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ABSTRACT—This paper presents new advances in speech technology carried out by the 
Speech Technology Group (GTH) at the Universidad Politécnica de Madrid (UPM) to 
develop enhanced interfaces at home. These interfaces provide a better interaction for 
people with disabilities. The speech recognizer includes a speaker identification feature 
(that makes an acoustic adaptation possible for improving recognition performance) and 
an emotion classifier (to detect the user emotion). The understanding module, with a 
bottom-up strategy, increases its flexibility against recognition errors. The dialog 
manager has been improved by a new dialog control based on Bayesian Networks and a 
new platform for developing multimodal, multilingual, and user dependent dialog 
services from scratch. Finally, the speech synthesis module includes new advances for 
increasing the voice naturalness and incorporating emotions. These advances have been 
integrated into a new interface for controlling a Hi-Fi audio system, thus significantly 
increasing its ergonomics. 
 
Key Words: speech technology, enhanced interfaces, Assistive Technology (AT), disable 
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1. INTRODUCTION 
There is currently an increasing interest in incorporating Assistive Technology (AT) at home. 

This interest is based on the significant number of people that need some kind of help to guarantee 
their autonomy at home. In Europe there are more than 50 million people with some kind of 
disability (6-7% of the total population) [1]. On the other hand, as a result of an increase in life 
expectancy and a decrease in the fertility rate, the percentage of elderly people is growing very 
fast reaching 50% between now and 2025. In Europe, at the moment, 20% of the population is 
over 65 (more than 100 million people). 

Assistive Technology at home has four main targets: people safety (i.e. using gas and water 
sensors), better use of natural resources, entertainment, and a better interaction with household 
appliances. In the last area, speech technology can play an important role in developing advanced 
interfaces that provide a better interaction for people with mobility or vision problems. Nowadays, 
speech technology has reached a significant level of performance and is being used in end-user 
applications [2]. The improvements have been achieved thanks to the immense effort in research 
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carried out by telephone companies and research centers. As a result of this effort, large speech 
and text databases have been generated and new speech and text processing models have been 
developed. The advances in this technology have been supported by the significant increase in 
speed obtained in the hardware. 

From 1975, the Speech Technology Group (GTH) at UPM has developed speech technology 
and enhanced interfaces for people with disabilities. This paper presents the newest advances and 
their application for controlling appliances (for example a Hi-Fi audio system). The enhanced 
interface developed allows users to control a Hi-Fi audio system with natural spoken language, 
against other speech interfaces based on simple commands. In this case, users can speak naturally 
(i.e. they can request several actions in a spoken sentence) neither do they have to memorize any 
command list nor use a specific phraseology to control the Hi-Fi audio system. For the prototype 
developed, the audio system is a commercial system made up of a compact disc (with three discs 
loader), two tapes and a radio receiver. This system is controlled by an infrared (IR) remote 
control. Figure 1 shows a block diagram of the speech interface consisting of six modules [3]: 
• The speech recognizer, converts natural speech into a sequence of words (text) using both 

acoustic and language models. This module also allows the speaker to be identified and adapt 
the models to increase their performance (described in Section 2). 

• The Natural Language Understanding module extracts the main semantic concepts from the 
text. In this process, it uses several semantic rules. This module is described in Section 3. 

• The Dialog Manager controls the interaction flow and defines the actions carried out over the 
Audio System. The dialog control technology is described in Section 4. 

• The Execution Module translates the actions defined by the Dialog Manager into Infra Red 
(IR) commands. This translation is carried out based on a mapping table, where one action is 
translated into one or several IR commands. 

• The Response Generation Module uses response templates to create a natural language 
sentence as system response. 

• Finally, the Speech Synthesis Module converts the response sentence into natural speech. The 
technology of the new speech synthesis module including emotion is described in Section 5. 
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Figure 1. Block diagram of the interface 

2.  SPEECH AND SPEAKER RECOGNITION 
This section describes both the speaker and speech recognition and the acoustic model 

adaptation. 
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2.1. Speaker Identification 
Speaker identification is crucial as long as you want to introduce more intelligence in the 

behavior of speech interfaces. Two main targets are aimed at with this technology: 
• First, with speaker identification it is possible to use user-adapted acoustic and language 

models, a characteristic that will lead the system to higher speech recognition and 
understanding accuracies. This aspect increases the user acceptability and quality perception of 
the interface.  

• In addition, once the personality of the speaker has been identified, user-adapted interpretation 
rules can be used, dependent on some saved user profile that will enhance the friendliness of 
the system: the system can adopt some learned behavior that was preferred by the user 
previously. Of course, the user may correct this choice, but on average, the system saves many 
dialog turns by carrying out the actions within the restrictions established by the user (without 
the need to be specified again at each iteration). Even dialog characteristics like the answering 
expectancies, the complexity of the response messages or the speed or the volume of the 
speech produced can be adapted to the user. 
In speech interfaces at home, the speaker identification task is simpler than a personality 

verification one (i.e. needed in a banking application). In fact, most of the time, very limited 
population of identities will access a household interface (only the people living in the house). 
Nevertheless, it is desirable to recognize and deal with new users appropriately (such as 
occasional guests). The solution implemented in GTH uses the Bayesian Information Criterion 
(BIC) for evaluating the distance between two acoustic speech segments. A special clustering 
algorithm is used for assigning each segment to one of the previously recorded clusters (thus 
recognizing the speaker’s identity) or for generating a new one if none of the preexistent clusters 
accepts the current intervention (a new person is using the system). 

Initial work with this technology was on Acoustic Change Detection (ACD) tasks on the 
Broadcast News database [4][5], where different acoustic segments from 218 speakers that could 
appear with several acoustic conditions (such as a telephone line, studio quality, background street 
noise, voice mixed with music, etc.) had to be segmented, marking the time change points. This 
experience showed that our ACD and clustering algorithms combined satisfactory giving as low 
as an 18% EER (Equal Error Rate: the point where false acceptance equals false rejection of true 
ACD hypothesis) in such difficult work. In the following work [6], similar performances were 
obtained: one with a similar ACD task on lecture recordings with some short student 
interventions. In this case, a clustering algorithm was used as a labeler of the different segments 
cut by the ACD system, building a full speaker identification system. A similar work was carried 
out on a segmentation and clustering task of a radio news program with about 12 different 
speakers. The system obtained a very high precision (more than 90%) matching very short 
segments (1 s. of speech). 

Finally, for a speech interface at home, it is necessary to implement a procedure that allow 
dynamic auto-creation of the clusters (models) for new incoming speakers and a new user profile 
preparation for saving the preferred personal choices. If the voice is not identified as previously 
known, the dialog system will be informed and it can talk to the person to give initial greetings 
and obtain personal information like the name (which will be used in future dialogs with this 
speaker). 

2.2. Speech Recognition 
The speech recognition process is responsible for converting the speech waveform into the 

most likely sequence of words corresponding to user utterance (Figure 2). The feature extraction  
 



648 Intelligent Automation and Soft Computing 

Feature
Extraction SearchSpeech Text

Training data

Acoustic
models

Lexical
models

Language
models

Acoustic
models

Lexical
models

Language
models

Acoustic
models

Lexical
models

Language
models

 

Figure 2. Block diagram of a speech recognition system 

module converts the input speech into a sequence of feature vectors, which are used during the 
search stage under some sort of probabilistic formulation, integrating previously trained sources of 
information (acoustic, lexical and language models). The system uses a feature vector with 
Perceptual Linear Predictive (PLP) parameters in the Cepstral domain derived from a Mel-scale 
filter bank (Mel-PLP), with 13 coefficients including their first and second-order differentials, 
giving a total of 39 parameters for each 10 ms. frame. As the channel conditions become noisy, 
the system incorporates two normalization techniques that are specially designed to compensate 
for channel variations: Cepstral Mean Normalization (CMN) and Cepstral Variance Normalization 
(CVN). All these aspects are described in [2]. 

State of the art systems are usually based in some form of progressive search [7], whereby 
successively more detailed (and computationally expensive) knowledge sources are brought to 
bear on the recognition search as the hypothesis space is narrowed down. Current commercial 
Automatic Speech Recognition (ASR) systems are known to perform reasonably well when the 
speech signals are captured in a noise-free environment using a close-talk microphone located 
near the mouth of the speaker. Moreover, the user is assumed to speak using a reasonably 
consistent pronunciation structure, which is unlikely to happen in certain cases, such as people 
affected from motor related disorders. These two restrictions open up exciting challenges for 
future research into speech recognition technology. 

The restriction related to the use of close-talk microphones can be solved by using fixed 
microphones placed at some distance from the user (necessary for speech interfaces at home). 
Unfortunately, as the distance between the user and the microphone grows, the speech signal 
becomes increasingly degraded by the effects of additive noise and reverberation, which in turn 
severely degrade speech recognition accuracy. In these distant-talking environments, the use of an 
array of microphones, rather than a single microphone, and advanced processing techniques offer 
an increasingly viable alternative which overcomes many of the disadvantages of close talking 
microphones [8]. Traditional speech recognition systems with microphone arrays use a two-stage 
strategy: array processing and then recognition [9], in which the array processing is considered as 
a pre-processing stage for signal enhancement. The first stage typically involves beam forming: 
filtering and combining the individual microphone signals to enhance signals coming from a 
particular location [10]. To operate properly, beam forming is usually preceded by speaker 
location or tracking [11]. Further improvements can be achieved by post-filtering the output of the 
beam former [12]. 

Eliminating the second restriction (assuming a consistent pronunciation by the speaker) 
would allow people with speech impediments to use speech recognition systems [13]. Although 
the nature of the statistical methods used in speech recognition technology is capable of capturing 
acoustic variations in speech utterances, impaired speech poses a major challenge for current 
systems, and their performance is severely reduced in these cases. Automatic speech recognition 
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of people with speech impediments, such as cerebral palsy patients, requires a robust technique 
that can handle conditions of very high variability and limited training data. In the literature one 
can find few references related to this problem and most of them show studies on limited tasks 
(small to medium vocabulary and isolated word recognition) [14][15]. 

This problem is related to that of dealing with alternative pronunciations made by speakers 
using certain dialects. In this area, a number of strategies have been proposed in the literature (an 
excellent revision can be found in [16]), but it is difficult to extract definitive conclusions on the 
actual usefulness of modeling pronunciation variations, as few improvements are typically 
reported [17]. 

2.3. Acoustic Adaptation 
Speech recognition can be considered a very difficult problem in real-life environments 

because of several factors: the great variability between speakers and even for the same speaker 
resulting from stress amongst other things, significant variations between channels and/or 
environments, the presence of background noise, etc. The most effective strategy probably 
consists of adapting the ASR system to the speaker (when the speaker has been identified), 
specifically the acoustic model. 

2.3.1  Adaptation Techniques 
This paper focuses on the adaptation of acoustic models with two main adaptation techniques: 
• Maximum A Posteriori (MAP) estimation [18]. MAP adaptation involves the use of 

prior knowledge about the model parameter distribution. The idea is to use a previously 
well-trained model as the prior knowledge. The adaptation formula for the mean 
vectors of the Gaussian distribution generates an interpolation of the mean vector as 
the final mean vector for the prior model and the mean of the observed adaptation data 
(a similar formula is applied to the other model parameters). More details can be found 
in [18]. When enough adaptation data is available, the MAP estimation converges to 
the maximum likelihood criterion, which is the optimum for estimating the parameters 
from scratch. So, it should be the best technique for large adaptation sets. But, MAP 
does not modify the parameters that do not appear in the adaptation data, so it is a bad 
choice for small adaptation sets. 

• Maximum Likelihood Linear Regression (MLLR) [19]. In MLLR, a set of 
transformations for the model parameters is computed which reduces the mismatch 
between an initial model set and the adaptation data. The effect of these 
transformations is to modify the mean and variance component of the Gaussian model 
to model more likely the adaptation data. The mathematics behind the transformation 
matrix is complex, so the reader should consult [19] to see the details. The main idea is 
that the transformation matrix is obtained by solving a maximization problem with the 
Expectation-Maximization (EM) technique that uses the likelihood of the adaptation 
data as the maximization criterion. One important issue is that it is not feasible to 
compute a transformation matrix for every unit in the model set. The solution is to 
group the most similar units given a similarity measure or distance between units and 
then compute a common transform for all of them. The main advantage of MLLR is 
that it shares the transforms between similar units, so that every parameter in the model 
set gets updated in the adaptation process even though it does not appear in the 
adaptation set. So, this technique should be better than MAP for smaller adaptation sets 
(medium size). 
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In [20] there is a detailed explanation and its application in an Air Traffic Control system 
(ATC). 

2.3.2. Speech Database and Experiments 
The database is made up of 206 speakers that uttered several different types of sentences: 

isolated speech (commands to control a robot, city and street names for a Global Positioning 
System –GPS- navigator), continuous speech (addresses, movie names to control a home media 
center, orders including street names), and spontaneous speech: addresses and movie names in a 
very spontaneous style. On average, there are 10 minutes of speech for each speaker. The 
recording conditions are optimum: clean speech and a close-talking microphone. All systems use 
context-dependent continuous Hidden Markov Models (HMMs) (these models consider the 
adjacent allophones to model the current one) built using decision-tree state clustering. The 
feature extraction module is the same as that presented in section 2.2 for all systems. 

From the database, 110 speakers have been used to train a general speaker model, and the rest 
for testing the adaptation. The data available for each speaker has been divided into several sets: 
25% for validation and 75% as adaptation material. To evaluate how the amount of adaptation 
data affects the recognition performance, this set has been subdivided into 4 sets, using 25%, 
50%, 75%, and 100% of the adaptation material. A greedy algorithm has been used to select the 
sentences that best fit the desired phonetic distribution in the system. This way ensures the best 
possible coverage of phonemes. Tables I and II shows the results in Word Error Rate (WER) and 
improvement using MAP and MLLR respectively. 

 
Table I.  Word Error Rate (WER) and achieved improvements when adapting with MAP. 

Isolated Continuous Spontaneous Adaptation data 
WER Improv. WER Improv. WER Improv. 

No adaptation 0.41 - 3.16 - 7.51 - 
25% set 0.41 0% 3.06 3.2% 6.67 11.2% 
50% set 0.32 22% 2.96 6.3% 6.77 9.8% 
75% set 0.20 51% 2.98 5.7% 6.93 7.7% 
100% set 0.15 63% 3.00 5.1% 7.01 6.8% 

 
Table II.  Word Error Rate (WER) and achieved improvement when adapting with MLLR. 

Isolated Continuous Spontaneous Adaptation data 
WER Improv. WER Improv. WER Improv. 

No adaptation 0.41 - 3.16 - 7.51 - 
25% set 0.19 54% 3.00 5.1% 6.04 18.9% 
50% set 0.17 59% 3.08 2.5% 6.30 18.1% 
75% set 0.13 68% 3.10 1.9% 6.46 13.3% 

100% set 0.09 78% 2.97 6.0% 6.52 12.6% 
 
For isolated speech, results improve drastically as expected. As there are more adaptation 

data, the improvement is more remarkable. MLLR behaves better than MAP, especially with less 
data. So, with just a few sentences, MLLR should always be selected as the optimum technique. 

For continuous and spontaneous speech, results show no improvement or improve very little 
by using bigger adaptation sets. This is unexpected, but the reason is that the greedy algorithm 
that is used to select the adaptation sets has included most spontaneous sentences in the first set, 
so very little improvement is obtained when using the whole set. Another possible explanation is 
that there are more sentences for isolated speech, and there is an adaptation not only to the speaker 
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but also to the speaking style, which is quite different for spontaneous speech. In summary, 
MLLR adaptation is recommended in our case. 

2.4. User’s Emotion Identification 
This section presents the first experiments in user’s emotion identification in an enhanced 

speech interface. In this work, the Spanish Emotional Speech corpus (SES) has been used. It 
contains three emotional speech-recording sessions played by a professional male actor in an 
acoustically treated studio. Each recorded session includes thirty words, fifteen short sentences 
and four paragraphs, simulating four basic or primary emotions (sadness, happiness, surprise and 
anger) and a neutral speaking style. The text uttered by the actor did not convey any intrinsic 
emotional content. Finally, the recorded database was phonetically labeled semi-automatically. 
The assessment of the emotional speech was aimed at judging the appropriateness of the 
recordings as a model for recognizable emotional speech. 

The features used for emotion classification have been some segmental features (thirteen Mel 
Frequency Cepstrum Coefficients (MFCC)) and supra-segmental features (several statistics 
calculated from F0 contour of voice segments during a sentence, average F0, F0 standard 
deviation, F0 average variation, minimum F0, maximum F0 and F0 range). The module uses a 
128-VQ Bayes-Classifier for the MFCC based identification task. Table III shows the confusion 
matrices obtained when identifying the underlying emotion: Sadness, Anger and Happiness are 
the highest identified emotions (100%, 97.8% and 91.1%, respectively), as opposed to Surprise 
which is the least identified (68.9%). 

 
Table III.  Confusion matrix when using the prosodic features for automatic emotion 

identification 

 IDENTIFIED EMOTION 
INTENDED 
EMOTION Happiness Anger Surprise Sadness Neutral 

Happiness 91.1%  6.7%  2.2% 
Anger  97.8%   2.2% 

Surprise 2.2% 28.9% 68.9%   
Sadness    100.0%  
Neutral  26.7%   76.3% 

 
In further experiments, 21 people were used in a perceptual experiment that consisted of 

identifying the emotion simulated by the actor. Considering these experiments, the emotion 
classifier developed in this work emulates the perceptual experiment with an average correlation 
of 81.5%. This automatic classification helps the system to select different dialog strategies 
(depending on the user emotion) and to know which parameters of the Text To Speech (TTS) 
must be modified to synthesise emotional speech. 

3. SPEECH UNDERSTANDING 
This process is responsible for extracting the semantic information or “meaning” (related to 

the specific application domain) from the speech recogniser output. The semantic information is 
conveyed using semantics concepts. A semantic concept consists of an attribute (identifier) and a 
value: there is a concept VOLUME while the value is “5” on a 1-10 scale. For controlling a Hi-Fi 
audio system, the semantic concepts can be actions to be carried out with the hi-fi system (i.e. 
play) or system parameters that can be configured in the system, (i.e. volume). In the prototype, 
there are 15 actions and 44 parameters. Internally, the system manages other concepts that carry 
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the semantic information as it is being developed. The understanding module creates a semantic 
frame made up of a variable set of concepts, each one with its pair of attributes (identifier) and 
corresponding value with the appropriate format. 

In this prototype, the speech understanding technology is a rule-based technique considering 
a bottom-up strategy. In this case, the relationships between semantic concepts and word and/or 
concept sequences are defined by hand by an expert. In a bottom-up strategy, the semantic 
analysis starts from each word individually and extending the analysis to neighbourhood context 
words or already-formed concepts. This extension is carried out to find specific combinations of 
words and/or concepts that generate another concept. Not all of the words contribute to the 
formation of the final interpretation. This strategy is more robust against speech recognition errors 
and it is frequently preferred when an N-gram language model is used in the recognizer, as in our 
case. Depending on the scope of the word relationships defined by the rules, it is possible to 
achieve different compromises between reliability of the concept extracted (greater with greater 
lengths) and the robustness against recognition errors (greater with smaller lengths). 

The understanding process is carried out in two steps (Figure 3): semantic tagging and rule 
application. In the first step, one or several syntactic-pragmatic tags are assigned to every word in 
the vocabulary (i.e. “cero, uno, dos,… (one, two, three,…) ” are assigned the “numero (number)” 
tag or the verb “reproducir (play)” is assigned the “acc_repr (action)” tag). The understanding 
module works by applying different rules that convert the tagged words into semantic concepts 
and values. 
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Figure 3. Structure of the natural language understanding module 

3.1 Concept Confidence Measure 
The prototype developed is one of the first understanding modules that generates one 

confidence value for every concept obtained [6]. The confidence measure is a value between 0.0 
(lowest confidence) and 1.0 (highest confidence). This concept confidence is computed by an 
internal procedure that is coded inside the GTH proprietary language interpreter that executes 
each rule. In this internal engine, there are “primitive functions,” responsible for the execution of 
the rules. Each primitive has its own way of generating the confidence for the elements it 
produces (considering the confidence of the input elements). One common case is for the 
primitives that check for the existence of a sequence of semantic blocks to generate new ones, 
where the primitive usually assigns to the newly created concepts the average confidence of the 
block, which it has relied on. In other more complex cases, the confidence for the new concepts 
depends on a combination of confidences from a mixture of words and/or internal or final 
concepts. In order to generate concept confidence every word from the speech recognizer output 
must be assigned a confidence value [21]. The concept confidence measures can be used for 
incorporating confidence filters to avoid generating wrong concepts when their confidence values 
are very low. This strategy improves the Concept Accuracy, percentage of concepts correctly 
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extracted, from 76.6% to 80.5%. Secondly, the Dialog Manager can use concept confidence 
measures to define the interaction flow: i.e. reducing the confirmation turns when the concept 
confidence is very high. 

4. DIALOG MANAGEMENT 
This section presents the two main advances corresponding to the Dialog Manager. The first 

one is the dialog control based on Inference Bayesian Networks, and the second is a complete 
platform for developing multimodal, multilingual and user-dependent dialog services from scratch 
based on a Finite State Automata. 

4.1. Management Based on Bayesian Networks 
The Dialog Manager module is the responsible for identifying the user’s goals from the 

processed utterances (in the context of controlling electronic domestic devices, such goals could 
be mainly the execution of some commands, i.e. actions carried out on the HIFI System), and for 
detecting missing, wrong, spurious and required concepts given an identified goal. This 
information is used to drive the dialog prompting for missing concepts, clarifying wrong concepts 
and ignoring the spurious concepts thus allowing more flexible and natural dialogs. This paper 
proposes Bayesian Belief Networks approach [3][22] for dialog modelling. This section describes 
how this approach carries out these two main tasks. 

4.1.1 Goal Detection from Processed Utterances 
From the semantic concepts extracted from the user’s utterances, as well as those retrieved 

from the Dialog History (i.e. a record of the evolving dialog in the form of a stack of referred 
concepts), it is possible to infer the dialog goal(s). A goal is considered as a specific action on the 
Hi-Fi system, e.g. to set the volume to a specific level. In the prototype developed, a set of 20 
goals and a set of 70 concepts (i.e. actions, parameters and values) have been defined by an expert 
in the application domain. When using Belief Networks (BNs) for dialog modeling, the first 
solution is to develop one BN per goal.  

A BN is a directed acyclic graph with nodes and arcs where the direction of the arcs 
represents the probabilistic dependency between two nodes. The arrows of the acyclic graph are 
drawn from cause to effect. Assuming the basic topology (Figure 4), the BN models the causal 
relation between the goal and some concepts. This topology assumes conditional independence 
between concepts. Each BN is defined by a specific goal Gi and a set of input concepts {C1,...CM}. 
In this approach, the goals and the concepts are all binary, so the concept Cj is true (Cj=1) when it 
is extracted from the user utterance. In order to avoid too complex models, the expert can select 
only the concepts with the strongest dependency for each goal as its inputs. Hence, N (N=20) 
binary decisions are made (considering N BNs) in the presence or absence for each goal. From 
observations extracted from the user’s sentence, i.e. C={C1=0, C2=1,…, CM=1}, the Bayesian 
Inference obtains the later probability P(Gi|C) for each goal (see Equation 1, it simply applies 
Bayes’ Theorem assuming marginal and conditional independence; M is the number of input 
evidences). 
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Figure 4. Basic Topology for a BN. 

Comparing this probability with a defined threshold makes a binary decision: one goal is 
present or active if the later probability of the corresponding BN is greater than the threshold; 
otherwise the goal is absent. For simplicity, the threshold may be set to 0.5 since P(Gi=1|C)+ 
P(Gi=0|C)=1.  

This approach assumes a multiple goal evaluation scheme, thus multiple goals can be active if 
they vote positive. Moreover, it is possible to identify Out Of Domain (OOD) sentences: those 
sentences for which all BNs vote negative. In this paper, an enhanced topology is presented 
adding some links between concept nodes (according to the expert’s criterion) to model the inter-
concept dependencies. These links introduce certain variations in the probability propagation for 
goal inference [23]. In our prototype, the probabilities involved in the inference process (left-hand 
side of Equation 1) have been hand-assigned by the expert too. In [24], Meng et al. present a 
Minimum Description Length approach for learning topologies automatically. The conditional 
probabilities for each BN are estimated by tallying the counts from training data. 

4.1.2 Detection of Missing, Wrong, Spurious and Required Concepts 
This process is carried out by the “Backward Inference” technique [22]. In this case, 

considering the inferred goals (i.e. those which are present), it is necessary to test, for the 
corresponding BNs, their probability for each input concept. The inferred result is assumed, i.e. 
Gi=1, as a new evidence to add to the observations’ vector. Then Bayesian inference is applied 
again but this time aimed at the estimation of P(Ci|C’) (the updated concept’s probability) where 
C’={Gi=1, C1=0, C2=1,…, CM=1}. Now, two thresholds are defined, ΘLOW and ΘHIGH, resulting in 
three different levels for that probability: low, medium and high. These thresholds are estimated 
from previous experiments by analyzing the probability distribution. Just comparing the 
probability with the defined thresholds, the concepts are classified according to the Backward 
Inference result. Based on the value of P(Ci|C’), the system checks whether this concept should be 
present (i.e. P(Cj|Gi ,C)>ΘHIGH), absent (i.e. P(Cj|C’)<ΘLOW) or neither of them (i.e. optional or 
spurious). 

Then the result of this decision is compared to the actual occurrence of the concept in the 
observations’ vector and its confidence value. The system checks that every concept obtained 
from the understanding process is assigned with a confidence value, otherwise if a particular 
concept is not observed no confidence value is available. In the analysis, a predefined pair of 
thresholds is used in order to classify the confidence level. For simplicity, the same thresholds are 
considered (ΘLOW and ΘHIGH).  

The whole analysis resulting from the comparison between later and confidence values is 
summarized in Table IV. As a result of this analysis, the system automatically detects missing, 
wrong or spurious concepts so that the system can drive the dialog prompting for missing 
concepts, clarifying for wrong concepts, and ignoring the spurious (i.e. optional) ones. 
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Table IV.  Concept analysis used to drive the dialog 

 
 

• Those concepts whose latter probabilities indicate that they should be neither absent nor 
present (i.e. ΘLOW<P(Cj|C’)≤ΘHIGH) are going to be regarded as spurious or optional. 

• Concepts that should be absent according to their latter probabilities, the dialog manager 
identifies them as unnecessary concepts (i.e. when the concept is actually absent) and wrong 
concepts (i.e. when the concept is available or present). Only if the concept is actually 
present in the input sentence, is its confidence value high, and it has been labelled as a wrong 
one, the dialog manager will invoke a clarification act. For any other confidence level, the 
concepts will be ignored. 

• Regarding concepts that should be present according to their latter probabilities, missing 
concepts (i.e. when the concept is not available or absent), and required concepts (i.e. when 
the concept is available or present but with low confidence) can be identified as well. 
Depending on the confidence level, the system distinguishes the condition of these concepts. 
The dialog manager uses implicit confirmation (the system informs the user about this 
concept) just for those concepts with a high confidence level. On the other hand, if the 
corresponding confidence value is not high enough, then that concept has to be confirmed 
through an explicit confirmation procedure (the system asks the user about the concept 
correctness). Finally, if the concept is not available (i.e. missing), the dialog manager decides 
to prompt the user for it. 

Once the user has provided and confirmed all the required information, the system is able to 
complete the goal: to carry out a specific action or sequence of actions on the Hi-Fi audio System. 
Finally, all confirmed concepts are stored in the Dialog History as consolidated knowledge and 
the state of the audio system is updated. From this point, the user can start a new dialog to carry 
out another action on the system. 

4.2. Management Based on Finite State Automata 
Given the growing interest in spoken dialogue systems, a large number of commercial and 

non-commercial tools have been developed in recent years: CSLU’s RAD toolkit from Oregon 
University [25], Smartkom [26], SpeechBuilder [27] from MIT, OpenSpeech from Nuance, 
WebSphere Voice Server from IBM or Audium studio. Most of them support the creation of 
multimodal dialogue systems, and allow a quick development thanks to the use of libraries, a user-
friendly graphical interface and a full integration with proprietary run-time platforms (TTS and 
ASR); however, they present difficulties when creating multilingual services, for handling 
multiple user profiles, and for including 'intelligent' assistants to help designers to define the 
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dialogue flow, the backend integration and for solving specific modality issues (e.g. presentation 
of lists of results or system confirmations). 

4.2.1 Semiautomatic Application Generation Platform (AGP) 
Given these restrictions, GTH was involved in the GEMINI (IST -2001-32343) European 

project for creating a semiautomatic platform called AGP [28] which allows the simulatively 
creation of dialogue applications in four languages and two modalities (Web and Voice). The 
main contributions were: 
• A modular architecture of the platform (Figure 5), separating the high level dialogue flow 

from the specific characteristics of the service and from the multimodal, multilingual and 
user specific information. Thus, the designer can easily specify a common flow for all the 
languages and modalities and in the following assistants include the specific information for 
each one.  

• Several accelerating strategies for speeding up the design in the most critical modules. 
• The use of several standard languages, such as xHTML for Web and VoiceXML [29] for 

speech, which allows the portability and simplifies the use of different devices and execution 
platforms. 

 
  

Overall aspects related to 
the application, database 
structure and access 
functions 

Dialog flow definition in a 
modality and language 
independent way 

Dialog completion with 
all aspects that are 
language and modality 
dependent 
 
 
Automatic Script 
generation for each 
modality (VoiceXML 
and xHTML) 
 
 
 
 
Additional assistants  

 

Figure 5. AGP architecture 



Speech Technology at Home: Enhanced Interfaces for People with Disabilities 657 

To rate the acceptance and friendliness of the platform, a subjective evaluation was carried 
out with 41 subjects (24 novices in dialog application design, 11 intermediate and 6 experts) from 
Greece, Germany and Spain, with ages ranging from 21 to 49 and, in general, with basic 
knowledge of programming. Their overall score had an average of 8.4 (on a 0-10 scale) with the 
maximum scores in the following aspects: speeding up the development time of an application, 
over-answering and mixed initiative functionality, and list handling for speech applications. The 
AGP also proved to be both flexible and comprehensive, offering a 75% saving in time/costs over 
training a human operator for the same task. 

4.2.2 Multimodality 
One of the main problems with the human-machine dialogue applications is the limitations of 

the system when the environment is very noisy or the user has physical limitations. One solution 
is to use several complementary modalities to show or retrieve information to/from the user. With 
several modalities, the system increases the probability of understanding the user input and the 
probability that the user receives the message from the system. Moreover, the inclusion of several 
modalities allows more natural and shorter interactions. Some modalities are visual (Using 
images, webcams, animated agents, field forms on a Web page), speech (Text-To-Speech, 
automatic recognition), gestures (Pointers, mousse, graphical tables, etc.) and writing (through 
keyboards, handwriting or character recognition, etc.)[30]. 

In AGP [28], the designer has the possibility of creating the same service for two modalities 
simultaneously: Web and Speech. The Web modality allows the user to fill out web forms using a 
conventional internet browser. From the xHTML platform for the final script, the designer can 
include more functionalities such as: animations, interactive maps, videos, etc. that are common in 
other web pages. For voice modality, the platform automatically generates a script in VoiceXML, 
which is very common for creating call centers. The current work focuses on the integration of the 
two current modalities using the X+V language [31] that is a W3C standard which combines 
visual and spoken interaction using Web technologies (xHTML, XML events and vocabulary) and 
VoiceXML. Another future work is the integration of an animated agent for helping Deaf people 
[32]. 

4.2.3 User Modeling and Multilingualism 
In order to provide more natural and friendly dialogue services, the dialogue manager has to 

be able to adapt its behaviour according to the language, communication style, experience and 
users’ age. Obviously, the inclusion of all this customization implies an additional step in the 
design. The AGP currently supports the creation of the dialog flow for four languages: English, 
Greek, German and Spanish. The platform has a specific module where the designer can 
customize the grammars, prompts, error correction and help dialogues according to the particular 
language and user level. The system can automatically detect the spoken language (using PPRLM 
[33]) and user skill (considering several parameters such as user and language identification, 
number of errors and time duration of the interaction, etc). With this information, the system sets 
the corresponding specific overall variables in the VoiceXML running script. 

5. HIGH QUALITY SPEECH SYNTHESIS 
Although speech communication bandwidth is lower than in graphical or visual interfaces, 

when freedom of movement and far-interaction are needed, speech synthesis is the must-be 
choice. If the application domain is static and very constrained (only a few patterns to synthesise) 
and if the same voice can be used in many implemented systems (without any personalization), 
the speech synthesis module can use a simple but effective technique: concatenation of natural 
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speech recordings of a professional speaker or actor. However, when the domain is dynamic or 
not so limited, fully automatic text-to-speech (TTS) conversion is necessary. Artificial TTS 
systems are made up of three main modules: 
• A linguistic and prosodic processor: which analyses the input text to label the most relevant 

linguistic features that affect the way of speaking (stress, phonetic transcription, etc). These 
features allow suprasegmental information to be generated (intonation, rhythm and intensity 
curves). 

• A segmental synthesiser: which generates speech from the linguistic and prosodic 
information, using the speaker database and an algorithm for prosodic and articulatory 
modification.  

• A speech adaptation module: to alter some characteristics of the basic voice (or the modified 
speech) such as intended emotion/attitude, sex or age of the artificial speaker. 

The most important evaluation parameters of synthetic speech are intelligibility (how 
understandable the utterances are) and naturalness (how similar are human and artificial 
utterances). Although every module affects both characteristics, intelligibility is mostly affected 
by the synthesis technique (for a wide range of prosodic curves and non-phonetic features). The 
most intelligible technique is based on waveform concatenation of variable-length recorded 
segments (from demiphones or diphones to poliphones or even multi-word units), with a restricted 
amount of prosody modification (or without any modification at all) and unit-selection process to 
minimize concatenation artifacts. This concatenation technique also provides the most natural and 
distinctive timbre, because the segmental component is copied from a natural source with a 
minimum amount of transformation. Emotion-related phenomena such as laughter and sighs can 
easily be synthesised. However, the range of prosodic modifications is rather limited, thus 
reducing the expressivity. 

In a highly interactive domestic environment with only a few users and a few locatable noise 
sources, naturalness and variability are even more important than standard listener-independent 
segmental intelligibility. To maximize naturalness, the TTS system must provide synthetic speech 
with accurate domain-dependent prosodic modelling and context-adapted emotional capabilities. 

5.1. Restricted Domain Prosody Experiments 
The main objective has been to get good predictors for both the F0 curve and phoneme 

duration by minimizing the model estimation error in a Spanish text-to-speech system. To achieve 
this, the factors that mostly influence prosodic values in Spanish need to be determined. To 
minimize the cost of adapting the system to a set of new domains or sub-domains, a machine 
learning technique must be used [34]. Artificial Neural Networks (ANNs) and k-nearest-
neighbour (k-NN) are the techniques that have been able to model both duration (rhythm) and F0 
(intonation) successfully.  In our previous experiments, ANNs outperform k-NN in prosody-
related tasks [35]. In a restricted-domain, the number of syntactic patterns is small, and more 
training instances per feature are available. Under this condition, an ANN has proven to be an 
excellent tool for modelling. Therefore, the experimentation has included several combinations of 
features that yield the minimum prosody estimation Root Mean-Square Error (RMSE) using 
perceptrons. The database used in this paper has been described in [36].  

The resulting system predicts prosody with very good results (for duration: 15.5 ms RMSE, 
for F0: 19.80 Hz in RMSE), that significantly improves our previous rule-based system (28.5 ms 
RMS duration error) and a general domain database (19 ms RMS duration error). 
• Regarding F0, the best features were: a one-of-N coding of the sub-domain (carrier sentence) 

and the final punctuation mark, a window of 11 syllables for coding stress and the position 
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of the syllable in the phrase (in relation to the first and last stressed syllable). There was a 
significant improvement (41.6 %) when compared to just using stress information. 

• The best features for modelling duration were: phoneme identity, phoneme stress, a window 
of 5 phoneme identities around the target phoneme, the number of words in the phrase, the 
position of the word in the phrase and the position in phrase in relation to first/last stress (the 
significant improvement in the whole set was 18.71% when compared to using only the first 
two features). 

5.2. Emotional Speech Experiments 
Standard neutral synthetic voices are monotonous for a domestic environment, even if the 

timbre sounds natural. It is necessary to incorporate variety (emotions and attitudes) into 
synthesised speech to make it more familiar. To study how emotional state affects voice 
characteristics, a set of experiments have been carried out that range from natural-voice perceptual 
tests to fully-automatic emotion-identification experiments. Using the database described in [37], 
that includes recordings from a professional actor simulating several emotional states (neutral, 
happy, sad, surprised and angry). In a twenty-people identification test, the recognition results 
range from 74.6% for happiness to 90.3% for anger. 

However, this baseline experiment provides no clue on how to simulate each emotion by 
means of speech synthesis. Therefore, a new experiment was conducted with a set of prosody-
modified recordings: neutral recordings modified to have the same prosody as emotional 
recordings of the same text, and emotional recordings were adapted to have a neutral prosody. 
Neutral recordings were identified as emotional when the prosody of surprised (76.2%) and sad 
(66.6%) was applied. Angry (95.2%), happy (52.4%) and sad (45.2%) recordings were correctly 
identified as emotional when neutral prosody was used. The remaining prosodically modified 
recordings were not identified as emotional with a score significantly greater than that of a chance 
level (20.0%). A similar objective automatic-identification-experiment on natural speech has 
confirmed most of the results of the perceptual test [38]. 

Finally, in an emotional copy-synthesis identification test that combines segmental and 
prosodic information, every emotion was significantly identified (above chance level), ranging 
from 61.9% for happy (the most difficult emotion) to 95.2% for anger (the easiest one).  

6. CONCLUSIONS 
Speech technology provides new possibilities for disabled people at home. Physically 

handicapped people can handle appliances through voice or blind people can receive instructions 
thorough synthetic speech. But the mass-use of speech interfaces by disabled people has not been 
possible yet for several reasons, the acoustics of the environment, the high variety of users, the 
difficulties in making a natural dialog, the cost of adapting the dialog and vocabulary to new 
application domains etc. 

This paper has presented several contributions to this task carried out in several modules of 
an enhanced speech interface for household appliances. As a pilot demonstration, all of these 
advances have been incorporated and evaluated in a new speech interface for controlling a Hi-Fi 
audio system increasing significantly its ergonomics and friendliness. 

The new speech recognition module allows the identification of the speaker, the emotion of 
the speaker, and the adaptation of several system modules to the user capabilities. The user’s 
emotion classifier has been incorporated and evaluated; obtaining results that they correlate 81.5% 
to those results obtained from a perceptual experiment. The acoustic adaptation module for 
improving the speech recogniser performance has achieved an 18.9% error reduction for 
spontaneous speech. The natural language processing module proposes a rule-based module with 
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a bottom-up strategy that increases its flexibility and robustness against speech recognition errors. 
The concept confidence measure obtained from this module also allows the concept accuracy 
increase from 76.6% to 80.5%. Two main advances are presented in the dialogue manager: the 
dialog control based on Bayesian Networks and a set of new tools for helping in the process of 
developing a new dialog manager from scratch. Proposing Bayesian Networks for dialog 
modelling allows the dialog process to be dealt automatically (no dialog script is needed). The 
new speech synthesis module includes advances for increasing the voice naturalness and 
incorporating emotion into the speech.  

Further work needs to be done for this system to be used at home: the first and most 
important issue is to test it in the field. Although the new modules are based on experience has 
lead us to improve previous methods, the need to test in a real environment is not eliminated. 
Other modules need to be improved as well, particularly the adaptation to the acoustics of the 
room, the possible use of distant microphone and the development of on-line dialog learning 
methods that could adapt the dialog to new unseen users. 

The prospects and benefits of including speech technology in systems to help handicapped 
people are enormous since speech is the most natural way used to communicate. By continuous 
research in the area and assistance to people at home using speech interfaces will be a reality in 
the coming years. 
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