
Multi-agent 3D tracking in intelligent spaces with 
a single extended particle filter 

M. Marrón, D. Pizarro, J. C. García, A. Marcos, R. Jalvo, M. Mazo 
Departamento de Electrónica, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, España.  

Abstract — A new method for tracking multiple objects in 
an intelligent space is proposed in this paper. The 
observation model is based on a camera ring statically 
mounted at the ceiling of the environment in order to 
obtain all relevant information related to the different 
objects that wonder (get into and go out) in the space of 
interest. In the paper, the two subsystems used to track all 
static and dynamic entities wondering in the intelligent 
space: a three-dimensional reconstruction of these entities; 
and, an individual track of all these entities in their 
movement along the environment with probabilistic 
techniques. The reliability, and robustness of the proposal 
presented is finally also demonstrated in this paper with 
different tests. 
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I. INTRODUCTION

Tracking a variable number of different entities 
(dynamic and static, controllable and uncontrollable) in 
a standard 3D environment has become a very 
interesting researching topic in the last years. This 
interest can be measured through the increasing amount 
of publications related to this question that proposes 
different algorithms, sensors, and techniques to solve the 
problems that appear in these kinds of situations.  

Intelligent spaces (IS [1], [2]) are one of the most 
recent areas in which multi-tracking has experimented a 
huge increase of interest. IS term define environments, 
generally indoor, in which the sensing and processing 
capability is distributed among different elements 
already installed on them; those elements allow to 
achieve a global and instantaneous knowledge and 
control of the different agents (persons, robots, 
obstacles) located at each moment inside the IS. 

A general description of an IS based on visual 
sensors, as the one used in this work, is shown in Fig. 1. 

On the other hand, many processing algorithms 
suitable to be used in the tracking task are based on 
particle filters (PF). Nevertheless, this kind of solutions 

frequently has got some problems to manage the 
multiple objects tracking issue. 

The work presented in this paper proposes a new 
method of multi agent tracking in intelligent spaces 
using a single PF to develop the 3D estimation process 
involved in the multi-tracking task. This proposal has 
two important advantages:  

Execution time of this task is independent of the 
number of elements being tracked at each time. This 
fact becomes essential if the multi-tracking task is to 
be used in real-time applications and crowded rooms, 
in which unimodal algorithms (one estimator for each 
object to be tracked) have demonstrated to be 
unsuccessful [3] [4]. 
A probabilistic character is given to the estimation 
problem, increasing the robustness and reliability of 
the processing system if compared to the one of some 
other deterministic solutions [5]. 
Using a single PF in the tracking task has already 

been successfully proposed in previous works [6] [7] [8] 
[9]. In some of them (i.e. [8]) a measurements’ 
clustering process has been added to the filter in order to 
exploit the PF multimodality. In the work presented in 
this paper, a more complex solution is needed, in order 
to obtain a solution flexible enough to be used with non 
rigid 3D objects.  

The observation system used in this work is based on 
a ring of calibrated cameras, synchronized and 
interconnected in server-client architecture through a 

Fig. 1. 3D render of the IS. Each camera is defined by its intrinsic and 
extrinsic parameters: Ka, Ra and Ta (a=1..3 in the figure). 
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LAN. Cameras are distributed in the IS in places that try 
to avoid occlusions in the tracking task.  

The multi-camera data is processed as follows:  
At every server, a simple background subtraction 
technique is used to obtain from the image captured 
with the associated camera a binary representation 
with the information related to tracked objects. 
The client application is in charge of fusing all 
cameras’ binary maps in a global 3D grid in a 
projection process based on a technique called 
Visual-Hull [10]. 
This 3D discrete representation is then used as input 

of the multimodal PF. 
The rest of the document is organized as follows: in 

section II a detailed description of the mentioned 
observation system is included; in section III the multi-
hypothesis tracker based on a PF is described; the global 
functionality of the proposal is analyzed in section IV; 
finally section V is used to highlight conclusions and 
future works observed within the development of the 
proposal described. 

II. OBSERVATION PROCESS

In order to develop the 3D tracking proposed, a three-
dimensional representation of the environment analyzed 
is needed. Visual-Hull has appeared as a robust, fast and 
powerful technique in order to obtain such a 
representation of a scene observed by a ring of static 
cameras strategically located [10]. 

The Visual-Hull is defined as the largest volume 
enclosed by the intersection of the different visual cones 
extracted from a set of cameras looking to a common set 
of silhouettes (see Fig. 2). The obtained volume is not 
the real one occupied by the objects that generate the set 
of silhouettes, but it can be ensured that is enclosed. 

The 3D Visual-Hull of a scene is generated with the 
following steps:  

In order to obtain it, a calibrated set of static cameras 
strategically located in the environment of interest (to 
avoid objects’ occlusions) is needed. Therefore, and 
supposing a pin-hole model for all cameras, intrinsic 
parameters (given by K matrix) and extrinsic ones 
(given by rotation –R–and translation –T– ones) are 
known for all cameras in the set.  

A standard background subtraction process, based on 
the Mahalanobis distance, is used to segment all 
silhouettes in the images extracted with every camera 
in the array. A set of binary representations of all 
objects in the environment, from different 
perspectives, is hence obtained. 
All these binary images have to be re-projected in a 
common space. In the proposed observation system, 
the 3D space used to reconstruct the global 
environment is discretized in height (Y coordinate 
each o meters), in order to have a faster execution of 
the Visual-Hull process. Therefore, the common re-
projection space is a set of b  planes in the XZ 
space, one for each b discrete value of Y. As a result, 
the re-projection process is characterized by the 
transformation expressed by eq. 1: 
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where the pair T
baba zx ,, is the representation in 

the corresponding b  plane of the point given by 
T

aa vu  in the binary image; and baH ,  is the 
related homography matrix, that can be obtained 
from the related aK , aR  and aT  ones as shown:  
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Once the homography related to each a binary image 
is obtained for each b  plane, they are multiplied to 
obtain the intersection of all objects in the observed 
scene in b  plane.  
In order to decrease even more the homography 
process computational load b  plane is also 
discretized in squares (with o meters long per side). 
Thus, the final 3D representation of all objects in the 
observed scene is an occupancy grid. 
The global process, described in previous paragraphs, 

is represented in Fig. 3.  

Fig. 2. Graphical representation of the Visual-Hull concept.  

z
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Fig. 3. Functional representation of the Visual-Hull. Several b

planes (b=5..1) in different heights are used. The silhouettes resulting 
of the intersections between the volume and these planes are projected 

onto a common b  plane for all cameras in the 3D world. In the 
detailed image of the top plane it can be noticed that, each plane 
surface has been discretized in squares of o meters long per side. 
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III. TRACKING PROCESS

Two main algorithms have traditionally been 
proposed in the related literature to solve the state 

T
tttt zyxx  estimation problem involved in the 

multi-tracking application of interest: the Kalman Filter 
(KF), that provides the optimal estimation solution 

ttt xx |
ˆ  given the linear and known probabilistic 

(necessary Gaussian) model of each object dynamics 
and the observation system; the PF, that provides a 
sampled density function of this estimation )( )(

..1
)( i

t
i

t yxp

(generally called belief), without restrictions of linearity, 
unimodality and exactitude in the models description.  

In this work, a single PF is used to track the different 
entities detected and presented in the 3D occupancy grid 
with the already described observation system. The PF 
based tracking solution ensures bigger reliability and 
robustness, and more constant execution time that the 
one based on the KF (as demonstrated in [8] and [9]).  

There are some interesting works in the related 
literature that propose the use of a unimodal PF for each 
object to be tracked (i.e. [11], [4]), or a single unimodal 
one with an extended state vector tx  that includes the 
one of every object to be tracked (i.e. [7]). Both 
solutions are neither suitable for real-time applications 
nor for crowded scenes, as the PF execution time 
increases linearly with the number of samples (also 
called particles) in the generated belief, and 
exponentially with their dimension [12].  

Besides, using the multimodality of the PF to 
characterize the different objects state is not straight-
forward: the multimodality has to be ensured within all 
conditions, as each mode in the discretized belief 

)( )(
..1

)( i
t

i
t yxp  generated by the PF will describe the state 

tx  of each object being tracked. An unequal distribution 
of the samples )( )(

..1
)( i

t
i

tt yxpS among all elements being 

tracked will make the estimation solution weak to 
disturbances and inaccuracies in the observation and 
dynamic models, making the particle set degenerate. 

In order to overcome this problem, a specific version 
of the standard PF has been developed. Fig. 4 shows the 
flowchart of the proposed PF for 3D tracking.  

The PF proposed is based on the Extended Particle 
Filter (XPF) firstly described in [13]. The main 
difference between the standard PF (the Bootstrap 
version described in [12]) and the XPF consists on 
inserting a re-initialization step, before the prediction 
one. This new step modifies the prior belief )( 1..11 tt yxp
in order to include information related to all objects 
detected by the observation process in the previous step 
(given by the probability density function )( 1typ ),
through the inclusion of mn  new samples, of the total of 
n  that conform )( 1..11 tt yxp .

The XPF is modified in the proposal presented in [8] 
and [10] in order to increase the robustness of the 
algorithm multimodality. This is achieved thanks to a 
measurements’ clustering process that is used in the new 
re-initialization step and in the correction one. The 
resulting algorithm is called Extended Particle Filter 
with Clustering Process (XPFCP). 

The algorithm proposed in this paper achieves the 
same robustness replacing the clustering process in the 
XPFCP by some others (see Fig. 4) with the same 
objective but faster and more flexible than that one, 
according to the real-time and three-dimensional 
character of the pursuit application.  

The different functional details of the PF proposed 
and shallowly described and remarked with thick lines 
in Fig. 4 are explained in the following subsections. 

A. MEASUREMENTS’ EQUALIZATION 

A measurements’ equalization process is developed 
previously to the re-initialization step, with the objective 
of filtering useless information from the data set 1tY
got from the observation system. The equalized set of 
measurements 1tY  will be therefore used in the re-
initialization step in a similar way as it is in the XPF.  

The equalization procedure consists on decreasing 
the 3D grid density in order to make it similar all over 
the space of interest. To achieve this equalization a 
histogram thresholding is developed at each b  plane 
in the global 3D grid obtained from the observation step, 
as shown in Fig. 5. 

This equalization process improves the robustness in 
the two steps that uses the generated data set (see Fig. 
4): the re-initialization and the correction one.  
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Fig. 4. Flowchart of the proposed PF for 3D tracking.
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This technique therefore implies a better distribution 
of the particles in the belief among all hypotheses to be 
tracked, contributing in reducing the harmful particle set 
degeneration.   

Besides, the execution time of these two mentioned 
steps is also decreased as it is linearly related to the 
number of measurements in the observation data set. 

B. PARTICLES’ WEIGHTING: CORRECTION STEP 

The algorithm proposed at the correction step 
consists on giving a weight )(i

tw  to each particle )(i
tx

according to the number )(i
tm  of equalized observations 

( tY ) in the 3D grid that are near (within a Manhattan 
distance of 2L meters) a particle when it ( nix i

tt ..1/)(
1|

) is 
projected to the observation space, through the 
observation model, )( )(

1|
i
ttxh .

Once again, to decrease the harmful effect of 
unequally sensed objects in the scene, )(i

tm  is saturated 
to )(i

tm  as shown: 
niMmM i

t ..1,max
)(

min ,  (3) 
where minM  and maxM  are respectively obtained 
weighting the number of measurements that may be 
inside a block defined by L (that is 33 oL ) by 1  and 

1 . It is, therefore, taken into account the discretization 
made in the height coordinate Y during the observation 
process. 

C. PARTICLES’ CLASSIFICATION 

The output generated by the 3D PF described in 
previous subsections is a discretized version of the 
belief )( ..1 ttt yxpS , representing distribution of 
hypotheses or objects being tracked in the state space.  

Consequently, a deterministic output has to be 
obtained from this probabilistic one, informing about the 
number of objects finally detected and their track. 

In order to obtain the deterministic solution from the 
3D PF output, a particles’ clustering process is 
developed in this work in three steps:  
1. The proposed classifier is again performed in parallel 

XZ planes. Therefore the first step is to discretize the 
state space along the Y coordinate, projecting all 
particles in tS  to the nearest XZ plane l .

2. An extended K-means clustering algorithm is then 
applied at each l  to obtain a set of particle’s 
clusters characterized by the group of ltk ,  centroids 

T
ltkltkltkltk zyxg ,,..1,,..1,,..1,,..1 , where height 

values are discrete. These 3D points are, in fact, the 
estimated position of the mass center of whole objects 
or parts of them at each height section. 

3. Finally, a boolean and bidirectional connectivity 
process is included in order to join each 

1,1,, ..1/ ltltc kcg  at plane 1l  with any (zero, one or 
more) 2,2,, ..1/ ltltc kcg  at a contiguous plane 2l

(defined for a discrete height next to the one of 1l ). 
An euclidean distance is used as connectivity 
variable, parameterized by threshold D  and 
including a scaling factor (through 2  for Z and 2
for Y).  
Each connected set of centroids resulting at the end 

of this process is considered to be a specific object in the 
environment of interest. Thanks to the connectivity 
process non rigid objects with different joints can be 
properly distinguished and track in real-time and all 
over the IS analyzed by the observation system. 

Fig. 6 shows a functionality example of the 
connectivity process described in previous paragraphs.  

IV. RESULTS

The global 3D tracking process proposed in this 
paper has been deeply tested over real observation 
situations.  

All tests have been done in Matlab, obtaining the 
observation data set from a real IS conformed by 4 color 
cameras acquiring images at 15fps with 640x480 pixels 
of resolution. The size of the observed space in the IS is 
about 3.5x3.5m. In all examples shown a constant speed 
model define the dynamics and ()h , 1500n  and 

%15mn . Besides mo 04.0 , the threshold is set to 40 
measurements and mL 1.0  in the observation, 
equalization and correction processes, respectively. 

Fig. 7 shows the effect of the proposed 
measurements’ equalization process, in a piece of an 
experiment of up to 5 agents (robots and persons) that 
get into and out of the IS.  

b

Fig. 5. Functional description of the measurements' equalization step. 
Zones with redundant measurements, and are therefore erased with the 

normalization, have been colored in red. 

Hist. x

z

y
x

z

Fig. 6. Particles’ classification. Left: Particles (in red) distributed 
among the scene objects. Middle: Clusters generated by the particles’ 

K-means classification, once they are projected onto planes l
(l=5..1) of different height. Right: Segmenting different entities (in 

colors) after applying the connectivity algorithm to cluster centroids.
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The 2 plots in Fig. 7 present the comparison between 
the real number (#) of objects extracted from the 
experiment (ground truth, in whole green line) versus 
the # of correctly tracked by the proposed algorithm (in 
dash blue line). The equalization process was applied in 
the image at the bottom and not in the one at the top.  

Comparing the 2 plots in Fig. 7, it can be easily 
noticed that the reliability of the global 3D tracking 
improves when the measurements’ equalization process 
is used: it rises from a 55% of iterations without error to 
a 95%.

Fig. 8 shows the effect of the saturation process at the 
correction step. The left image in the figure shows the 
set of n particles’ weights histogram with 1.01 ,

Inf1 , and the right one the same histogram with 
5.31 . It can be noticed that particles show a more 

uniform distribution of weights )..1( n
tw  in the histogram 

at the right, that is, if the saturation process is included. 
As a global result, Fig. 9 shows the 3D tracker 

proposed functionality in different instants extracted 
from another real experiment (see the top row of 
images), that starts with a robot getting into the IS, 
continues with a person putting three dustbins down in 
the floor and getting out after, and finishes with the 
same person leaving a ladder among the dustbins and 
leaving the room again.  

In order to obtain these results the final classification 
process parameters’ have been tuned as follows: 2D K-
means has been run in XZ planes each 40cm and with a 
gating distance of 30cm; mD 5.0 , 12  and 

4.12 .
Analyzing Fig. 9, it can be concluded that the global 

proposal successfully tracks all objects in the scene at 
every moment of the experiment:  

The 3D occupancy grid generated by the proposed 
observation system (see the middle row of images) 
represents with a high level of exactitude the different 
situations that happen in the IS. 

Fig 9. Real sequence obtained from one of the test videos. Top: real images captured from the cameras. Center: Visual Hull 
volumetric reconstruction. Bottom: 3D Tracker output classes; each tracked class is identified with a different color. z

xy

Fig. 7. System reliability. Top: comparison between the real number 
(#) of classes and the # of the output classes, without measurements’ 
equalization. Bottom: same test, using measurements’ equalization. 
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The deterministic output generated by the 3D PF (see 
the lower row of images) tracks individually (with 
different colours) and reliably the different objects 
detected by the observation system at every moment 
in the scene. 
These results demonstrate the correct functionality of 

the 3D tracking proposal in a dynamic environment 
occupied by flexible objects of different sizes and 
movement patterns.  

V. CONCLUSIONS AND FUTURE WORKS

In this paper, an algorithm to solve the 3D tracking 
problem in an intelligent space is proposed and 
successfully tested. In order to obtain the global 
functionality, a Visual-Hull technique is used as 
observation system, and a modification of the XPF is 
used in the estimation step. Real results demonstrate 
both the effect and the correct functionality of the 
different processes included in the global solution. 

The authors are already working in the real-time 
implementation of the proposal in order to complete the 
demonstration of its online applicability. Besides, a most 
developed background subtraction technique has also to 
be included in the observation system proposed, in order 
to make it robust to big lighting changes. 

Finally, an identification process, similar to the one 
already proposed by the authors in [8] (for a 2D tracker 
in an IS), is also to be incorporated in the system 
presented in this paper. 

ACKNOWLEDGMENT

This work was supported jointly by the Ministry of 
Science and Technology under the projects RESELAI 
(reference TIN2006-14896-C02-01) SD-TEAM 
(reference TIN2008-06856-C05-01). 

REFERENCES

[1] J. Lee, N. Ando and H. Hashimoto, “Intelligent space for 
human and mobile robot”, Proceedings of the 1999 
IEEE/ASME, International Conference on Advanced Intelligent 
Mechatronics, 1999. 

[2] L. Jeni and Z. Istenes, “Mobile agent control in intelligent 
space using reinforcement learning”, Proceedings of the 7th 
International Symposium of Hungarian Researchers on 
Computational Intelligence, 2006. 

[3] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale and 
Steve Shafer, “Multi-camera multi-person tracking for 
EasyLiving”, Proceedings of the Third IEEE International 
Workshop on Visual Surveillance, 2001. 

[4] A. López, C. Canton-Ferrer and J. R. Casas, “Multi-person 3D 
tracking with particle filters on voxels”, Image Processing 
Group, Technical University of Catalonia, 2007. 

[5] M. Atyabi, M. S. Kharjeh Hosseini and M. Mokhtari. “The 
webcam mouse: visual 3D tracking of body features to provide 
computer access for people with severe disabilities”, Islamic 
Azad University science & research Branch, 2006. 

[6] N. Checka, K. Wilson, V. Rangarajan and T. Darrell, “A 
probabilistic Framework for multi-modal multi-person 
tracking”, Artificial Intelligence Laboratory, Massachusetts 
Institute of Technology, 2003. 

[7] J. Kang, I. Cohen and G. Medioni, “Continuous Tracking 
Within and Across Camera Streams”, IRIS, Computer Vision 
Group, University of California, 2003. 

[8] D. Pizarro, M. Marrón, D. Peón, M. Mazo, J. C. García, M. A. 
Sotelo and Enrique Santiso, “Robot and obstacles localization 
and tracking with an external camera ring”, Proceedings of the 
2008 IEEE International Conference on Robotics and 
Automation, 2008. 

[9] M. Marrón, M. A. Sotelo, J. C. García, D. Fernández, D. 
Pizarro, “XPFCP: An extended particle filter for tracking 
multiple and dynamic objects in complex environments”,
Proceedings of the IEEE International Symposium on 
Industrial Electronics, 2005.  

[10] D. B. Yang, H. H. González-Baños and L.J. Guibas, “Counting 
people in crowds with a real-time network of simple image 
sensors”, Proceedings of the Ninth IEEE International 
Conference on Computer Vision, 2003. 

[11] D. Focken and R. Stiefelhagen, “Towards vision-based 3-D 
people tracking in a smart room”, Interactive System 
Laboratories, Universität Karlsruhe (TH), Germany, 2003. 

[12] N.J. Gordon, D. J. Salmond, A. F. M. Smith. “Novel approach 
to nonlinear/non-gaussian bayesian state estimation”, IEEE 
Proceedings in Radar and Signal Processing, Vol. 140, nº2, 
pp. 107-113, 1993. 

[13] E. B. Koller-Meier, F. Ade, “Tracking multiple objects using a 
condensation algorithm”, Journal of Robotics and Autonomous 
Systems, Vol. 34, pp. 93-105, 2001. 

M. Marrón et al. • Multi-agent 3D Tracking in Intelligent Spaces with a Single Extended Particle Filter

310


