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Abstract- This paper presents a method for obtaining the 3D 
motion segmentation and 3D localization of mobile robots using an 
array of calibrated cameras that are placed in fixed positions 
within the environment. This proposal does not rely on previous 
knowledge or invasive landmarks on board the robots.  

The proposal is based on the minimization of an objective 
function. This function includes information of all the cameras 
and depends on three groups of variables: the segmentation 
boundaries, the 3D rigid motion parameters (linear and angular 
velocity components) and depth (distance to the cameras). For the 
objective function minimization, we use a greedy algorithm that, 
after initialization, consists of three iterative steps.  

The use of multiple cameras increases notably the system 
robustness against occlusions and lighting changes. The accuracy 
of the results is also improved with regard to the methods where a 
single camera is used.  

 
I.  INTRODUCTION  

 
A common problem in the field of autonomous robot 

guiadance is to obtain the position and orientation of the 
robots within the environment with sufficient accuracy. 
Several methods have been developed to carry out this task. 

The localization methods can be classified into two groups: 
those that require sensors on board the robots and those that 
incorporate sensors within the work environment. The second 
alternative allows to reduce the complexity of the robots. It 
also facilitates simultaneous navigation of multiple robots 
within the same environment. This alternative includes 
“intelligent environments” [1][2] characterized by the use of 
an array of sensors located in fixed positions of the 
environment. These sensors are distributed strategically to 
cover the entire field of movement of the robot. The 
information provided by the sensors should allow to locate 
the robots and other mobile objects accurately.  

There are several methods to guide mobile robots using an 
external camera array. The most significant approaches can 
be divided into two groups. The criterion is based on the 
previous knowledge about the robot that is required by the 
method. The first group includes those works that make use 

of strong prior knowledge by using artificial landmarks 
attached to the robot [3]. The second group includes the 
works that are capable of using the robot natural appearance 
and the camera geometry to obtain the position [4].  

The proposal presented in this paper is included in the 
second group. It obtains the robot position and orientation 
using a set of calibrated cameras that are placed in fixed 
positions within the environment. This proposal does not rely 
on previous knowledge or invasive landmarks. Robot 
segmentation and position are obtained through the 
minimization of an objective function. There are many works 
which use an objective function [5][6]. However, these works 
present several disadvantages such as high computational cost 
or reliance on the initial values of the variables. Moreover, 
these methods are not robust because they use information 
from a single camera.  

This work has been structured as follows: section II 
presents the proposed system for 3D motion segmentation and 
3D localization of mobile robots. This is made by the 
minimization of an objective function. Section III describes 
the objective function. The objective function minimization is 
described in section IV. Section V shows several 
experimental results and, finally, section VI presents the main 
conclusions.    

 
II.  PROPOSED SYSTEM  

 
This paper proposes a system that allows the motion 

segmentation and 3D localization of mobile robots, based 
only on the images acquired by an array of nc calibrated and 
synchronized cameras located in fixed positions within the 
environment (intelligent space). 

Using the work in [5] as a starting point, the motion 
segmentation and 3D localization are obtained through an 
objective function minimization. Before the minimization, it 
is necessary to initialize the variables. Finally, after the 
function minimization, robot trajectory can be planned. A 
general block diagram of the proposed system is shown in 
Fig. 1.  

 



 

 
Fig. 1.  Block diagram of the proposed system for mobile robot motion 

segmentation and 3D localization in an intelligent space. 

 
III.  OBJECTIVE FUNCTION FOR nC CAMERAS 

 
To start with, the different coordinate systems used in this 

work are defined. The 3D coordinates of a point P = (X, Y, Z)T 
can be expressed in the different reference systems of the 
intelligent space. There is a global reference system named 
“world coordinate system” and represented by Γw. There is 
also a local reference system associated with each camera 
(Γci, i=1,…,nc) whose origin is located in the center of 
projection. In Fig. 2, world coordinate system (Γw) has been 
represented in red color and the coordinate systems associated 
to the cameras (Γci) have been represented in blue color.  

   

 
Fig. 2. Reference coordinate systems in the intelligent space: World 

coordinate system (Γw) in red color.  Camera coordinate system (Γci i = 
1,2,…,nc) in blue color.   

 
In this work, the perspective camera model is used. This 

corresponds to an ideal pinhole lens. Perspective projection 
equations are given by: 
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where fu and fv are the focal lengths of the lens for x and y 
axis respectively.  

 
A. 3D Brightness Constraint for nc cameras 

This paper presents a generalization of the 3D brightness 
constraint for rigid objects presented by Sekkati and Mitiche 
in [5]. The 3D brightness constraint proposed in this work 
includes the information provided by the nc cameras available 
in a intelligent space.  

In this section, we do not use i subscript to indicate the 
camera because the following process is the same for each 
camera.  

Let Pw=(Xw, Yw, Zw)T be the 3D coordinates of point P on a 
mobile robot relative to Γw. Let ( )Tz
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linear and angular velocity of the robot motion in Γw. Then, 
the velocity of P, relative to Γw, is given by equation (2). In 
the same way, if Pc=(Xc, Yc, Zc)

T are the coordinates of P 
relative to Γc and ( )Tz

w
y
w

x
ww vvv=v and ( )Tz

w
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the components of the linear and angular velocity of the robot 
motion in Γc, the velocity of P relative to Γc is given by 
equation:    
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Let Rwc be the (3x3) matrix and Twc the (1x3) translation 
vector which represent the coordinate transformation from the 
world coordinate system (Γw) to the camera coordinate system 
(Γc). The coordinate transformation is carried out using the 
expression in equation (4).  

wcwwcc TPRP +=  (4) 

Deriving the equation (4) with respect to time, and 
substituting the expressions of the velocities wP& (equation (2)) 
and cP&  (equation (3)) afterwards, the following equation is 
obtained.   

( )wwwwcccc PωvRPωv ×+=×+  (5) 

Cross product Pω× can be expressed as a scalar product 
Pω ⋅ˆ , where ω̂ is the following matrix: 
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Using the previous expression, equation (5) can be 
rewritten to obtain equation (6), where components of linear 
and angular velocity in Γc (vc, ωωωωc) can be expressed in terms 
of the components of velocity in Γw (vw, ωωωωw) and the 
transformation matrices (Rwc, Twv).  
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If (x, y) are the coordinates of the projection on the image 
plane of a point P, the derivative of the perspective projection 
equations (1) with respect to time, and the subsequent 
substitution of the expression of the velocity components of P 
in Γc (3) allow us to obtain the following equations for the 
image motion components ( )yx &&, :  
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where i
wcR is the ith row in the rotation matrix from Γw to Γc 

(Rwc)  and qu, qv are the following (1x3) vectors:  
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Substitution of velocity components in the image plane 
(denoted as u and v) in brightness constraint (11) allows to 
obtain a 3D brightness constraint for rigid objects in terms of 
the linear and angular velocity components in Γw (vw and ωωωωw). 
This 3D brightness constraint is shown in equation (12). 
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In equation (12), s and q are two vectors with dimension 
(1x3), and r is a (3x3) matrix. These matrices are given, 
respectively, by equations (13), (14) and (15): 

( )[ ]yxyvxu yIxIIfIf +−=s  (13) 

( )
( )

T

yf
f

xf
f

yxf
x

xu

yxf
y

yv

IxIy

IyIxIf
IyIxIf

u

v

v

u

u

v

















⋅+⋅−
⋅+⋅++
⋅+⋅−−

=q  (14) 

( )
( )

















−
+

−+−
=

0
0

0

xuyv

xuyx

yvyx

IfIf
IfyIxI
IfyIxI

r  (15) 

3D brightness constraint shown in equation (12) must be 
satisfied in all of the nc cameras. Knowing it, we define a new 
3D brightness constraint for rigid objects which includes all 
the information provided by the nc cameras available in the 
intelligent space (equation (16)). Constraint in equation (16) 
is defined for each region, in each camera. If there are N-1 
robots in a scene, the scene is divided into N regions (region 
N corresponds to the background). Then, we add two 
subscripts to denote a region: subscript k (k=1,2,…,N), which 
indicates the region, and subscript i (i=1,2,…,nc) which 
indicates the camera.   
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3D brightness constraint in equation (16) can be written 
more compactly as shown in equation (17):  
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where: 
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In equation (17), it is necessary to take into account that 3D 
velocity components vwk and ωωωωwk are equal for the nc cameras, 
whereas Iti depends on the measurements in each camera and 
the matrices Si, Qi y Ri depend on the intrinsic parameters and 
transformation matrices (Rwci  and Twci) of each camera.  

 
B. Objective Function for nc Cameras 

The objective function for nc cameras proposed in this 
work (equation (18)) depends on three groups of variables.  

1. A set of N-1 curves which defines the N-1 mobile 
robot segmentation boundaries in the images acquired 
by each camera{ } cni
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,,1
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K
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image in N regions { } cni
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the set of points of the image i inside the curve k γki).  
2. The components of linear and angular velocity of (N-

1) mobile robots and background, related to Γw:  
{ }N

kwk 1=v , { }N

kwk 1=ω . (These velocities are the same 
from all cameras).   

3. The depth (distance from each 3D point (P) to each 
camera) which is the Zci coordinate of point P (related 
to Γci). 
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In equation (18), kiψ  is the 3D brightness constraint 
(defined in equation (16)) for the pixels inside the curve k in 
image i ( kiγ ); λ y µ are positive, real constants to weigh the 
contribution of the terms in (18) and ),( yx ∂∂=∇  is the 
spatial gradient operator. 

The first term in (18) measures conformity of 3D 
interpretation to the sequence spatiotemporal variations in 
each region (Ωki) through the 3D brightness constraint. The 
second integral is a regularization term of smoothness of 
depth, and the third integral is a regularization term of the N-1  
boundaries.   

 
IV.  OBJECTIVE FUNCTION M INIMIZATION FOR nc CAMERAS  

 
Because the objective function (defined in equation (18)) 

depends on three groups of variables, a greedy algorithm, 
which consists of three iterated steps, is used. After curve and 
depth initialization (in each Γci, i=1,…nc), the three steps are 
repeated until the algorithm converges. 

 
A. Initialization 

There are several alternatives for curve initialization. In 
this work, since cameras are located in fixed positions within 
the environment, the N-1 initial curves are obtained using 



 

GPCA (Generalized Principal Components Analysis) [7]. 
GPCA technique is used in this work to obtain a background 
model. GPCA is also used to compare each image to the 
background model [8][9].  

The initial depth relative to each camera coordinate system 
(Γci) is obtained using Visual Hull 3D [10] which allows to 
obtain a 3D occupancy grid (composed of cubes whose size is 
∆h) in Γw. The 3D occupancy grid is obtained from the initial 
segmentation boundaries in each image, which are computed 
using GPCA. 

The 3D coordinates of the occupied cell are projected from 
Γw to each camera coordinate system Γci (i=1,…,nc) through 
the transformation matrices (Rwci and Twci) to obtain a set of 
points on the mobile robot in Γci. This provides an effective 
method for depth initialization in each camera.  

In Fig. 3, a block diagram including stages involved in 
curves and depth initialization for nc cameras is shown.  

 
Fig. 3. Block diagram of the proposed algorithm for curve and depth 

initialization using GPCA and Visual Hull 3D. 
 

B. 3D motion by linear least squares 
At this step, segmentation boundaries and depth in each Γci 

are fixed. So, the energy to minimize reduces to: 
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Taking into account that the 3D brightness constraint for nc 
cameras (equation (17)) depends linearly on vwk and ωωωωwk, 3D 
motion parameters may be obtained by linear least squares.  

Let pki be the number of the image acquired by the ith 
camera, within region k  (k=1,…,N), and let aki(xj) be the 1×6 
vector associated to each point xj (j = 1,2,…,pki) in the ith 
image, them: 
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Let ( )T
wkkwwk ωvρ ,=  be the 1x6 vector representing the 

six-dimensional rigid motion components of the robot 
associated to region Ωki in Γw reference system. Ak and ck are 
defined as:  
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Linear vwk and angular ωωωωwk velocity components can be 
obtained solving the linear equation system shown in (21).  

Nkkwkk ,,1K== bρA  (21) 

In case mobile robot movement is restricted to XY plane, 
equation (21) can be simplified because linear velocity along 
the Zw axis and also angular velocity along Xw and Yw axes are 
null. Then, both vectors wkρ  and aki(xj) consist only of three 
components.  

 
C. Depth estimation by gradient descent 

In the second step, the function to minimize in order to 
recover the depth is shown in equation (22). In this function, 
χki is the characteristic function of region k in image i (Ωki).  
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Given a set of curves { } cni

Nkki
,,1

1,,1
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=
−=γ that divides the image 

acquired by each camera in N regions { }N

kki 1=Ω , the descent 
equations for any region and for any camera are shown in 
equation (23). In equation (23), τ indicates the algorithm 
execution time and g’ is the ordinary derivative of the 
boundary preserving function g.  
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In this work we use a quadratic boundary preserving 
function (g(a) = a2). Boundary preserving function efficacy 
has been verified in several experiments. In these experiments 
we have obtained similar results using the quadratic function, 
and more complex functions proposed in the work of Aubert 
et al. [11].  

 
D. Curve Evolution by level sets for 3D motion 

segmentation  
With depth Zci and 3D motion parameters { }N

kwkwk 1, =ωv  
fixed, the energy to minimize respect to the curves that define 
the mobile robot contours { } cni
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For multiple region segmentation, the following Euler-
Lagrange descent equations are obtained [5]: 
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where 
kiγκ is the mean curvature of contour defined bykiγ , 

nki is the exterior unit normal function to the curve kiγ  and 
functions ϕki are defined by equation (26).  
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After initialization, the three steps described in this section 
are repeated until the algorithm convergence. The algorithm 
converges when the computed variables cease to evolve 
significantly. 

 
V. EXPERIMENTAL RESULTS 

 
In order to validate the proposed system, several 

experiments have been carried out. In these experiments, we 
have used a one-hundred image sequence containing a mobile 
robot. These images have been acquired using four calibrated 
cameras, placed in fixed positions, within the intelligent 
space. Fig. 4 shows three images belonging to the test 
sequence. These images have been acquired at the same time, 
but using three different cameras.  

   
Fig. 4. Images acquired using three of the four available cameras in the 

intelligent space.  
 
In this section we provide the experimental results obtained 

for a one-hundred image sequence using the proposed 
algorithm for motion segmentation and 3D localization with 
four cameras, and using the objective function defined in [7] 
for one camera. Motion segmentation and 3D position have 
been obtained for each couple of images in the sequence.  

It is noteworthy that, to compare the experimental results 
obtained with both algorithms, the initial values of curves and 
depth used are the same. Moreover, λ and µ values have been 
set in an experimental way for both algorithms, using a 
different image sequence that has been acquired using the 
same calibrated cameras. It is noteworthy that the proposed 
algorithm for curve and depth initialization increases notably 
the robustness of the system against the values of the 
constants.  

Objective function minimization allows to obtain both 
linear and angular components of the mobile robot velocity 
and the robot 3D position.  

Fig. 5 shows linear velocity estimation errors (in 
millimeters/frame) for each couple of images in the sequence 
using the objective function minimization with one camera 
[7] and the proposal in this work with four cameras. This 
error has been calculated using equation (27) where εvx and εvy 
are the difference between the velocity estimated using the 
algorithm and the velocity measured by the odometric sensors 
on board the mobile robot along Xw and Yw axis respectively.  

( )22
2
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In equation (27), we have only included two velocity 
components because robot’s movement is restricted to XY 
plane (linear velocity along the Zw axis is always zero). 
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Fig. 5. Linear velocity mean square error (in millimeters/frame) for each 

couple of images in the sequence using the algorithm for one camera (in blue 
color) and the proposed algorithm with four cameras (in red color). 

 
Fig. 5 shows that 3D position is obtained more accurately 

using the proposed algorithm.  
Positioning error (in millimeters) is shown in Fig. 6. This 

error is calculated as the difference between the estimated and 
the measured position along Xw and Yw axis.  
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Fig. 6. 3D positioning error (along X and Y axis) obtained for each couple of 
images in the sequence  using the algorithm for one camera (in blue color) 

and the proposed algorithm with four cameras (in red color). 
 
Fig. 7 shows the position estimated by the algorithm and 

measured in XY plane.  
Positions shown in Fig. 7 have been obtained from a 400 

image sequence. Estimated position using the proposed 
algorithm with four cameras is indicated in discontinuous red 
line, and measured position is indicated in black line.  
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Fig. 7. Estimated 3D position obtained using the proponed algorithm with 
four cameras (indicated in red color) and measured by robot’s odometric 

sensors (in black color)  
 
The processing times of the algorithms have also been 

compared. Fig. 8 shows that the processing times of both 
algorithms are similar, although the proposed algorithm 
includes information acquired by four cameras, instead of 
information from only one camera.  
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Fig. 8. Processing time (in seconds) for each couple of images in the 

sequence using the algorithm for one camera (in blue color) and the proposed 
algorithm with four cameras (in red color). 

 
Finally, in Table I, a summary of the average values of 

processing time, number of iterations, and position and 
velocity error obtained for 100 images are shown. In Table I, 
results obtained using only one camera, and results obtained 
using the proposed algorithm with four cameras are included.  

TABLE I 
AVERAGE VALUE OF PROCESSING TIME, NUMBER OF ITERATIONS, AND 

POSITION AND VELOCITY ERRORS OBTAINED FOR 100 IMAGES 

 1 camera  4 cameras 

Processing time (seconds) 23.1357 24.9038 

Number of iterations  18.55 5.97 

Velocity MSE (millimeters/frame) 33.0301 10.8792 

Position MSE (millimeters)  706.0428 56.62 

 
Table I shows that processing time is similar for both 

algorithms, with one or four cameras. However, the proposed 
algorithm with four cameras increases, notably, the accuracy 
in the obtained results. Its increase is especially noticeable in 
the 3D position.  

  

VI.  CONCLUSIONS 
 
This paper has presented a system for 3D motion 

segmentation and 3D positioning of mobile robots using an 
array of calibrated cameras that are placed in fixed positions 
within the environment (intelligent space). The proposed 
algorithm is based on the minimization of an objective 
function and it is a generalization for nc cameras of the 
function proposed by Sekkati and Mitiche in [7].  

Visual Hull 3D is used to relate the information from all 
the available cameras in the world coordinate system Γw.  

Several experimental tests have been carried out and the 
obtained results validate the proposal presented in this paper. 
It has been demonstrated that the proposed algorithm for nc 
cameras increases notably the accuracy in motion 
segmentation and 3D positioning (with respect to the 
algorithm with only one camera). Moreover, the improvement 
is obtained without increasing the algorithm processing time.  
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