimization. Before the miniration, it
is necessary to initialize the variables. Finalgfter the
function minimization, robot trajectory can be plad. A
general block diagram of the proposed system isvshio
Fig. 1.
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; | axis respectively.

A. 3D Brightness Constraint for n, cameras

This paper presents a generalization of the 3Dhbw&ss
constraint for rigid objects presented by Sekkat Mitiche
in [5]. The 3D brightness constraint proposed iis thork
includes the information provided by thecameras available
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Fig. 1. Block diagram of the proposed system fobite robot motion
segmentation and 3D localization in an intelligepéce.

. OBJECTIVE FUNCTION FOR N.. CAMERAS motion in ¢, the velocity ofP relative tol; is given by
c equation:
To start with, the different coordinate systemsduisethis pw = ()'(W,Y,W z'W)T =v, +w, %P, (2)
work are defined. The 3D coordinates of a p&irt (X, Y, 2)" _ v
can be expressed in the different reference systanthe P, =(XC,YC, ZC) =v, +t@ %P, 3)

intelligent space. There is a global referenceemsnamgd Let Ry be the (3x3) matrix and,. the (1x3) translation
world coordinate system” and represented Ry There is yector which represent the coordinate transformaftiom the
also a local reference system associated with eaohera \yqrq coordinate systenfr) to the camera coordinate system

(s, i=1,...n;) whose origin is located in the center ofy The coordinate transformation is carried oungsihe
projection. In Fig. 2, world coordinate systef,) has been expression in equation (4).

represented in red color and the coordinate syséasaciated P=R P +T
H c T NMwelw we (4)
to the camerad (;) have been represented in blue color. o ) ) )
Deriving the equation (4) with respect to time, and

substituting the expressions of the velocitllﬁf(equation (2))
Camera 1 Cameran, and P, (equation (3)) afterwards, the following equatisn

&,/ X v ¢ obtained.
e v Voto xP =R, (v, +o,xP,) (5)

Yo |7 Za Zene [~ Cross producto xP can be expressed as a scalar product
gl cne ® [P, where is the following matrix:
Camera 2 .
0 -
= Xz o=| & 0 -
S Z - W 0
Yeo Ze2 . > Using the previous expression, equation (5) can be
/¢ cl Yu rewritten to obtain equation (6), where componaftinear
lw and angular velocity i (v¢, @) can be expressed in terms
of the components of velocity if,, (v, ®,) and the
X transformation matriceR(,c, Tw)-
Fig. 2. Reference coordinate systems in the igsili space: World Ve = chVw - ch‘”wRIchwc (6)
coordinate systenf () in red color. Camera coordinate systémi(= o, = adj ch w

12,...7) in blue color. If (x, y) are the coordinates of the projection on the inag

plane of a poinP, the derivative of the perspective projection
equations (1) with respect to time, and the submseu
substitution of the expression of the velocity comgnts ofP

g y in I, (3) allow us to obtain the following equations fiwe
x=f,z5 y=f,+ (1)  image motion componen(, y):

In this work, the perspective camera model is uJéis
corresponds to an idealnhole lens. Perspective projection
equations are given by:



Z_lc(f R. - XRWC)V +q,adi(R, )0, @) 3D brightness constraint in equation (16) can btemr
more compactly as shown in equat|on @an:

V= 2{LR R, +a,2d R o, ®) Y=, +8 3 +(Q + o, (17)

WhereRNC is the I" row in the rotation matrix fronf,, to I'.

(Rw) andqy, gyare the following (1x3) vectors:

where:
S =sR,, Q =q aidj(chi) y R :thvci [, aidj(chi)

In equation (17), it is necessary to take into aottohat 3D

Y e )] 9) velocity components,, andw,, are equal for the, cameras,
V;‘ wheread;; depends on the measurements in each camera and
I the matrices5, Q; y R; depend on the intrinsic parameters and

T transformation matrice(,; andT,.;) of each camera.

M (10) B. Objective Function for n, Cameras
fu The objective function fom. cameras proposed in this
+ work (equation (18)) depends on three groups aaltas.

A set of N-1 curves which defines thi-1 mobile

Substitution of velocity components in the imaganel robot segmentauon boundaries in the images aatjuire
(denoted as1 andv) in brightness constraint (11) allows to by each came % . L..n These curves divide each

obtain a 3D brightness constraint for rigid objaatserms of image inN regmns{Q (whereQ represents
. . . k=1..,N-1
the linear and angular velocity components§ jn(v,, andw,). the set of points of the |rrl1agm3|de the curvéy).

This 3D brightness constraint is shown in equai). 2. The components of linear and angular velocityMf (
Lu+lyv+1,=0 (11) 1) mobile robots and background, related Itg:
Vi, {ou b, . (These velocities are the same
Y ( )— I, +sR,, Vu +q Bidj( wc)(")w + from all cameras).
"z, (12) 3. The depth (distance from each 3D poiR} (o each
T7r [ad| (R )& - tcc?lqu;ra) which is th&; coordinate of poinP (related
c ci)-

In equation (12)s andq are two vectors with dimension -~
(1x3), andr is a (3x3) matrix. These matrices are given, E{VM}Lilijjﬂg 1,{T }E,l.{mm}sfl,{z-}hil]:
respectively, by equations (13), (14) and (15):

Neic

N
s=[fl, L, ~kaoew,) 13 XX Wik n o0z, lox +ZZA§dS (18)
T =Li=l gy Qi k=l i=1
_fvly_f_); XDx’fyDy; A, p00, A, u=0
q=|+fl, +x{xd,+y0 (14)

In equation (18),¢, is the 3D brightness constraint
+y0, +¢x0, (defined in equation (16)) for the pixels inside &urve k in

_fu

image i (y,; ); A y y are positive, real constants to weigh the
0 _(X|x+y|y) -ty contribution of the terms in (18) and=(d,,0,) is the
r= (X| <ty 0 fuly (15)  spatial gradient operator.
f.l, - f.l, 0 The first term in (18) measures conformity of 3D

interpretation to the sequence spatiotemporal tians in

3D brightness constraint shown in equation (12) tnings . ; )
satisfied in all of they, cameras. Knowing it, we define a new€ach regionQy) through the 3D brightness constraint. The

3D brightness constraint for rigid objects whicllirdes all S€cond integral is a regularization term of smoessnof
the information provided by the, cameras available in the €Pth, and the third integral is a regularizatiemmt of theN-1
intelligent space (equation (16)). Constraint iniaipn (16) coundaries.

is defined for each region, in each camera. Ife¢hmreN-1
robots in a scene, the scene is divided Mtaegions (region
N corresponds to the background). Then, we add two
subscripts to denote a region: subsckigk=1,2,...N), which
indicates the region, and subscript(i=1,2,...n;) which
indicates the camera.

IV. OBJECTIVE FUNCTION MINIMIZATION FOR n;. CAMERAS

Because the objective function (defined in equatib®))
depends on three groups of variables, a greedyritigg
which consists of three iterated steps, is usetkrAfurve and
v depth initialization (in eachy, i=1,...n;), the three steps are
YX)=1,+s R, 2%+ repeated until the algorithm converges.

° o, i=12..n. (16)
q|@'dj( WCI)O‘)\M(+tWCI |@'dj( )Z_V\k

ci

A. Initialization

There are several alternatives for curve initidira In
this work, since cameras are located in fixed pmsstwithin
the environment, thé\-1 initial curves are obtained using



GPCA (Generalized Principal Components Analysis). [7

GPCA technique is used in this work to obtain akigagund

model. GPCA is also used to compare each imagéeo t Let p,

background model [8][9].

The initial depth relative to each camera coordirgistem
(Fy) is obtained using Visual Hull 3D [10] which allswio
obtain a 3D occupancy grid (composed of cubes whizgeis

Ah) inT,. The 3D occupancy grid is obtained from the ihitia

segmentation boundaries in each image, which ampuated
using GPCA.

The 3D coordinates of the occupied cell are preg:dtom
'y to each camera coordinate systeg(i=1,...n.) through
the transformation matriceR{; andT,,) to obtain a set of
points on the mobile robot iR;. This provides an effective
method for depth initialization in each camera.

In Fig. 3, a block diagram including stages invalvia
curves and depth initialization fog cameras is shown.

Initialization Initialization Initialization

Visual Hull 3D

z Projection to Depth
2 g /-cl (chly Twcl) > in /_cl
2

©

o

8

o Projection to Depth
& By e, (Ruen, + Ten, ) in g,

Fig. 3. Block diagram of the proposed algorithmdorve and depth
initialization using GPCA and Visual Hull 3D.

B. 3D motion by linear least squares
At this step, segmentation boundaries and dep#adtl
are fixed. So, the energy to minimize reduces to:

N n
vt oudi)= 2> [0 o
=L IEL 0y
Taking into account that the 3D brightness constrair n.
cameras (equation (17)) depends linearlywgnand w,, 3D
motion parameters may be obtained by linear lepsires.
Let pq be the number of the image acquired by tfe
camera, within regiok (k=1,...N), and leta,(x;) be the X6
vector associated to each pomt(J = 1,2,...pg) in thei®
image, them:

(19)

—(S1 S2 S Riy R; R;
a, ()= 22,0, + 2.0, +22.0,+ %) (20)
:(vwk,(nwk)T be the 1x6 vector representing the
six-dimensional rigid motion components of the rbbo
associated to regiofd; in 'y, reference systermd\, andc, are
defined as:

A, =B 0680 (%), B () aknc i

Cy =(_ Itl(xll)""l_ltl(xpkll)l t2(x12) s tn (ka,bnc)

k=1...,N

Linear vy and angularw, velocity components can be
obtained solving the linear equation system show(21).

Apy=b, k=1..,N (21)

In case mobile robot movement is restricted to Xanp,
equation (21) can be simplified because linearaiglalong
the Z,, axis and also angular velocity aloXg andY,,axes are
null. Then, both vectorp,, anday(x;) consist only of three
components.

C. Depth estimation by gradient descent

In the second step, the function to minimize ineortb
recover the depth is shown in equation (22). Is fanction,
X is the characteristic function of regikin imagei (Qy).

zz [l )+ (|0, o

I 22)

- IKZ;,Z;,[XM (i () + g 0z
Q |

Given a set of curvedy,J,= " that divides the image
acquired by each camera It regions {Q }kl, the descent
equations for any region and for any camera arevshio
equation (23). In equation (23J, indicates the algorithm
execution time andg is the ordinary derivative of the
boundary preserving functian

% . 2 (S Vi R, mm)‘/’kl +/1d|V(

Or 22
i=1..n, k=1..,N

In this work we use a quadratic boundary preserving
function @(a) = a°). Boundary preserving function efficacy
has been verified in several experiments. In tleaperiments
we have obtained similar results using the quadfatiction,
and more complex functions proposed in the worlkhalbert
et al. [11].

9|7z, )
02|

DZd)

(23)

D. Curve Evolution by level sets for 3D motion
segmentation

With depth Z; and 3D motion parameter{wwk,mwk}kl
fixed, the energy to minimize respect to the cuthes define
the mobile robot contourf/y } ~" _in each |mage is shown

in equation (24), wheré, (x)=¢; (x +/ng|ch, ||

J )= Ziﬂﬁ Jix+ 433" fos

k=1 i=1 o k=1 i=1

E[{VM (24)

For multiple region segmentation, the following &ul
Lagrange descent equations are obtained [5]:



%(7)2_( ki (Vki)_¢ki (yki)‘l'/]/(ym (yki ))xnki(yki) (25) oo e +£3y 0

ot i=1..n k=1..N-1 In equation (27), we have only included two velgcit

. . components because robot’s movement is restricied'\t
where Kyk_ is the mean curvature of contour defined)gy, P

; . ; ) lane (linear velocity along th&, axis is always zero).
ng is the exterior unit normal function to the curye, and P ( 140 y g ‘ e ‘ Y )
functionsd,; are defined by equation (26). = —1 Camera

— i £ L ===4 Cameras ||
B (i (5))= min $i (e (s) (26) g120
[z
After initialization, the three steps describedhis section £ 100
are repeated until the algorithm convergence. Tigerithm £
converges when the computed variables cease tovesvol E 80
. apr L
significantly. 2 ol
2z
V. EXPERIMENTAL RESULTS % 40!
>
In order to validate the proposed system, several g 20
experiments have been carried out. In these expatsnwe = )
have used a one-hundred image sequence contaimidpite % 20 4‘9 60 80 100
robot. These images have been acquired using &ilrated Image position in the sequence
cameras, placed in fixed positions, within the liigent Fig. 5. Linear velocity mean square error (in milliters/frame) for each

couple of images in the sequence using the algoriith one camera (in blue
color) and the proposed algorithm with four camégiased color).

space. Fig. 4 shows three images belonging to #st t
sequence. These images have been acquired atntlectisae,

but using three different cameras. Fig. 5 shows that 3D position is obtained more eately

using the proposed algorithm.
Positioning error (in millimeters) is shown in Fig. This
. error is calculated as the difference between stienated and
the measured position along, &nd Y, axis.

Fig. 4. Images acquired using three of the fourlabke cameras in the o7 800 _1 Camera
intelligent space. S é 600t —-=-4 Cameras ||
‘ﬁE
In this section we provide the experimental resoittiined §§ 400
for a one-hundred image sequence using the proposed i s 2007
algorithm for motion segmentation and 3D localiaatiwith <o [ TTTeee \
0 20 40 60 80 100

four cameras, and using the objective functionreefiin [7]
for one camera. Motion segmentation and 3D positiane
been obtained for each couple of images in theesemp

It is noteworthy that, to compare the experimenésiults
obtained with both algorithms, the initial valudscarves and
depth used are the same. Moreoweandpu values have been
set in an experimental way for both algorithms,ngsia L )
different image sequence that has been acquiret uie o 20 20 e 80 100
same calibrated cameras. It is noteworthy thatpttoposed Image position in the sequence
algorithm for curve and depth initialization inceea notably Fig. 6. 3D positioning error (along X and Y axiftained for each couple of

- _ images in the sequence using the algorithm forcameera (in blue color)
the :Obtusmess of the system against the valueshef and the proposed algorithm with four cameras (@haalor).
constants.

Objective function minimization allows to obtain tho Fig. 7 shows the position estimated by the algorigmd
linear and angular components of the mobile roleocity L aasured in XY plane.
and the robot 3D position. Positions shown in Fig. 7 have been obtained froa0@

.F_ig. 5 shows linear velocity e_stimatio_n errors (irlmage sequence. Estimated position using the pezpos
millimeters/frame) for each couple of images in segluence 5 9qrithm with four cameras is indicated in diséonous red
using the objective function minimization with oeamera |ine and measured position is indicated in blawok.|

[7] and the proposal in this work with four camerais
error has been calculated using equation (27) whgende,,
are the difference between the velocity estimatsidguthe
algorithm and the velocity measured by the odomegnsors
on board the mobile robot along,dnd Y, axis respectively.

Image position in the sequence
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Fig. 7. Estimated 3D position obtained using treppned algorithm with
four cameras (indicated in red color) and meashyewbot’'s odometric
sensors (in black color)

The processing times of the algorithms have alsenbe
compared. Fig. 8 shows that the processing timebouif
algorithms are similar, although the proposed dtlgor
includes information acquired by four cameras, dadt of
information from only one camera.

70

—1 Camera
===4 Cameras||
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e §
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20

Computation time (seconds)

10

40 60 80
Image position in the sequence
Fig. 8. Processing time (in seconds) for each @apimages in the
sequence using the algorithm for one camera (ia bdlor) and the proposed
algorithm with four cameras (in red color).

100

Finally, in Table I, a summary of the average valoé
processing time, number of iterations, and positamd
velocity error obtained for 100 images are shownT#ble I,
results obtained using only one camera, and resblEined
using the proposed algorithm with four camerasrasikided.

TABLE |

AVERAGE VALUE OF PROCESSINGTIME, NUMBER OFITERATIONS, AND
POSITION AND VELOCITY ERRORS OBTAINED FORLOOIMAGES

1 camera 4 cameras
Processing time (seconds) 23.1357 24.9038
Number of iterations 18.55 5.97
Velocity MSE (millimeters/frame) 33.0301 10.8792
Position MSE (millimeters) 706.0428 56.62

Table | shows that processing time is similar fathb
algorithms, with one or four cameras. However, gheposed
algorithm with four cameras increases, notably, abeuracy
in the obtained results. Its increase is especialjceable in
the 3D position.

VI. CONCLUSIONS

This paper has presented a system for 3D motion
segmentation and 3D positioning of mobile robotmgisan
array of calibrated cameras that are placed indfpesitions
within the environment (intelligent space). The psed
algorithm is based on the minimization of an ohject
function and it is a generalization for, cameras of the
function proposed by Sekkati and Mitiche in [7].

Visual Hull 3D is used to relate the informatiomrfr all
the available cameras in the world coordinate sy$tg

Several experimental tests have been carried adittta
obtained results validate the proposal presenteéHisnpaper.

It has been demonstrated that the proposed algorfitin n.
cameras increases notably the accuracy in motion
segmentation and 3D positioning (with respect te th
algorithm with only one camera). Moreover, the imymment

is obtained without increasing the algorithm preoss time.
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