
UNIVERSITY OF ALCALA
Polytechnic School

INTERNATIONAL EXCHANGE AGREEMENT

with
MÄLARDALEN UNIVERSITY

Department of Computer Science and Electronics

Master Thesis

TRACKING MULTIPLE OBJECTS WITH KALMAN FILTERS
 PART II

 Mikael Lindeborg

 February 2006

UNIVERSITY OF ALCALA
Polytechnic School

INTERNATIONAL EXCHANGE AGREEMENT

with
MÄLARDALEN UNIVERSITY

Department of Computer Science and Electronics

Master Thesis

TRACKING MULTIPLE OBJECTS WITH KALMAN FILTERS
PART II

Author: MIKAEL LINDEBORG
Alcalá Supervisor: MARTA MARRÓN ROMERA
Home Supervisor: MIKAEL EKSTRÖM

International Program Responsable: ANTONIO GUERRERO BAQUERO

Examiners:

 President: Elena López Guillén

 Examiner 2: Juan Carlos García García

 Examiner 3: Marta Marrón Romera

 MARK: ...

 DATE: ..

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg i

Table of Contents

I Abstract ____________________________________ 1

II Report ______________________________________ 2

1 Introduction..3

2 Objective..4

3 The input and output models ...6

3.1 The input data ...6

3.2 Image transformation...7

3.3 The output model...9

4 Tracking algorithms... 11

4.1 The discrete Kalman filter ...11
4.1.1 The process to be estimated ... 11
4.1.2 Definition of the Kalman filter equations 12
4.1.3 Filter parameters and tuning... 14
4.1.4 The system to be implemented ... 15

4.2 Data association...16
4.2.1 The data association algorithm ... 17
4.2.2 Improving the algorithm... 18

5 Implementation ... 19

5.1 Data association...20

5.2 Kalman estimation..21

5.3 Object validation ..23

5.4 Execution time ...24

5.5 Plotting ...24

5.6 Improving the performance with velocity smoothing25

6 Results ... 26

6.1 Adjusting the Kalman filter parameters...............................26
6.1.1 Manipulation by changing the values in R 27
6.1.2 Manipulation by changing the values in Q 29
6.1.3 Initial value of estimation covariance error........................... 30

6.2 Velocity smoothing ...30

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg ii

6.3 Validation parameters...32

6.4 Cylinder radius ...34

6.5 Final results ...36
6.5.1 One object... 36
6.5.2 Multiple objects.. 37

7 Conclusions and future work .. 39

7.1 Conclusions ...39

7.2 Future work ...39

III User manual ________________________________ 41

IV Implementation assessments __________________ 43

1 Hardware ... 44

2 Software .. 45

V Source code_________________________________ 46

1 tracking.c ... 47

2 tracking.h... 58

VI Budget _____________________________________ 60

VII References__________________________________ 62

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg iii

List of Figures

Figure 3.1: The Cartesian coordinate system. ... 6

Figure 3.2: The pinhole model and the related coordinate systems............. 7

Figure 3.3: The objects are characterized by a cylinder around their
estimated center position. The center of the Gaussian is the estimated
center (yellow line), the 3 dB line (red) indicates the estimation error
covariance (P). ... 10

Figure 3.4: An example of an object representation. 10

Figure 4.1: A summarize of the Kalman filter equations........................... 14

Figure 4.2: Signal-flow-model of the Kalman filter process....................... 16

Figure 4.3: The data association algorithm... 18

Figure 5.1: The global process. ... 19

Figure 5.2: The data association process.. 20

Figure 5.3: The process of creating a new object.................................... 21

Figure 5.4: The Kalman estimation process. ... 23

Figure 5.5: The validation process. .. 24

Figure 6.1: The estimation error when testing with different sizes in the R
matrix. .. 28

Figure 6.2: The estimation error when testing with different values in the Q
matrix. .. 29

Figure 6.3: Result of the implemented system, showing that much dynamics
in the image requires a bigger Q. The picture on the left has a too small
Q. ... 30

Figure 6.4: Velocity smoothing. ... 31

Figure 6.5: Estimation error with velocity smoothing. 31

Figure 6.6: Two tracking results for the same scene. The picture to the right
are the result obtained with the validation limit set to five iterations, and
the one to the left is obtained without the validation control. 32

Figure 6.7: An example of when an object is occluded, in this example the
invalidation limit is set to 15 iterations.. 33

Figure 6.8: Result of a test with three different cylinder radiuses 600 mm to
the left, 850mm in the middle and 1000 mm on the right. 35

Figure 6.9: Result of a test with three different cylinder radiuses 600 mm to
the left, 850mm in the middle and 1000 mm on the right. 35

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg iv

Figure 6.10: Single object tracking. ... 36

Figure 6.11: Single object tracking, two estimators started on the same
object.. 37

Figure 6.12: Multi-object tracking. ... 37

Figure 6.13: Multi-object tracking, less successful. 38

List of Tables

Table 3.1: The structure of the input data.. 6

Table 5.1: The time steps in the Kalman Filter.. 22

Table 6.1: Estimation covariance error for different values in the R matrix.28

Table 6.2: Estimation covariance error for different values in the Q matrix.29

Table 6.3: The number of objects detected in figure 6.9 and 6.10 for
different sizes of the cylinder radius. .. 34

Table 6.4: The mean estimation error for different sizes of the cylinder
radius.. 35

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 1

I. Abstract

In this report the implementation of a multiple object tracking algorithm is
described. The algorithm is part of the obstacle avoidance system in an
autonomous robot. The measurement vector used to achieve the tracking
task comes from a stereo-vision system that detects objects in the robot’s
environment [1]. The algorithm uses the probabilistic Kalman filter (KF) to
estimate the position and movement of different objects in the scene. One
filter is used for each object to track. An algorithm for associating the data in
the measurement vector to different objects is described. A validation
process that the tracking algorithm uses to reduce the noise included in the
measurement vector is also described.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 2

II. Report

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 3

1 Introduction

This master thesis is focused in the area of robotics and probabilistic
algorithms. The objective of the work described here is to track multiple
objects in an image with different Kalman filters.

There are two parts of the developed project. One of them focuses on the
development of a simulator platform (Part I) and the other one on a real time
platform (Part II). This part focuses on the real time application and will use
some of the results that are found in the simulations in part I. Since the work
is made for real time execution the implementation of this part focuses on
achieving a small execution time.

The input data vector contains the XYZ-coordinates of image points that
come from different objects in the scene, and the number of objects in the
images can change with time. The input 3D points are obtained with a
stereo-vision system, which has already been implemented in another
project [1]. One KF are used to track each object. The output of the tracking
algorithm to develop is the position, velocity and the number of objects in
each image.

Since the input data from the image acquisition are discrete and the final
implementation of the tracking system is developed in a computer,
algorithms and signals discussed in this thesis are discrete.

The most difficult part of the project is to do the association between the
measurement vector and the different estimators. This is because the 3D-
points are not sorted in the input vector and the number of measurements
for each object differs. In order to track the objects the 3D points must be
organized. Probabilistic algorithms dealing with this problem have been
presented and in Part I some of these are described.

The application for the algorithm presented in this thesis, is a part of the
obstacle avoidance module. This module is used in a robot that moves
autonomously in populated indoor environments.

The problem of finding a good estimate of the position of mobile objects in
an environment is a problem that has great importance in autonomous
robots. Knowledge about the position of moving objects can be used to
improve the behavior of the system, especially if the robot is located in
populated environments [2]. This ability allows the robot to adapt its velocity
to the people one and helps the robot to avoid collisions in situations where
the robot crosses the path of a human.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 4

2 Objective

To achieve the work explained in the introduction some objectives must be
stated, and these are presented in this section.

• Tracking of multiple objects - There are many algorithms to choose
from when tracking objects. However, given the knowledge that the
input data contains noise [1], reduces the options by the deterministic
algorithms; systems containing noise requires probabilistic algorithms.
In this work the probabilistic Kalman filters are used, since they
provide the optimal implementation of the Bayes’ filter [3]. One KF is
used to track each object. It is possible to use an only estimator for all
the objects, but since the number of objects is variable this is more
difficult to implement.

• Data association - For the tracking to be possible it is necessary to

identify which measurements come from which object. To develop
this association there are multiple choices of algorithms, as discussed
in part I of the project. In this part an implementation of the “Nearest
Neighbor Data Association Algorithm” is used. This algorithm uses
the Euclidean distance as a measure for associating; the 3D points
are assigned to the closet estimator.

• Varying numbers of objects - The algorithm must be able to handle

the fact that the number of objects in the scene can vary. This fact
arises more problems that need to be taken care of;

o Validation – If the measurements indicate that a new object

has just appeared a new estimator is created for it. To avoid
that measurement noise are characterized as an object, data
has to be associated to the object a certain number of
iterations consecutively before it is validated as a real object.

o Occlusion - Occlusion is when a scene element is interposed

between the camera and the tracked object, blocking the
object’s image projection, or a portion of it. This result in
incomplete data or no data associated with the tracked object.
To avoid that an object is removed even though it is still in the
scene, the object is kept in the scene for a certain amount of
iterations even though no data is associated to it during this
time.

o Crossing - When two tracked objects cross each others paths

one target–originated measurement may often fall within the
other target’s overlapping tracking window. This could lead to
multiple trackers locked onto the same part. This problem is
solved by the algorithm itself since an input parameter to the
KF is the direction shown by the velocity.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 5

• Execution time - The cameras used in the stereo-vision system,
have a frame rate of 15 fps [1], this means that the sample time of the
measurement acquisition system are ≈67 ms. This development must
take this specification into account, and in cases where the execution
time for the tracking process exceeds this time, it has to be able to
take care of this.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 6

3 The input and output models

The format of the input data is described in this chapter. To be able to
present the results of the estimated process, it is necessary to know how to
transform 3D data into the image coordinate system. In this section a
description of these questions and how to deal with them are presented.

3.1 The input data

The objects detected in the images by the stereo-vision system produces a
varying number of XYZ-coordinates. The generated data are organized in
the following way:

1. ny – Information about the number of measurements found in this
frame.

2. X coordinate.
3. Z coordinate.
4. Y coordinate.

Table 1 below shows the structure of the stereo-vision output data and figure
3.1 shows a description of the Cartesian coordinate system.

Table 3.1: The structure of the input data.

X1 X2 Xn X1
Z1 Z2 Zn Z1 ny = n
Y1 Y2

. . .
Yn

ny = n
Y1

. . .

Figure 3.1: The Cartesian coordinate system.

x

y

z

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 7

3.2 Image transformation

To acquire information from an image correctly the camera used in the
acquisition system has to be calibrated. The calibration is a process finding
the relation between an image of the environment taken by a camera and
the image itself. This process includes the position of the camera in the
environment and the cameras internal characteristics [4]. In this project the
pinhole model is used, which is a model of an ideal camera. The model is
shown in figure 3.2.

Figure 3.2: The pinhole model and the related coordinate systems.

In the pinhole model three coordinate systems can be considered to do the
translation between 3D and 2D:

• SCA (System of Absolute Coordinates) TZYX),,(- Information about
position of the points in 3D space. The origin of this coordinate
system will be the reference of the 3D coordinate position of the
objects.

• SCC (System of Camera Coordinates) TZYX),,(′′′ - A coordinate

system whose origin is located in the optic center of the camera. The
main restriction of the pinhole model is that the Z ′ -axis in the SCC
coincides with the optical axis.

• SCPI (System of Image Plane Coordinates) Tvu),(- 2D system that

represents a position in the image plane. The SCPI coordinates u
and v are only a direct projection of the X ′ respective Y ′ axis.

The transformation points from the SCA and SCPI can be divided into three
steps:

1. Move the origin of the SCA to the origin of SCC.

2. Rotate the SCA until its axes are coinciding with those of the SCC.

xO
yO

V

U

Z’

 X’

Y’ (U,V)=projection in
image plane

(X’,Y’, Z’)=object
three-dimensional space

f

Z

X

Y

Rotation + Translation

SCA

SCPI
SCC

β

ϕ

α

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 8

3. Move the SCPI laterally until there is complete agreement between

the two coordinate systems.

In the following paragraphs the different matrixes needed to do the SCA to
SCPI point transformation are summarized. In the first step, the translation
matrix T , that moves the origin of the absolute coordinates into the origin of
the camera coordinates, is added. See equation 3.1.

Equation 3.1

In the second step the rotations around the coordinate axes are performed;
α around the X -axis, β around the Y -axis and ϕ around the Z -axis.
Equation 3.2-3.4 shows these rotations.

Equation 3.2

Equation 3.3

Equation 3.4

The sequence of rotations around the SCA coordinate axes can be
expressed as)()()(),,(ϕβαϕβα ZYXR = where R is a composite rotation
matrix, in which)(ϕZ is applied first, then)(βY and finally)(αX . The
rotation matrix is orthogonal and thus it has the property that R-1= RT [4]. The
rotation value is expressed by equation 3.5.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z

Y

X

T
T
T

Z
Y
X

TZ
TY
TX

)('
)('
)('

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

)(ϕϕ
ϕϕ

ϕZ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

ββ

ββ
β

cos0sin
010

sin0cos
)(Y

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

αα
ααα

cossin0
sincos0
001

)(X

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 9

Equation 3.5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Z
Y
X

RZ
RY
RX

βαϕαϕβαϕαϕβα
βαϕαϕβαϕαϕβα

βϕβϕβ

coscoscossinsinsincossinsincossincos
cossincoscossinsinsinsincoscossinsin

sinsincoscoscos

)('
)('
)('

The generalized displacement (i.e. translation plus rotation) between SCA
and SCC is shown by equation 3.6.

Equation 3.6

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

T
T
T

Z
Y
X

Z
Y
X

βαϕαϕβαϕαϕβα
βαϕαϕβαϕαϕβα

βϕβϕβ

coscoscossinsinsincossinsincossincos
cossincoscossinsinsinsincoscossinsin

sinsincoscoscos

'
'
'

To be able to express the generalized displacement as a product of
matrices, they must be enlarged to 4x4 as shown by equation 3.7

Equation 3.7

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
−++

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11000
coscoscossinsinsincossinsincossincos
cossincoscossinsinsinsincoscossinsin

sinsincoscoscos

1
'
'
'

Z
Y
X

T
T
T

Z
Y
X

Z

Y

X

βαϕαϕβαϕαϕβα
βαϕαϕβαϕαϕβα

βϕβϕβ

In the third step the SCC coordinates are normalized by Z ′ and multiplied by
the camera focal length ()f . In order to plot the coordinates in the image it is
necessary to transform them into pixels. That is done by dividing by scaling
factors sx and sy [5], and correcting the position of the image plane origin by
the offsets ox and oy .The equation 3.8 below shows how to do the second
transformation (from SCC to SCPI).

Equation 3.8

x
x

o
Z
X

s
fu +⋅=

'
' , y

x

o
Z
Y

s
fv +⋅=

'
'

3.3 The output model

The objects in the scene are considered to move on the floor, this means
that the tracking is performed in the XZ-plane only. The KF models all
systems with Gaussian probability distribution, so the objects can be
characterized by a cylinder centered on their estimated center position.
Figure 3.3 shows a description this “cylinder model”.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 10

Figure 3.3: The objects are characterized by a cylinder around their estimated center
position. The center of the Gaussian is the estimated center (yellow line), the 3 dB
line (red) indicates the estimation error covariance (P).

The cylinder is given a constant height since the tracking is performed in the
XZ-plane. The radius is a tracking parameter that is specified to achieve
different tracking behavior; the radius decides the maximum distance the
measurements can be positioned at to be considered to come from the
object. This parameter is important; imagine for example if two persons are
walking next to each other. Then the radius has to be set so that both can be
tracked as objects. If it is set too small one person can instead be identified
as two.

The cylinder is shown as a rectangle in the image plane projection, and as a
circle in a XZ-projection plane plot. Figure 3.3 shows an example of these
plots. For plotting purposes the width of the rectangle does not match exact
width of the cylinder.

Figure 3.4: An example of an object representation.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 11

4 Tracking algorithms

The tracking algorithm implemented is, as mentioned, part of the obstacle
avoidance process in a robot’s navigation system. In this chapter the
different “sub-processes” of the tracking algorithm is described.

4.1 The discrete Kalman filter

The KF is the optimal implementation of the Bayes’ filter [3]. A description of
the KF functionality and the way to adjust its parameters are described in
this section. The limitations of this filtering method are also mentioned.

4.1.1 The process to be estimated

The KF is a recursive algorithm used to obtain the optimal estimation value

of a state vector na ℜ∈
→

 [3]. To use the KF, the process can be used with a
linear set of equations shown in 4.1 and 4.2. Equation 4.1 is also called the
state equation and it expresses the evolution of the process’ state vector
with time. Equation 4.2 is also called the output equation and describes what
is going to be the output of the system taken into account the current state
vector.

Equation 4.1

111 −

→

−

→

−

→→

++= kkkk wuHaGa

Equation 4.2

kkk oaCm
→→→

+=

kw and ko represent the process respectively the measurement noise. In
order to use the KF, the noises must be independent of each other, white
and with Gaussian (normal) probability distributions and with zero mean.
This is shown in equation 4.3 and 4.4.

Equation 4.3

).,0(~)(QNwp
→

Equation 4.4

).,0(~)(RNop
→

In equation 4.1 G is an nn× matrix that relates the state vector at the
previous time step to the one at the current time step, where n is the
number of states. H is an ln× matrix that relates the state vector to the

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 12

control input matrix, lu ℜ∈
→

, l is the number of inputs. The nm× matrix C

relates the state vector to the measurement vector, km
→

, where m in (nm×)
is the number of measurements. R and Q are respectively the
measurement and state noise covariance matrices. The vector sign)(→ will
be left out in all equations from now on.

As already mentioned above, the KF assumes that both the measurement
model and the state model are linear, and that the errors have a Gaussian
probability distribution. These inherent assumptions restrict its use.
However, the system presented in this report is supposed to be linear and
Gaussian system.

4.1.2 Definition of the Kalman filter equations

In the following equation:

• na ℜ∈
−∧

 is defined to be priori state estimation at step k given
knowledge of the process prior to step k; k-1. The ∧ sign indicates
that it is an estimation and the minus sign indicates that it is a priori
estimation.

• na ℜ∈
∧

is defined to be posteriori state estimation at step k given the

measurement km .

• The errors for a priori and a posteriori estimation can then be defined

as shown by equation 4.5 respectively 4.6.
Equation 4.5

Equation 4.6

• The priori estimation error covariance is expressed by equation 4.7

and the posteriori estimation error covariance is expressed by 4.8, T
denotes the matrix transpose.

Equation 4.7

⎥⎦
⎤

⎢⎣
⎡= −−− TeeEP kkk

Equation 4.8

⎥⎦
⎤

⎢⎣
⎡= TeeEP kkk

−∧
− −≡ kkk aae

kkk aae
∧

−≡

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 13

These equations are achieved through the Bayes’ filter theory. They are
useful when deriving the expressions for the KF as the goal, achieved by the
algorithm formulation, is to find a formula that computes a posteriori state

estimate, ka
∧

, as a linear combination of a priori estimate,
−∧

ka , and a
weighted difference between an actual measurement km and prediction of

the measurement vector
−∧

kaC . The found expression is shown in equation
4.9 below.

Equation 4.9

)(
−∧−∧∧

−+= kkkkk aCmKaa

In the previous expression K is called the KF gain and it is the mn× matrix
that minimizes the posteriori error covariance. This minimization is done in
the following way:

• Writing the equation 4.9 into the definition of the estimated error
(equation 4.5 and 4.6).

• Substituting the acquired expression into the estimate error

covariance equation (equation 4.7 and 4.8).

• Minimizing the expression with respect to K .

The resulting KF gain, K , is given by equation 4.10 below.

Equation 4.10
1)'(' −−− += RCCPCPK kkk

The minimized posteriori error covariance can then be obtained, using the
Kalman filter gain in equation 4.10 above, resulting in equation 4.11 below.

Equation 4.11
−−= kkk PCKIP)(

The KF does the estimation in two phases: prediction and correction. At
the prediction step, the algorithm predicts the value of the state vector and
the estimation covariance error using the system model (equation 4.1).
Equation 4.12 and 4.13 describes the prediction process.

Equation 4.12

11 −−

∧−∧

+= kkk HuaGa

Equation 4.13

QGGPP kk += −

−∧

'1

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 14

In the correction phase the KF adjusts the prediction with an actual
measurement, using equation 4.9 – 4.11, and Bayes’ rule, zeroing the
process noise. Equation 4.14 shows Bayes’ rule and figure 4.1 below gives a
complete picture of the operation and equations of the KF.

Equation 4.14

() () ()
()BP

APABPBAP || =

Figure 4.1: A summarize of the Kalman filter equations.

4.1.3 Filter parameters and tuning

When Q and R matrixes are constant, the estimation covariance kP and the
Kalman gain K quickly stabilizes and remains constant [3].

The time it takes the filter to converge has to do with the initial value of the
estimation covariance error (0P). If the initial value is too small it takes more
time for the filter to converge [6], than if it is big. On the other hand, if the
initial value is set too big the filter will never converge. So, the initial value
should be chosen carefully.

Manipulation of the filter behavior is possible through K , by changing the R .
For example, if R is made bigger the filter gets slower to respond to the
measurements information, resulting in a reduced estimation covariance,
since the KF gain, K , decreases. If the R is made smaller the filter responds

00 , Pa
(Initial estimates)

Prediction phase

1. Project the state ahead

11 −−

∧−∧

+= kkk HuaGa

2. Project the error covariance ahead

QGGPP kk += −

−∧

'1

Correction phase

1. Compute the Kalman gain

1)'(' −−− += RCCPCPK kkk

2. Update estimate with measurement km

)(
−∧−∧∧

−+= kkkkk aCmKaa

3. Update the error covariance

−−= kkk PCKIP)(

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 15

to the measurements quickly, increasing the estimation covariance since K
increases.

The state noise covariance matrix Q informs if the process is well known. If
it is, the noise covariance can be set to a small value. In cases where the
process model is a unknown, acceptable estimation results can be
accomplished if enough uncertainty is injected via the of Q .

In many applications the R and Q do not remain constant. In order to adjust
this the matrices R and Q becomes kR and kQ . This is a manipulation that
can be done to simulate changes in the dynamics and in level if noise. In
tracking algorithms for example, the magnitude of kQ can be reduced when
the object seems to be moving slowly and increase the magnitude if the
dynamics start changing rapidly.

4.1.4 The system to be implemented

It is necessary further describing of the tracking algorithm developed to
define the state vector of the system related to the tracking task.

In the state equation, the state vector (a) consists of the X and Z position of
the cylinder center in Cartesian coordinates. These coordinates are updated
with the help of the velocity of the objects in both X and Z directions, that are
considered the input vector (v) in the system model. The state vector is
shown by equation 4.15 below.

Equation 4.15

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⇔+=

−

−
−

z

x

s

s

k

k

k

k
kk

v
v

T
T

z
x

z
x

vHaGa
0

0
10
01

1

1
1

sT is the expected sample time of the global discrete estimation process.

The output equation that relates the state vector to the measurement one is
defined by equation 4.16 below. The measurements are received in both X
and Z Cartesian coordinates as well.

Equation 4.16

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⇔=

k

k

k

k
kk

z
x

z
x

aCm
10
01

The velocity in 4.15 is calculated in both X and Z directions according to
equation 4.17, using the measured sample time.

Equation 4.17

s

kk
k T

amv 1−−
=

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 16

Figure 4.2 shows the Signal-flow-model of the KF process.

Figure 4.2: Signal-flow-model of the Kalman filter process.

The process noise covariance matrix and the measurement noise
covariance matrix are then expressed by the following equations 4.18 and
4.19.

Equation 4.18

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

0
0

z

xQ
σ

σ

Equation 4.19

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2

2

0
0

z

xR
σ

σ

In equation 4.18 the 2σ indicates the variance of the process noise and in
4.19 the measurement noise, both in corresponding Cartesian coordinates.
These values are discussed in section 6.1.

4.2 Data association

As stated in chapter 2 of this document the tracking system has to be able to
handle multiple and various numbers of objects in the scene. In order to deal
with this specification an algorithm for associating the measurement to the
different objects is needed.

There are several algorithms proposed for tracking multiple objects in the
scientific literature. Some of them are discussed in Part I of this project. In
this part the Nearest Neighbor Data Association Algorithm (NN), is used.
The NN chooses the nearest measurement within its cylinder (for cylinder
description see chapter 3.3) as the most adequate. To calculate the
Euclidean distance between two points with coordinates ()11, zx and ()22 , zx
the equation 4.20 below can be used.

System

st
1−kc

km
kv

sT

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 17

Equation 4.20

() ()212
2

12 zzxxd −+−=

Since the NN chooses the nearest measurements in the estimation process
it does not give good results in high clutter density tracking environments,
when there is more than one target and when the tracks intersect. An
advantage of this method is that it is computationally inexpensive, and
regardless of the drawbacks, this method works well with low clutter density
and when targets don’t interfere with each other. In addition to this the track
management is also simple.

4.2.1 The data association algorithm

In figure 4.2 the association algorithm used in the implementation described
in this document is shown, and the following points describe the process:

• The distances from each of the measurements, at each time step, to
the priori estimation of each object’s centers are calculated.

• If the current measurement’s shortest distance to the closet of the

priori estimation is smaller the predefined cylinder radius the
measurement is associated with this estimator. Otherwise a new
estimator is created, and then it is necessary to restart the association
of measurements (see section 5.1.1 for further description).

• When all the measurements are assigned, the posteriori objects that

did not have any associated measurements this iteration are marked
to be removed.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 18

Figure 4.3: The data association algorithm.

4.2.2 Improving the algorithm

In order to reduce the miss-identification of input noise as objects, the newly
created estimators are considered as candidate objects a programmable
number of iterations. After these iterations, where the object has appeared
all the iterations, the objects considered a validated object. The number of
iterations you choose as a validation limit should be adapted to how noisy
the input data is.

When a posteriori object is marked to be removed by the association
process the estimator is not removed at once. Instead it is set as a candidate
to erase. Sometimes objects in the scene are occluded or the image
acquisition system does not produce measurements from them. This
improves the system’s performance with these problems. The number of
iterations before the estimator is removed is a parameter, invalidation limit,
that can be varied to achieve different system behavior.

The validation and invalidation limits are tested in section 6.3. However the
invalidation limit is usually the bigger one since it is used to handle
occlusion, while the validation limit is set to suppress outliers.

Start

Calculate dist.
to center

Is center
dist to big

Start new
object

Assign to
object

Read
measurement

End of
meas

End

yes

yes

no

no

Invalid objects
that has lost all
measurements

Restart the
assignment of
measurements

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 19

5 Implementation

This chapter describes the final implementation of the algorithms discussed
theoretically in the previous one. Some improvements that are necessary for
the thesis implemented are also presented. Figure 5.1 shows the flowchart
of the global algorithm and the different tasks included in it are discussed
more thoroughly in the following sections. The source code for the
implementation can be found in chapter V.

Figure 5.1: The global process.

A struct named data has been created to store information about each
object. It has the following members:

• XZY[3] – The coordinates for the Kalman estimated positions of the
object center (ka).

• Identify – Indicates if the struct data value is active. If its value is 1 it is

active. If it is -1 the array member is empty and a new object can be
stored in this position. 0 indicates that it is a newly created estimator.

• addCand – Is updated during the time a new object is in the validation

process.

• remCand – Is updated during the time an object is in the process to

be removed.

Initialization.

Assign the measurement
to the estimators.

Read measurement from
the stereo vision system.

Get the loop execution
time.

Correct the previous
prediction and predict
new position

Read data

Data
assignment

Kalman
Estimation

Execution
time

Validation
control

Check if candidate object
should be validated or
estimator removed.

Start

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 20

5.1 Data association

The data association algorithm implemented in this thesis is shown in figure
5.2, and described in the following steps:

• Each set (XZY) of measurements’ distance to the priori objects’

centers is calculated (the priori object center is the predicted object
center in the previous iteration).

• If this distance to the nearest priori object is not longer than the

maximum radius of the cylinder, the measurement is assigned to that
priori object.

• In the case where the minimum distance found between the mean

and the priori objects is too big it is necessary to start a new
estimator. This process is described more thoroughly below in this
section.

• After all the measurements have been associated, the remCand

struct member is zeroed for those that have been assigned
measurements.

Figure 5.2: The data association process.

yes

End

Start
new

estim.

Start

Read a set of
measuremnets

minDist>maxRad

Add closest object no
to association vector

Calculate the min dist from meas.
to all priori object centers

More
measurements

yes

no

no

Calculate mean for
associated meas

Zero remCand for objects
with assignments.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 21

• Finally the mean is calculated for all the measurement associated to
each priori object.

The process of starting a new estimator is shown in figure 5.3 and it
works as follows:

• The data struct member addCand is initialized, to indicate that it is
a candidate object before it is validated.

• The first measurement assigned a new object is set to be

considered the center of the object during the rest of the
association this iteration.

• The global association process is then restarted, because it is

necessary to test if there might be measurements already
associated with other object that are closer to this new candidate
object.

Figure 5.3: The process of creating a new object.

5.2 Kalman estimation

In figure 5.4 the process of the KF is shown and it is described in the
following steps:

• If it is the estimators’ first iteration, indicated by the struct member
Identify, the starting values are assigned. The state is set to the mean

Start
new

estim.

Free space
allocated

Reallocate
vector sizes

Use free space

Set measurement as
object center

Set addCand

Reset counter to start
object assignments

End

yes no

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 22

calculated for the object, the starting velocity is set to zero and the
start value of the estimation covariance error matrix are set to unity,
see section 6.1.3.

• Then the correction of the priori object position and priori estimation

error covariance is performed; correcting the predictions from the
previous iteration. The correction step is performed only in those
iterations where there are measurements associated for the priori
object. Table 5.1 shows how the different KF time steps for each
object are performed. The equations shown in this table are the KF
equations found in 4.9 and 4.12 and the velocity calculation equation
in 4.17.

• The next step is the prediction of a new priori object center and priori

estimation covariance error (next iterations object center and
estimation covariance error) is performed. If the object struct member
remCand is non-zero, the velocity that this object struct had the last
time it were associated with measurements is used to predict. This
helps maintaining the tracking when the object is occluded.

In the Kalman estimation function the data is put into matrices so the KF
calculations can be performed more easily.

Table 5.1: The time steps in the Kalman Filter.

 t=0 t=1 t=2 t=n

Correction 10 ma =
∧

 ()−
−

∧

−

+=

11

11

CamK

aa
()−

−
∧

−

+=

22

22

CamK

aa
()−

−
∧

−

+=

nn

nn

CamK

aa

Velocity 00 =v 001
1 =

−
=

∧

Ts
amv

 Ts
amv 12

2

∧

−
= Ts

amv nn
n

1−

∧

−
=

Prediction 11 ma =−

 112 vaa +=
∧

− 223 vaa +=
∧

−

…

nnn vaa +=
∧

−
+1

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 23

Figure 5.4: The Kalman estimation process.

5.3 Object validation

The object validation process is performed according to figure 5.5 and in the
following steps it is described:

• The process starts by checking whether the current object struct is
marked as candidate. In that case, it checks the object’s addCand
variable to see if it has been a candidate for as long as the condition
for being validated is set to, indicated by the validation limit. In that
case the candidate variable (addCand) in the related struct is zeroed
and the estimator is now a validated object.

• If the object struct is a marked as candidate and the remCand

variable is not zero, i.e. no measurements were associated to it this
iteration, the estimator is removed. This is indicated by the
invalidation limit and is done simply by setting the Identify field in the
struct to -1.

no

yes

yes

no

yes

no

Start

Set 000 ,, Pva

Object’s first
iteration

End

Appering
this iteration

Velocity = old
velocity

Calculate velocity

CORRECTION

PREDICTION

More
objects

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 24

• The same process as in the point above is performed when
measurements for a validated object has been missing for as long as
the condition to be removed is fulfilled.

Figure 5.5: The validation process.

5.4 Execution time

The cameras’ frame rate is 15 fps, giving a sample time of the acquisition
system ms6715

1 ≈ . This means that the tracking algorithm’s execution time

should not exceed this.

In the global tracking process the execution time of the loop is measured. If
the measured sample time is shorter than the expected, the system has to
pause for the remaining of the sample time. If the execution time exceeds
the expected, this may be partly compensated for in the Kalman filter since
the velocity is calculated with the measured sample time. In cases where it
exceeds the sample time much, the estimation process can miss one or
more frames, for this reason it is important to optimize the computational
load of the tracking algorithm.

5.5 Plotting

A function for plotting the tracking results in the captured images has been
developed. The type of draw, color and the draw position are sent to the
function as input arguments. The function uses the image transformation
equations presented in section 3.2. The different types of plots are that can
be shown in the images are:

• DotUV – Draws the measurements and the Kalman estimated center
in the images.

yes

no

yes

no

no

no yes

yes

Start

Time to validate
object candidate

Validate
object

Add candidate
disappered

Time to remove
disappeared object

More
objects End

Remove
object

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 25

• DotXZ – Draws the measurements and the estimation center in XZ-

projection plane (tracking plane in the Cartesian space).

• Circ – Draws a circle around the Kalman estimated center, which
represents the cylinder seen from above, in the XZ-projection plane.

• Rect – Draws a rectangle around the estimated center position,

representing the cylinder seen from the side.

• Text – Draws a text in the image, giving information about the sample
time and the number of the objects.

5.6 Improving the performance with velocity smoothing

In this section a performance improvement of standard tracking processes is
described. The improvements with the object validation process and the
predicting with “old velocity” have already been described.

The quality of the input measurements, produced by the stereo-vision
system, can vary depending on the intensity level in the scene [1]. In some
images the vision system can extract measurements around the whole
object and at other times only at on side of the object. This can lead to a
rather unstable behavior in the Kalman filter, since the modulus and direction
of the velocity that is calculated from the measurements will vary depending
on the vision process. In order to deal with this problem a velocity smoothing
process is developed, see equation 5.1.

Equation 5.1

2
1−+

= kk
k

VVV

This smoothing produces a more even estimator behavior since changes in
velocity are filtered.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 26

6 Results

In this chapter the results obtained from the implemented tracking algorithm
are presented. The following questions are going to be analyzed in order to
see the quality of the designed tracker:

• Behaviour against different values for the measurement and state

noise covariance matrices (R and Q) and finding a good start value
of the estimation noise covariance)(0P , as described in section 4.1.3.

• Velocity smoothing, as described in section 5.2.

• Validation parameters, the validation and invalidation limits, as

described in section 4.2.2.

• Cylinder radius, as described in section 3.3.

The issus analyzed are, in most cases, related to the different parameters
the tracker has. The value of some that have been fixed rigorously through
the theory (like RQ, and 0P), will be validated with these experiments
presented in this chapter. The value of the rest will be tuned empirically, as
shown here.

The quality factors used to validate the parameters are mainly: number of
objects detected, estimation error and execution time, at each frame.

The exact position of the objects is not known. In order to get an idea about
how good the estimations are, the distance to the mean of the
measurements manually associated to an object is used. This is referred to
as manual background truth. The number of objects will also be manually
counted for each frame and used as manual background truth.

The images that are shown in this chapter are the image plane projection
and the XZ-projection plane.

6.1 Adjusting the Kalman filter parameters

In order to test the performance of the tracking algorithm for the different
Kalman filter parameters (RQ, and 0P) the following conditions are fixed in
all the experiments in this section:

• Single object position estimation, during all experiments in this
section.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 27

• Fixed validation parameters, validation limit = 3 and invalidation limit =
10. Since it is an only object and it does not disappear nor reappear
during the experiment the validation parameter has no importance.

• Fixed cylinder radius, 900 mm. The radius is discussed more in

section 6.4, however this value has empirically shown to give good
tracking results.

The quality factors to measure are the following:

• Estimation error (R and Q test).
• Convergence time (0P test).

To gain by the results of these experiments is:

1. The best approximation value of R .
2. The best approximation value of Q .
3. A initial value for the estimation covariance error, 0P .

6.1.1 Manipulation by changing the values in R

The mean variance for the input measurements from the only object, during
the 15 measured iterations in the middle of the field-view scene, are found to
be: 2

xσ =30871 2mm and 2
zσ =11226 2mm . Using these values in the KF

causes the filter to diverge. Instead a ratio between the variance and the
cylinder radius, in which the variance is measured, is calculated as shown by
equation 6.1 below.

Equation 6.1

038.0
900
30871

900 2

2
2 ≈=⎟

⎠
⎞

⎜
⎝
⎛=−

x
ratiox

σ
σ , 014.0

900
11226

900 2

2
2 ≈=⎟

⎠
⎞

⎜
⎝
⎛=−

z
ratioz

σσ

The measurement noise covariance matrix then equals: ⎥
⎦

⎤
⎢
⎣

⎡
=

014.00
0038.0

R .

Figure 6.1 shows how the estimation error changes with different values of
R in the tracking experiment. The values of the estimation covariance error
(the diagonal of P), for the tested R values are shown in table 6.1. Notice
that when R is made bigger the estimation covariance error gets bigger, as
explained in section 4.1.3.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 28

Figure 6.1: The estimation error when testing with different sizes in the R matrix.

Table 6.1: Estimation covariance error for different values in the R matrix.

R (2mm) P (2mm)
0038.02 =xσ , 0014.02 =zσ 0.0038

038.02 =xσ , 014.02 =zσ 0.0381

38.02 =xσ , 14.02 =zσ 0.4225

The results in figure 6.1 show a small and smooth estimation error for the
smaller values of R . It is necessary to keep in mind that it is only the manual
background truth, so the values are not to be trusted entirely.

The measured variance indicates that the 2

xσ is bigger than 2
zσ this is

because the measurements are in a less comfortable situation for the x-
coordinate than for the z-coordinate. Based on this knowledge and the
results in the experiments above the following value is thought to be the
most adequate value of the measurement noise covariance matrix.

⎥
⎦

⎤
⎢
⎣

⎡
=

03.00
003.0

R

038.02 =xσ , 014.02 =zσ

0038.02 =xσ , 0014.02 =zσ

38.02 =xσ , 14.02 =zσ

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 29

6.1.2 Manipulation by changing the values in Q

As explained in section 4.1.3, the state noise covariance matrix, Q , informs
if the process is well known. It is possible to achieve acceptable estimation
results when the process model is unknown, as in this case, if the values in
Q is made big enough. The start value is thereby set to the unity matrix,
both a bigger and a smaller value are also tested. Figure 6.2 shows the
estimation error results of a series of testing with different Q -values and in
table 6.2 the estimation covariance error (the diagonal) for the tested values
are shown.

Figure 6.2: The estimation error when testing with different values in the Q matrix.

Table 6.2: Estimation covariance error for different values in the Q matrix.

These results, in figure 6.2, show a smooth and small estimation error.

As described in section 4.1.3, in scenes with much dynamics the magnitude
of Q has to be bigger than in scenes with small dynamics. Figure 6.3
illustrates what happens when the values in Q is set too small. In this

Q (2mm) P (2mm)
0.1∗ I 0.0298
1∗ I 0.0367

10∗ I 0.0379

⎥
⎦

⎤
⎢
⎣

⎡
=

100
010

Q

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

Q

⎥
⎦

⎤
⎢
⎣

⎡
=

1.00
01.0

Q

iteration

iteration

iteration

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 30

experiment Q is set to 0.1∗unity matrix (left picture) respectively the unity
matrix (right picture).

Figure 6.3: Result of the implemented system, showing that much dynamics in the
image requires a bigger Q. The picture on the left has a too small Q.

Based on these experiments the process noise covariance matrix is fixed
during the rest of the experiments to the following value:

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

Q

6.1.3 Initial value of estimation covariance error

As stated in section 4.1.3 the initial value of estimation covariance error, 0P ,
should not be set too small. A test with the unity matrix gives a good filter
convergence time, around 1-2 iterations. The initial value of 0P is therby
fixed to the following value:

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

0P

6.2 Velocity smoothing

In order to test the effect of the tracking algorithm’s velocity smoothing the
same conditions and parameters settings as in section 6.1 are used:

• Single object position estimation.

• QR, and 0P , fixed to the values in section 6.1.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 31

• Fixed validation parameters, validation limit = 3 and invalidation limit
10.

• Fixed cylinder radius, 900 mm.

The quality factors to measure:

• Estimation error.

The objective with this experiment is to get a more smooth estimation
behaviour, as described in section 5.2.

Figure 6.4 and 6.5 below shows the effect of velocity smoothing for 35
iterations on a single object tracking. The smoothed velocity (dashed line)
does not change as much as the non-smoothed one (solid line) between
different iterations, resulting in a more even estimation error behaviour.

Figure 6.4: Velocity smoothing.

Figure 6.5: Estimation error with velocity smoothing.

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

ve
lo

ci
ty

 [m
/s

]

iteration

smoothing
no smoothing

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 32

6.3 Validation parameters

The following conditions are stated in order to test the tracking performance
for different values of the validation parameters:

• Different objects’ situations.
• QR, and 0P fixed to the values in section 6.1
• Radius fixed, 900 mm.

The quality factors to measure are the following:

• Outliers.
• Number of objects.
• Execution time.

The objective of this test is to gain a validation parameters range.

The object validation control is used in order to suppress outliers, as
described in section 4.2.2. Figure 6.6 shows the effect of using the object
validation control when there are outliers in the scene. The picture to the
right is with the validation limit set to 5 iterations, the left one is without the
object validation control.

Figure 6.6: Two tracking results for the same scene. The picture to the right are the
result obtained with the validation limit set to five iterations, and the one to the left is
obtained without the validation control.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 33

As described in section 4.2.2, in order to keep the tracking of an object while
it is occluded invalidation limit has to be higher than the number of iterations
it is occluded. In figure 6.7 the effect of the invalidation limit parameter is
shown. In this experiment the object is occluded for 14 iterations and the
invalidation parameter is set to 15 iterations, so the tracking is maintained.

Figure 6.7: An example of when an object is occluded, in this example the
invalidation limit is set to 15 iterations.

The number of objects to track affects the execution time of the global
algorithm, since there are more estimators to process when there are more
objects to track. For this reason the validation process affects the execution
time in the following way:

• No change when using the object validation functionality. Since the

objects are processed in the global algorithm already when they are
candidates.

• It increases when the invalidation limit is set higher. In the case where

there are a lot of objects moving in and out of the scene, old
estimators are kept longer with invalid limit high and meanwhile new
ones are added. Resulting in many estimators to process.

In the experiments done to test the difference in the tracker execution time
for different validation parameter settings, this value is not measurable since
it is too low (mean execution time around 1ms).

A crossing is supposed to take less than 15 iterations (sample time 67 ms
⇒1s). In other cases, for example when two objects are moving together
and one gets occluded by the other one, the objects are considered as an
only one. In this situation if one object starts moving away from the other it
will appear as a new object.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 34

Based on the statement above and the tests that are presented in this
section the following validation parameters are used in the remaining
experiments:

• When validation limit = 5 the object is validated.

• When invalidation limit = 15 the object is removed.

6.4 Cylinder radius

The following conditions are stated in order to test the tracking performance
with different values for the cylinder radius:

• Different objects’ situations.
• QR, and 0P fixed to the values in section 6.1.
• Validation parameters fixed, validation limit = 5 and invalidation limit =

15.

The quality factors to measure:

• Number of objects detected.
• Estimation error.
• Execution time.

The objective for this experiment is to find a range for the cylinder radius
parameter.

Three different values of the cylinder radius have been tested: 600, 850 and
1000 mm. Figure 6.8 and 6.9 show the results of the three tests in two
different situations. Figure 6.8 illustrates when the radius is set too big, then
too few objects are found. However this particular situation is difficult since
two persons’ paths are crossed and one of them is occluded, only a few
measurements are acquired from this person. Figure 6.9 shows an example
where too many objects are detected when the radius is set small. The
correct number of objects in both scenes is four; the number of objects at
each study is shown by table 6.3.

Table 6.3: The number of objects detected in figure 6.9 and 6.10 for different sizes of
the cylinder radius.

Radius Detected objects
in figure 6.9

Detected objects
in figure 6.10

600 mm 4 7
850 mm 3 4

1000 mm 2 4

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 35

The mean estimation error during 40 iterations, in the middle of the field-view
scene, with the different radius sizes has been tested and the results are
shown in table 6.4. The estimation error with the different radii is not affected
noticeable measuring the manual background truth.

Table 6.4: The mean estimation error for different sizes of the cylinder radius.

Radius (mm) Estimation error (mm)
600 9.259
850 9.251
1000 9.256

Figure 6.8: Result of a test with three different cylinder radiuses 600 mm to the left,
850mm in the middle and 1000 mm on the right.

Figure 6.9: Result of a test with three different cylinder radiuses 600 mm to the left,
850mm in the middle and 1000 mm on the right.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 36

The execution time increases when the cylinder radius is small, since more
than one estimator is obtained for an only object. This effect cannot be
measured due to the same reasons as described in section 6.3.

Based on these tests the cylinder radius is fixed to 850 mm.

6.5 Final results

In this chapter tests showing the performance of the tracking algorithm in
different situations are shown. These tests are performed with the
parameters tuned to the values in the previous sections.

6.5.1 One object

The result of a single object tracking task is shown in figure 6.10. A test has
been performed during 35 iterations resulting in the following:

• A mean estimation error of: 4.464 mm .

• An estimation error covariance of: ⎥
⎦

⎤
⎢
⎣

⎡
039.00
0039.0 2mm

This estimation error is very small but not very confident since it is not the
background truth only the manual background truth that is measured.

Figure 6.10: Single object tracking.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 37

The resolution of the acquisition system decreases with z. This can lead to
the behavior shown in figure 6.11, where two estimators are started to track
an only object.

Figure 6.11: Single object tracking, two estimators started on the same object.

6.5.2 Multiple objects

Figure 6.12 below shows an example of a multi-object tracking task where
the tracking algorithm’s performance is good. In this scene the five objects
are tracked; one static object and four persons who are moving.

Figure 6.12: Multi-object tracking.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 38

In figure 6.13 a less successful tracking process is shown. There are five
persons in the scene. No measurements have been acquired from two of
them, so it is impossible to track them. From the two other persons that
stand closely three estimators are running, one tracker originates from the
person moving out of the scene, which no more measurements is acquired
from.

Figure 6.13: Multi-object tracking, less successful.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 39

7 Conclusions and future work

7.1 Conclusions

An algorithm for multiple object tracking using Kalman filters has been
implemented. The algorithm can be used in obstacle avoidance systems in
autonomous robots, used in indoor environments. The tracking algorithm
associates measurements, produced by a stereo-vision system, to the
different estimators using the Nearest Neighborhood Data Association
Algorithm.

Different performance tests in different situations have been presented.
Considering that the manual background truth is used the results show that
in most cases the tracking is performed well;

• The execution time demand is easily fulfilled.
• The number of objects can, in most cases, be obtained.
• The estimation error is small.

In complicated situations where there are many object crossing each others
paths the tracking sometimes fails. The most complicated situation for the
algorithm is when this happens far away from the measurement acquisition
system, since the noise level of the produced measurements is higher there.
The tracking failures might be because of the following two reasons:

1 The KF assumes all noise to be of Gaussian probability distribution.
However, no tests identifying the input noise as Gaussian has been
performed.

2 The NN, used for the association, does not give good results in high

clutter density tracking environments, where there is more than one
object and when tracks intersect.

In order to compensate the latter reason the cylinder radius, for which
measurements are assumed to come from an object, has been set rather
big. This can however lead to the misidentification of two objects as one.

7.2 Future work

In order to improve the performance of the tracking algorithm it is a good
idea to use another data association algorithm. The NN was chosen
because of its computationally inexpensiveness. However, since the
execution time demands are fulfilled rather easily, a more advanced
association algorithm could be afforded. Some are discussed in part I, such

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 40

as the PDAF, which calculate probability between the association and each
object and then uses it for a weighted update.

Another idea to improve the data association algorithm is to use a better
segmentation method. The problem is that each time a new object is created
all the measures should be reassigned since a previous assigned measure
might actually be closer to the new object than to the one it has been
assigned to. This would be a great improvement of the algorithm, but also
time-consuming. Methods suggested for this can be found in [7].

An interesting thing to test would be to implement the tracking algorithm with
an only estimator for tracking all the objects. The size of the estimator must
in that case be changed dynamical since the number of objects is varying.

Since no noise identification has been made, to see if it is of Gaussian
probability distribution, it is also of interest to test other estimation methods
than the KF.

The parameters discussed in the algorithm (0,, PRQ , cylinder radius and
validation parameters) could be updated dynamically depending on different
situations. For example the values in the Q matrix could be updated with
change in dynamics and the cylinder radius could change with different sizes
of objects.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 41

III. User Manual

In this section all information needed to test the implementation of the
presented tracking algorithm are described.

To be able to test the tracking algorithm some of the implementation
assessments (see chapter IV) that are used in this project have to be used;
a PC with a Linux operating system, with the openCV library installed.

The executable file tracking is built from the source code that can be found
in chapter V. The file has three input arguments:

• Argument 1 - decides whether or not to save the images showing the
results of the tracking. The images will be stored in .JPG format. 0 =
do not save, 1 = save.

• Argument 2 – decides if to show a 2D likelihood histogram of the

measurements, i.e. concentration of measurements in a discrete grid
of the environment. 0 = no plot and 1 = plot.

• Argument 3 – the number of the video file to test the tracking

algorithm on.

The following video files are to choose from (argument 3):

• 001 – Two person walking towards the camera.
• 004 – Two person walking away from the camera.
• 010 – Many people in the scene, walking in different directions.
• 041 – One person walking away from the camera.
• 061 – One person walking towards the camera.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 42

These files and the header file tracking.h, containing macros, must be in the
same directory as the execution file, when executing.

To execute the file do the following:

• Open a terminal.

• Localize the directory of the execution file.

• Type ./tracking arg.1 arg.2 arg.3 to run the tracking.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 43

IV. Implementation assessments

In this section the hardware and software used for the implementation and
simulations presented in this project are presented.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 44

1 Hardware

• Stationary computer

Microprocessor Intel Pentium III
Speed 1.00 GHz
RAM 256 MB
Disk 80 GB
Monitor 17” LCD

• Printer Xerox Document Center 340

Printer type Laser
Speed 40 ppm
Resolution 600 dpi
Communications Standard TCP/IP

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 45

2 Software

• Operating systems

Windows XP Professional Version 2002, SP2
Debian Linux Kernel 2.6.5

• Office 2003 (English)
Microsoft Office Professional Edition 2003, version
11.5604.5606.

• Panda titanium antivirus 2005
Version 4.02.01.

• OpenCV library
OpenCV-0.9.5.

• Matlab
Version 6.5.0.180913a release 13.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 46

V. Source code

In this section the source code for the implemented tracking algorithm is
presented.

The following two files contain the code:

1. tracking.c - The realization of the tracking algorithm which is made up
of the following functions:

• main - The global algorithm.
• sortData - The data association.
• mean - Objects’ mean calculation.
• kman - Kalman filter.
• plotting - Used for drawing.
• hist - Plots a 2D likelihood histogram of the

measurements.

2. tracking.h - Contains all macros used in the above functions.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 47

1 tracking.c

// ===
// Multi-object tracking
// By: Mikael Lindeborg
//
// tracking.c 2006-02-14
// ===

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>
#include <time.h>
#include "cv.h"
#include "highgui.h"
#include "tracking.h"

typedef struct{
 float XZY[3]; // Coordinates
 int Identify; // -1=empty, 0=new object, 1=object
 int remCand; // Number of iterations without appearing
 int addCand; // 0 - no object candidate

}data;

int sortData(int ,float *,int *,int);
void meanCalc(int ,int, float *,int *);
void kman(float *,float,int);
void plotting(IplImage *,int ,int, float *,char *);
void hist(int ,float *,IplImage *);
void validation(int,int *);

// ============== Global variables =================================
data *aCorrArr=NULL;
float *aPredArr=NULL,*PPredArr=NULL,*mean=NULL,*PCorrArr=NULL,*velOld=NULL;
// ===

int main(int argc,
 char *argv[])
{
 IplImage
 *iplLeft,*iplLeftColor,*iplUndistLeftMap,*iplUndistLeft,*iplXZ,*iplBoth,

*iplHist; //Images

 FILE *pfLeft,*pfCoord; //file pointers

 float At=0,t=0,te=0; //time variables
 struct timeval tPrev,tNow,tExec;

 int i,j,plotHist,saveImages;
 int ny,hold=1,nFrame=1;
 int objsAlloc=0,NoObjs=0;
 int *objIndex=NULL;
 float *pMeas=NULL,XYZ[3];
 char text[MAX_STR_SIZE];

 saveImages = atoi(argv[1]); //translate input arguments
 plotHist = atoi(argv[2]);
 text[0]='\0';
 sprintf(text,"left%03d.str",atoi(argv[3]));
 pfLeft = fopen(text,"rb");
 sprintf(text,"data%03d.dat",atoi(argv[3]));
 pfCoord = fopen(text,"rb");

 //cvNamedWindow Creates a window(image placeholder)
 cvNamedWindow("1. Left 2D Image",CV_WINDOW_AUTOSIZE);
 if(plotHist)
 cvNamedWindow("2. Histogram",CV_WINDOW_AUTOSIZE);

 // Allocate space for images
 iplLeft = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,1);
 iplUndistLeft = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,1);
 iplLeftColor = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,3);
 iplUndistLeftMap= cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_32S,3);
 iplXZ = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,3);
 iplBoth = cvCreateImage(cvSize(WIDTH,HEIGHT*2),IPL_DEPTH_8U,3);
 iplHist = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,1);

 if (ferror(pfLeft))
 {
 printf("\nError when reading data...\n");
 fclose(pfLeft);
 }

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 48

 if (ferror(pfCoord))
 {
 printf("\nError when reading data...\n");
 fclose(pfCoord);
 }

 //The first value in the string is for the undistortionmap initialization
 if(!fread(iplLeft->imageData,1,FILE_SIZE,pfLeft))
 {
 printf("\nEnd of video\n");
 return(-1);
 }

//Calculates arrays of distorted points indices and interpolation
// coefficients, using known matrix of the camera intrinsic parameters and
// distortion coefficients.

 cvUnDistortInit(iplLeft,iplUndistLeftMap,intrMatrixLeft,distCoeffsLeft,1);

 if(!fread(&ny,sizeof(int),1,pfCoord)) //N^o coordinates are read into ny
 {
 printf("\nNo more coordinates to read from file...\n");
 return(-1);
 }

 //Allocate space for the coordinates in an array
 pMeas=(float*)malloc(3*ny*sizeof(float));
 objIndex=(int*)malloc(ny*sizeof(int));
 fread(pMeas,sizeof(float),3*ny,pfCoord);

 if(gettimeofday(&tNow,NULL)) //start clock
 printf("Error in gettimeofday() !!\n");
 do
 {
 if (hold==1)
 {
 if(!fread(iplLeft->imageData,1,FILE_SIZE,pfLeft))
 {
 printf("\nEnd of video\n");
 break;
 }

 //cvUnDistort corrects camera lens distortion using previously
// calculated undistortion map

 cvUnDistort(iplLeft,iplUndistLeft,iplUndistLeftMap,1);
 //cvCvtColor converts input img rom one color space to another
 cvCvtColor(iplUndistLeft,iplLeftColor,CV_GRAY2BGR);

 //Read coordinates
 if(!fread(&ny,sizeof(int),1,pfCoord)) {
 printf("\nThe End\n");
 break;
 }
 //Reallocate space for the coords
 pMeas=(float*)realloc(pMeas,3*ny*sizeof(float));
 objIndex=(int*)realloc(objIndex,ny*sizeof(int));
 fread(pMeas,sizeof(float),3*ny,pfCoord);

 objsAlloc=sortData(ny,pMeas,objIndex,objsAlloc);
 meanCalc(ny,objsAlloc,pMeas,objIndex);
 kman(mean,At,objsAlloc);
 validation(objsAlloc,&NoObjs);

 //Calculate execution time
 if(gettimeofday(&tExec,NULL))
 printf("Error in gettimeofday() !!\n");
 te=(tExec.tv_sec-tNow.tv_sec)*1000+(tExec.tv_usec-
tNow.tv_usec)/1000;

cvZero(iplXZ); //clear image
 //Plot measurements
 for(i=0;i<(3*ny);i=i+3)
 {
 XYZ[0]=pMeas[i];
 XYZ[1]=pMeas[i+2];
 XYZ[2]=pMeas[i+1];
 //Plot in video
 plotting(iplLeftColor,DOTUV,TURQUOISE,XYZ,NULL);
 //XZ plot
 plotting(iplXZ,DOTXZ,TURQUOISE,XYZ,NULL);
 }

 if(plotHist)//if a "histogram" plot is wanted
 hist(ny,pMeas,iplHist);

 //plot kalman estimations
 for(i=0;i<objsAlloc;i++)
 {

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 49

 //plot only validated objs
if(aCorrArr[i].Identify==1 && !aCorrArr[i].addCand)

 {
 XYZ[0]=aCorrArr[i].XZY[0];
 XYZ[1]=aCorrArr[i].XZY[2];
 XYZ[2]=aCorrArr[i].XZY[1];
 plotting(iplLeftColor,DOTUV,RED,XYZ,NULL);
 // %7 - 7 different colors
 plotting(iplLeftColor,RECT,(RED+i)%7,XYZ,NULL);
 sprintf(text,"%d",i+1);
 plotting(iplLeftColor,TEXT,(RED+i)%7,XYZ,text);
 plotting(iplXZ,DOTXZ,RED,XYZ,NULL);
 plotting(iplXZ,CIRC,(RED+i)%7,XYZ,NULL);
 }
 }
 }

 //cvWaitKey- Waits for pressed key
 if (cvWaitKey(10)>=0)
 {
 if (hold==1) hold = 2;
 else hold = 1;
 }

 tPrev=tNow;
 At=0;
 while(At < ts)//delay get the right sample time
 {
 if(gettimeofday(&tNow,NULL))
 printf("Error in gettimeofday() !!\n");
 At=(tNow.tv_sec-tPrev.tv_sec)*1000+(tNow.tv_usec-
tPrev.tv_usec)/1000;
 }

 sprintf(text,"Execution time: %.0fms No Objects: %d",te,NoObjs);
 //Print the execution time

plotting(iplLeftColor,TEXT,RED,NULL,text);

 memcpy(iplBoth->imageData,iplLeftColor->imageData,3*FILE_SIZE);
 memcpy(iplBoth->imageData+3*FILE_SIZE,iplXZ->imageData,3*FILE_SIZE);

 if(saveImages) //Save images
 {
 sprintf(text,"Result%05d.jpg",nFrame);
 cvSaveImage(text,iplBoth);

 }
 nFrame++;

 cvShowImage("1. Left 2D Image",iplBoth);
 if(plotHist)
 cvShowImage("2. Histogram",iplHist);

 }while(1);

 free(pMeas); //free allocated heap space
 free(objIndex);
 free(mean);
 free(velOld);
 free(aCorrArr);
 free(aPredArr);
 free(PPredArr);
 free(PCorrArr);

 cvReleaseImage(&iplLeft); //releases header and image data
 cvReleaseImage(&iplUndistLeft);
 cvReleaseImage(&iplUndistLeftMap);
 cvReleaseImage(&iplLeftColor);
 cvReleaseImage(&iplXZ);
 cvReleaseImage(&iplBoth);
 cvReleaseImage(&iplHist);
 cvDestroyWindow("1. Left 2D Image"); //destroys windows
 if(plotHist)
 cvDestroyWindow("2. Histogram");

 fclose(pfLeft); //close files
 fclose(pfCoord);

 return 0;
}

// ===
// Function: SortData
//
// Purpose : Assign measurements to objects

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 50

// Input : ny - N^o measurements
// pMeas - Measurements
// objsAlloc - N^o excisting allocated obj
// aPredArr - KF-predicted pos. of objs
// Output : objIndex - Meas to Objs Association vector
// objsAlloc -N^o allocated object's storage room

// ===

int sortData(int ny,float *pMeas,int *objIndex,int objsAlloc)
{
 int i,j,k,p,minIndex,fill=0,newObj=1;
 float CenterDist,minDist,*temp;

 while(newObj)
 {
 p=0;
 newObj=0;
 for(j=0;j<ny;j++)//loop through all meas
 {
 minDist=3000.0; //big number for first iter
 for(i=0;i<objsAlloc;i++)//Checks which object is closest
 {
 //only the "active" objects
 if(aCorrArr[i].Identify!=-1)
 //euclidean distance calc
 CenterDist=sqrt(powf((pMeas[j*3]-
aPredArr[i*3]),2)+powf((pMeas[j*3+1]-aPredArr[i*3+1]),2));
 else
 CenterDist=4000.0;

 if(CenterDist<minDist)
 {
 minIndex=i;
 minDist=CenterDist;
 }

 }
 //Check if minDist is too big, then create new object

// otherwise set the right index
 if(minDist>RMAX) //new object
 {
 k=0;fill=0;
 newObj=1; //set to restart the allocation
 while(k<objsAlloc)
 {
 //overwrite old object
 if(aCorrArr[k].Identify==-1)
 {
 fill=1;
 objIndex[p++]=k-1;
 aCorrArr[k].Identify=0;
 aCorrArr[k].addCand=1;
 aCorrArr[k].remCand=1;
 for(i=0;i<3;i++)
 aPredArr[k*3+i]=pMeas[j*3+i];
 k=objsAlloc;//break
 j=ny;//break to restart the allocation

 }
 k++;
 }
 if(!fill)//reallocate for new object
 {
 objsAlloc++;//update the counter for new object
 aCorrArr = (data*)realloc(aCorrArr,
objsAlloc*sizeof(data));
 aPredArr = (float*)realloc(aPredArr,
objsAlloc*3*sizeof(float));
 PPredArr = (float*)realloc(PPredArr,
objsAlloc*9* sizeof(float));
 mean = (float*)realloc(mean,
objsAlloc*3*sizeof(float));
 PCorrArr = (float*)realloc(PCorrArr,
objsAlloc*9*sizeof(float));
 velOld = (float*)realloc(velOld,
objsAlloc*3*sizeof(float));

 objIndex[p++]=(objsAlloc-1);
 aCorrArr[objsAlloc-1].Identify=0;
 aCorrArr[objsAlloc-1].addCand=1;
 aCorrArr[objsAlloc-1].remCand=1;

 for(i=0;i<3;i++)
 //set value too compare with
 aPredArr[(objsAlloc-1)*3+i]=
pMeas[j*3+i];

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 51

 j=ny;//break to restart the allocation
 }
 }
 else
 {
 objIndex[p++]=minIndex;
 }
 }
 }
 //Check if there were objects not appering
 for(i=0;i<ny;i++)
 aCorrArr[(objIndex[i])].remCand=0;

 return(objsAlloc);
}

// ===
// Function: meanCalc
// Purpose : Calculate mean of each objs meas
// Input : ny - N^o measurements
// pMeas - Measurements
// objsAlloc - N^o allocated object space
// objIndex - Meas to Objs Association vector
// Output : mean - Vector containing objs mean
// ===

void meanCalc(int ny,int objsAlloc,float *pMeas,int *objIndex)
{
 int i,j,objCount;
 float sumX,sumY,sumZ;

 for(i=0;i<objsAlloc;i++)//calculate measured centers
 {
 //only when meas has been found
 if(aCorrArr[i].remCand==0 && aCorrArr[i].Identify!=-1 && ny!=0)
 {
 sumX=0.0;sumY=0.0;sumZ=0.0;objCount=0;
 for(j=0;j<ny;j++)
 {
 if(objIndex[j]==i)
 {
 sumX=sumX+pMeas[j*3];
 sumY=sumY+pMeas[j*3+1];
 sumZ=sumZ+pMeas[j*3+2];
 objCount++;
 }
 }
 mean[i*3]=sumX/(float(objCount));
 mean[i*3+1]=sumY/(float(objCount));
 mean[i*3+2]=sumZ/(float(objCount));
 }
 }

}

// ===
// Function: kman
// Purpose : Calculate kalman estimations
// Input : aCorrArr - Prev. position correction
// aPredArr - Position prediction
// PPredArr - Error cov. prediction
// objsAlloc - No allocated obj spacr
// objIndex - Meas to Objs Association vector
// Output : aCorrArr - Corrected position
// aPredArr - Position prediction for next iter
// PPredArr - Err cov. prediction for next iteration
// ===

void kman(float *mean,float At,int objsAlloc)
{
 int i,j;
 float Itemp[9]={1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0},Rtemp[9];
 float Qtemp[9],arr[9];;
 float T[9]={ts,0.0,0.0,0.0,ts,0.0,0.0,0.0,ts};
 CvMat
 *aPredict,*aCorrect,*PPredict,*PCorrect,*Velo,*I,*temp1,*temp2,*temp3,*temp4,
*K,*Q,*R,*M,*H;

 aPredict=cvCreateMat(3,1,CV_32F);
 aCorrect=cvCreateMat(3,1,CV_32F);
 PPredict=cvCreateMat(3,3,CV_32F);
 PCorrect=cvCreateMat(3,3,CV_32F);
 I=cvCreateMat(3,3,CV_32F);
 temp1=cvCreateMat(3,3,CV_32F);
 temp2=cvCreateMat(3,1,CV_32F);
 temp3=cvCreateMat(3,1,CV_32F);
 temp4=cvCreateMat(3,3,CV_32F);

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 52

 Velo=cvCreateMat(3,1,CV_32F);
 K=cvCreateMat(3,3,CV_32F);
 R=cvCreateMat(3,3,CV_32F);
 M=cvCreateMat(3,1,CV_32F);
 Q=cvCreateMat(3,3,CV_32F);
 H=cvCreateMat(3,3,CV_32F);
 for(i=0;i<9;i++)
 {
 Qtemp[i]=Itemp[i]*1.0;
 Rtemp[i]=0.0;
 }
 Rtemp[0]=0.038;
 Rtemp[5]=0.038;
 Rtemp[8]=0.014;

 cvInitMatHeader(H,3,3,CV_32F,T);
 cvInitMatHeader(I,3,3,CV_32F,Itemp);
 cvInitMatHeader(R,3,3,CV_32F,Rtemp);
 cvInitMatHeader(Q,3,3,CV_32F,Qtemp);

// ==
// Correction
// ==
 for(i=0;i<objsAlloc;i++)
 {
 if(aCorrArr[i].Identify==0) //if first appearence set X0 and P0
 {
 aCorrArr[i].XZY[0]=mean[i*3]; // X0
 aCorrArr[i].XZY[1]=mean[i*3+1];
 aCorrArr[i].XZY[2]=mean[i*3+2];
 aCorrArr[i].Identify=1;
 aPredArr[i*3]=mean[i*3]; //X0+V0, V0=0
 aPredArr[i*3+1]=mean[i*3+1];
 aPredArr[i*3+2]=mean[i*3+2];

 for(j=0;j<9;j++) //P0
 PPredArr[i*9+j]=Itemp[j];
 }
 else if(aCorrArr[i].Identify==1) // if it has “appeared” this iter
 {

 aPredict->data.fl[0]=aPredArr[i*3];
 aPredict->data.fl[1]=aPredArr[i*3+1];
 aPredict->data.fl[2]=aPredArr[i*3+2];

 aCorrect->data.fl[0]=aCorrArr[i].XZY[0];
 aCorrect->data.fl[1]=aCorrArr[i].XZY[1];
 aCorrect->data.fl[2]=aCorrArr[i].XZY[2];
 arr[9];
 M->data.fl[0] = mean[i*3];
 M->data.fl[1] = mean[i*3+1];
 M->data.fl[2] = mean[i*3+2];

 for(j=0;j<9;j++)
 {
 arr[j]=PPredArr[i*3+j];
 }
 cvInitMatHeader(PPredict,3,3,CV_32F,arr);

 //Correction only when measurments have been found.
 if(aCorrArr[i].remCand==0)
 {
 //Calculate velo for prediction before old val. is

// overwritten.
 Velo->data.fl[0]=(M->data.fl[0]-aCorrect->
data.fl[0])/At;
 Velo->data.fl[1]=(M->data.fl[1]-aCorrect->
data.fl[1])/At;
 Velo->data.fl[2]=(M->data.fl[2]-aCorrect->
data.fl[2])/At;

 // Velocity smoothing
 Velo->data.fl[0] = (Velo->data.fl[0]+velOld[i*3])
/2.0;
 Velo->data.fl[1] = (Velo->data.fl[1]+velOld[i*3+1])
/2.0;
 Velo->data.fl[2] = (Velo->data.fl[2]+velOld[i*3+2])
/2.0;

 cvAdd(PPredict,R,temp1);
 cvInv(temp1,temp4,CV_LU);
 cvMatMul(PPredict,temp4,K);//Correction equation (1)

 cvSub(M,aPredict,temp2);
 cvMatMul(K,temp2,temp3);
 cvAdd(aPredict,temp3,aCorrect);//Correction eq (2)

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 53

 cvSub(I,K,temp1);
 cvMatMul(temp1,PPredict,PCorrect);//Correction eq (3)

 aCorrArr[i].XZY[0]=aCorrect->data.fl[0];// Save values
 aCorrArr[i].XZY[1]=aCorrect->data.fl[1];
 aCorrArr[i].XZY[2]=aCorrect->data.fl[2];
 for(j=0;j<9;j++)
 PCorrArr[i*9+j]=PCorrect->data.fl[j];
 velOld[i*3]=Velo->data.fl[0];
 velOld[i*3+1]=Velo->data.fl[1];
 velOld[i*3+2]=Velo->data.fl[2];

 }
 else //maintain old velocity if it disapperas
 {
 Velo->data.fl[0]=velOld[i*3];
 Velo->data.fl[1]=velOld[i*3+1];
 Velo->data.fl[2]=velOld[i*3+2];
 }
// ==
// Prediction
// ==

 cvMatMul(H,Velo,temp2);
 if(aCorrArr[i].remCand!=0)
 cvAdd(aPredict,temp2,aPredict);//prediction eq (1)
 else
 cvAdd(aCorrect,temp2,aPredict);//prediction eq (1)
 cvAdd(Q,PCorrect,PPredict); //prediction eq (2)
 aPredArr[i*3]=aPredict->data.fl[0]; //Save values
 aPredArr[i*3+1]=aPredict->data.fl[1];
 aPredArr[i*3+2]=aPredict->data.fl[2];
 for(j=0;j<9;j++)
 PPredArr[i*9+j]=PPredict->data.fl[j];
 }
 }

// ==
 cvReleaseMat(&aPredict);
 cvReleaseMat(&aCorrect);
 cvReleaseMat(&PPredict);
 cvReleaseMat(&PCorrect);

 cvReleaseMat(&temp1);
 cvReleaseMat(&temp2);
 cvReleaseMat(&temp3);
 cvReleaseMat(&temp4);
 cvReleaseMat(&Velo);
 cvReleaseMat(&I);
 cvReleaseMat(&K);
 cvReleaseMat(&R);
 cvReleaseMat(&M);
 cvReleaseMat(&Q);
 cvReleaseMat(&H);
}

// ===
// Function: validation
// Purpose : remove or add object candidates
// Input : aCorrArr - Objects
// objsAlloc - No allocated obj space
// NoObjs - Number of validated objects
// Output : aCorrArr - Objects
// NoObjs - Number of validated objects
// ===
void validation(int objsAlloc,int *NoObjs)
{
 int i;

 for(i=0;i<objsAlloc;i++)//loop trough all objs
 {
 //validate as object

if(aCorrArr[i].addCand==ITERADD && aCorrArr[i].remCand==0)
 {
 aCorrArr[i].addCand=0;
 (*NoObjs)++;
 }
 //still a candidate
 else if(aCorrArr[i].addCand!=0 && aCorrArr[i].remCand==0)
 {
 aCorrArr[i].addCand++;
 }
 //invalid candidate
 else if(aCorrArr[i].addCand!=0 && aCorrArr[i].remCand!=0)
 {

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 54

 aCorrArr[i].addCand=0; //empty
 aCorrArr[i].Identify=-1;
 aCorrArr[i].remCand=0;
 }
 //if x iterations without appearing, delete object
 if(aCorrArr[i].remCand>=ITERREM)
 {
 aCorrArr[i].Identify=-1;
 aCorrArr[i].remCand=0;
 aCorrArr[i].addCand=0;
 (*NoObjs)--;
 }
 //will be reseted in next iter if it appears
 if(aCorrArr[i].Identify!=-1)
 aCorrArr[i].remCand++;
 }

}

// ===
// Function: plotting
//
// Purpose : Plot
// Input : *ipl - Pointer to image in which to plot
// type - Type of plot to be made
// color - Wanted color of plot
// XYX - Vector containing coordinates to plot
// ===
void plotting(IplImage *ipl,int type,int color,float *XYZ,char *text)
{
 int i,j;
 int U,V,X1,Y1,X2,Y2;
 float arr[3];
 double setColor;
 CvMat *matRotSCC,*matCoords,*matSCC;
 CvFont font;
 switch(color)
 {
 case BLACK:
 setColor=CV_RGB(0,0,0);
 break;
 case BLUE:
 setColor=CV_RGB(0,0,255);
 break;
 case GREEN:
 setColor=CV_RGB(0,255,0);
 break;
 case TURQUOISE:
 setColor=CV_RGB(0,255,255);
 break;
 case RED:
 setColor=CV_RGB(255,0,0);
 break;
 case MAGNETA:
 setColor=CV_RGB(255,0,255);
 break;
 case YELLOW:
 setColor=CV_RGB(255,255,0);
 break;
 case WHITE:
 setColor=CV_RGB(255,255,255);
 break;
 default:
 printf("Unknown color");
 }

 matRotSCC=cvCreateMat(3,3,CV_32F); //Creates new matrix.
 cvInitMatHeader(matRotSCC,3,3,CV_32F,RotationSCC);//rotation matrix.
 matSCC=cvCreateMat(3,1,CV_32F);
 matCoords=cvCreateMat(3,1,CV_32F);

 switch(type)
 {
 case DOTUV:
 arr[0]=XYZ[0];
 arr[1]=TRAS_Y-XYZ[1];
 arr[2]=XYZ[2];
 cvInitMatHeader(matCoords,3,1,CV_32F,&arr);
 cvMatMulAdd(matRotSCC,matCoords,0,matSCC);//make SCC matrix
 U=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC->
data.fl[2]))+U0L); //x' to u
 V=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC->
data.fl[2]))+V0L);//y' to v
 cvCircle(ipl,cvPoint(U,V),1,setColor,-1);
 break;

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 55

 case DOTXZ:
 X1=(int)(round((XYZ[0]+(float)XMAX) / CONVX));
 Y1=(int)(round(((float)ZMAX-XYZ[2])/ CONVZXZ));
 cvCircle(ipl,cvPoint(X1,Y1),2,setColor,-1);
 break;

 case CIRC:
 X1=(int)(round((XYZ[0]+(float)XMAX) / CONVX));
 Y1=(int)(round(((float)ZMAX-XYZ[2])/ CONVZXZ));
 X2=(int)(round(RMAX/(2.0*CONVX)));
 cvCircle(ipl,cvPoint(X1,Y1),X2,setColor,1);
 break;

 case RECT:
 arr[0]=XYZ[0]-(RMAX/2.0);
 arr[1]=-XYZ[1];
 arr[2]=XYZ[2];
 cvInitMatHeader(matCoords,3,1,CV_32F,&arr);
 cvMatMul(matRotSCC,matCoords,matSCC);
 X1=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC->
data.fl[2]))+U0L); //x' to u
 Y1=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC->
data.fl[2]))+V0L);//y' to v
 arr[0]=XYZ[0]+(RMAX/2.0);
 arr[1]=2*TRAS_Y-XYZ[1];
 arr[2]=XYZ[2];
 cvInitMatHeader(matCoords,3,1,CV_32F,&arr);
 cvMatMul(matRotSCC,matCoords,matSCC);
 X2=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC->
data.fl[2]))+U0L); //x' to u
 Y2=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC->
data.fl[2]))+V0L);//y' to v
 cvRectangle(ipl,cvPoint(X1,Y1),cvPoint(X2,Y2),setColor,1);
 break;

 case TEXT:
 if(XYZ!=NULL)
 {
 arr[0]=XYZ[0]+150.0;
 arr[1]=-XYZ[1]+250.0;
 arr[2]=XYZ[2];
 cvInitMatHeader(matCoords,3,1,CV_32F,&arr);
 cvMatMul(matRotSCC,matCoords,matSCC);
 U=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC->
data.fl[2]))+U0L); //x' to u
 V=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC->
data.fl[2]))+V0L);//y' to v
 }
 else
 {
 U=10;
 V=10;
 }
 cvInitFont(&font,CV_FONT_VECTOR0,0.3f,0.3f,0.0f,1);
 cvPutText(ipl,text,cvPoint(U,V),&font,setColor);
 break;

 default:
 printf("\nNot a valid plotting type....\n");
 }

 cvReleaseMat(&matRotSCC);
 cvReleaseMat(&matCoords);
 cvReleaseMat(&matSCC);

}

// ===
// Function: hist
// Purpose : Plot measurement histogram (2D)
// Input : iplHist - image to plot the hist. in
// ny - Number of measurements
// pMeas - Measurements
// NoObjs - Number of validated objects
// ===

void hist(int ny,float *pMeas,IplImage *iplHist)
{
 int i,j,X,Z,X1,X2,Y1,Y2;
 int max=0;
 int histMat[40][32];
 float temp;

 for(i=0;i<40;i++)//rows
 {
 for(j=0;j<32;j++)//columns
 {

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 56

 histMat[i][j]=0;
 }
 }
 for(i=0;i<ny;i++)
 {
 X = (int)floorf(((pMeas[i*3]+8000.0)/500.0));
 Z = (int)floorf(((pMeas[i*3+1]-500.0)/500.0));
 histMat[Z][X]++;
 if(histMat[Z][X]>max)
 max=histMat[Z][X];
 }
 cvRectangle(iplHist,cvPoint(0,0),cvPoint(320,240),255,-1);//white
 for(i=0;i<40;i++)//rows
 {
 for(j=0;j<32;j++)//columns
 {
 if(max)
 temp=((float)histMat[i][j]/(float)max);
 else
 temp=0.0;
 histMat[i][j]= (int)round(((1-temp)*255)); //sets greyscale
 X1=j*10;
 Y1=(40-i)*6; // 6=240/40
 X2=X1-10;
 Y2=Y1-6;

 cvRectangle(iplHist,cvPoint(X1,Y1),cvPoint(X2,Y2),histMat[i][j],-1);
 }
 }
}

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 57

2 tracking.h

/* -- */
#define TRUE 1
#define FALSE 0
/* -- */
/* -- */
/* Image parameters */
#define WIDTH 320
#define HEIGHT 240
#define FILE_SIZE (WIDTH*HEIGHT)
/* -- */
/* -- */
/* Intrinsic parameters, left camera */
#define FXL 430.79014
#define FYL 431.72027
#define U0L 151.26555
#define V0L 117.03242
/* -- */
/* -- */
/* Matrix calibration of the intrinsic cameras- */
float intrMatrixLeft[9] = {FXL,0.0,U0L,0.0,FYL,V0L,0.0,0.0,1.0};
float distCoeffsLeft[4] = {-0.06108,-0.14348,0.00345,-0.00526};

/* -- */
/* -- */
/* Camera rotation angels i radians */
#define alpha (0.94972*3.14159/180) // X-axis rotation
#define beta 0.019508 // Y-axis rotation
#define phi -0.014053 // Z-axis rotation
/* -- */
/* -- */
/* Rotation matrix */
float RotationSCC[9] = {cos(beta)*cos(phi),-
cos(beta)*sin(phi),sin(beta),sin(alpha)*sin(beta)*cos(phi)+cos(alpha)*sin(phi),sin(a
lpha)*sin(beta)*sin(phi)+cos(alpha)*cos(phi),-sin(alpha)*cos(beta),-
cos(alpha)*sin(beta)*cos(phi)+sin(alpha)*sin(phi),cos(alpha)*sin(beta)*sin(phi)+sin(
alpha)*cos(phi),cos(alpha)*cos(beta)};
/* -- */
/* -- */
/* translation of the Y-axis */
#define TRAS_Y 970
/* -- */
/* -- */
/* Borders X-Y-Z (in mm) */
#define XMIN -8000
#define XMAX 8000
#define YMIN 100
#define YMAX 2100
#define ZMIN 500
#define ZMAX 20500
#define ZMAX2 16500
/* -- */
/* -- */
/* Transformation constants */
#define CONVX ((float)(XMAX-XMIN)/WIDTH)
#define CONVZXZ ((float)(ZMAX-ZMIN)/HEIGHT)
#define CONVZXZ2 ((float)(ZMAX2-ZMIN)/HEIGHT)
#define CONVY ((float)(YMAX-YMIN)/HEIGHT)
/* -- */
/* -- */
/* Object parameters */
#define RMAX 850.0
#define ITERREM 15
#define ITERADD 5
/* -- */
/* -- */
/* Object representation */
#define WHITE 0
#define BLUE 1
#define GREEN 2
#define TURQUOISE 3
#define RED 4
#define MAGNETA 5
#define YELLOW 6
#define BLACK 7

#define DOTUV 0
#define DOTXZ 1
#define CIRC 2
#define RECT 3
#define TEXT 4
/* -- */
/* -- */
/* Sample time */

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 58

#define ts 66.0
/* -- */
/* -- */
/* String */
#define MAX_STR_SIZE 40

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 59

VI. Budget

In this section the different costs for this project are described.

• Cost for laboratory equipment

Items Cost per hour Hours of usage Total

PC 0.4 € 920 h 368 €

Software for PC 1.4 € 920 h 1288 €

Printer paper - - 10 €

• Cost for manual work

Function Number of hours €/h Total

Engineering 700 60.00 42000 €

Writing 220 12.00 2640 €

Total cost for laboratory equipment 1666.00 €

Total cost for manual work 44640 €

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 60

• Total cost for execution material

Items Total

Cost for laboratory equipment 1666.00 €

Cost for manual work 44640.00 €

• Contracting cost

Items Total

Total cost for execution
material 46306.00 €

Industrial benefit (30%) 13891.80 €

• Writing remunerations

• Grand total cost

Items Total

Cost for contracting 60197.80

Writing remunerations 3124,80

Total cost for execution material 46306.00 €

Cost for contracting 60197.80 €

Writing remunerations (7%) 3124,80 €

Grand total cost 63322,60 €

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 61

VII. References

Part I J. Broddfelt, “Tracking of multiple objects with Kalman filters - Part I”

2006.

[1] M. Marrón, J.C. García, M.A. Sotelo, D. Fernández, D. Pizarro.

"“XPFCP”: An extended Particle Filter for tracking multiple and dynamic
objects in complex environments", Proceedings of the 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS05),
ISBN: 0-7803-8913-1,pp:234-239, Edmonton, August 2005.

[2] D. Schulz, W. Burgard, D. Fox, and A. B Cremers. ”Tracking multiple

moving targets with a mobile robot using particle filters and statistical
data association”, In Proc. of the IEEE International Conference on
Robotics & Automation (ICRA), 2001.

[3] Greg Welch, Gary Bishop, “An introduction to the Kalman Filter”, ACM,

Inc. 2001.

[4] E.R. Davies, “Machine Vision – Theory Algorithms Practicalities”, 3rd

edition, Elsevier Inc., ISBN: 0-12-206093-8, 2005, pp. 595-623.

[5] Sebastian Thrun, “Lecture 2, Lenses and Calibration”, CS223B

Computer Vision, Stanford University, 2005
http://robots.stanford.edu/cs223b05/notes/CS%20223-
B%20L2%20Lenses&Calibration.ppt)

[6] F. Gustafsson, L. Ljung, M. Millnert, ”Signalbehandling”,

Studentlitteratur, Lund, ISBN: 91-44-01500-3, 2000.

Tracking Multiple objects with Kalman filters - Part II

Mikael Lindeborg 62

[7] M. Marrón, J.C. García, M.A. Sotelo, E.J. Bueno. “Clustering methods
for 3D vision data and its application in a probabilistic estimator for
tracking multiple objects”, Proceedings of the Thirty-First Annual
Conference of the IEEE Industrial Electronics Society (IECON05),
ISBN: 0-7803-9252-3, pp. 2017-2022, Raleigh, November 2005.

