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I. Abstract 
 
 
In this report the implementation of a multiple object tracking algorithm is 
described. The algorithm is part of the obstacle avoidance system in an 
autonomous robot. The measurement vector used to achieve the tracking 
task comes from a stereo-vision system that detects objects in the robot’s 
environment [1]. The algorithm uses the probabilistic Kalman filter (KF) to 
estimate the position and movement of different objects in the scene. One 
filter is used for each object to track. An algorithm for associating the data in 
the measurement vector to different objects is described. A validation 
process that the tracking algorithm uses to reduce the noise included in the 
measurement vector is also described. 
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II. Report 
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1 Introduction 
 
This master thesis is focused in the area of robotics and probabilistic 
algorithms. The objective of the work described here is to track multiple 
objects in an image with different Kalman filters. 
 
There are two parts of the developed project. One of them focuses on the 
development of a simulator platform (Part I) and the other one on a real time 
platform (Part II). This part focuses on the real time application and will use 
some of the results that are found in the simulations in part I. Since the work 
is made for real time execution the implementation of this part focuses on 
achieving a small execution time. 
 
The input data vector contains the XYZ-coordinates of image points that 
come from different objects in the scene, and the number of objects in the 
images can change with time. The input 3D points are obtained with a 
stereo-vision system, which has already been implemented in another 
project [1]. One KF are used to track each object. The output of the tracking 
algorithm to develop is the position, velocity and the number of objects in 
each image.  
 
Since the input data from the image acquisition are discrete and the final 
implementation of the tracking system is developed in a computer, 
algorithms and signals discussed in this thesis are discrete. 
 
The most difficult part of the project is to do the association between the 
measurement vector and the different estimators. This is because the 3D-
points are not sorted in the input vector and the number of measurements 
for each object differs. In order to track the objects the 3D points must be 
organized. Probabilistic algorithms dealing with this problem have been 
presented and in Part I some of these are described.  
 
The application for the algorithm presented in this thesis, is a part of the 
obstacle avoidance module. This module is used in a robot that moves 
autonomously in populated indoor environments.  
 
The problem of finding a good estimate of the position of mobile objects in 
an environment is a problem that has great importance in autonomous 
robots. Knowledge about the position of moving objects can be used to 
improve the behavior of the system, especially if the robot is located in 
populated environments [2]. This ability allows the robot to adapt its velocity 
to the people one and helps the robot to avoid collisions in situations where 
the robot crosses the path of a human.   
  



Tracking Multiple objects with Kalman filters - Part II 

Mikael Lindeborg 4 

2 Objective 
 
To achieve the work explained in the introduction some objectives must be 
stated, and these are presented in this section. 
 

• Tracking of multiple objects - There are many algorithms to choose 
from when tracking objects. However, given the knowledge that the 
input data contains noise [1], reduces the options by the deterministic 
algorithms; systems containing noise requires probabilistic algorithms. 
In this work the probabilistic Kalman filters are used, since they 
provide the optimal implementation of the Bayes’ filter [3]. One KF is 
used to track each object. It is possible to use an only estimator for all 
the objects, but since the number of objects is variable this is more 
difficult to implement. 

 
• Data association - For the tracking to be possible it is necessary to 

identify which measurements come from which object. To develop 
this association there are multiple choices of algorithms, as discussed 
in part I of the project. In this part an implementation of the “Nearest 
Neighbor Data Association Algorithm” is used. This algorithm uses 
the Euclidean distance as a measure for associating; the 3D points 
are assigned to the closet estimator.  

 
• Varying numbers of objects - The algorithm must be able to handle 

the fact that the number of objects in the scene can vary. This fact 
arises more problems that need to be taken care of; 

  
o Validation – If the measurements indicate that a new object 

has just appeared a new estimator is created for it. To avoid 
that measurement noise are characterized as an object, data 
has to be associated to the object a certain number of 
iterations consecutively before it is validated as a real object. 

 
o Occlusion - Occlusion is when a scene element is interposed 

between the camera and the tracked object, blocking the 
object’s image projection, or a portion of it. This result in 
incomplete data or no data associated with the tracked object. 
To avoid that an object is removed even though it is still in the 
scene, the object is kept in the scene for a certain amount of 
iterations even though no data is associated to it during this 
time. 

 
o Crossing - When two tracked objects cross each others paths 

one target–originated measurement may often fall within the 
other target’s overlapping tracking window. This could lead to 
multiple trackers locked onto the same part. This problem is 
solved by the algorithm itself since an input parameter to the 
KF is the direction shown by the velocity.  
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• Execution time - The cameras used in the stereo-vision system, 
have a frame rate of 15 fps [1], this means that the sample time of the 
measurement acquisition system are ≈67 ms. This development must 
take this specification into account, and in cases where the execution 
time for the tracking process exceeds this time, it has to be able to 
take care of this. 
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3 The input and output models 
 
The format of the input data is described in this chapter. To be able to 
present the results of the estimated process, it is necessary to know how to 
transform 3D data into the image coordinate system. In this section a 
description of these questions and how to deal with them are presented. 
 

3.1 The input data 
 
The objects detected in the images by the stereo-vision system produces a 
varying number of XYZ-coordinates. The generated data are organized in 
the following way: 
 

1. ny – Information about the number of measurements found in this 
frame. 

2. X coordinate. 
3. Z coordinate. 
4. Y coordinate. 
 

Table 1 below shows the structure of the stereo-vision output data and figure 
3.1 shows a description of the Cartesian coordinate system. 

 
Table 3.1: The structure of the input data. 

X1 X2 Xn X1 
Z1 Z2 Zn Z1 ny = n 
Y1 Y2 

. . .  
Yn 

ny = n 
Y1 

. . .  

 

Figure 3.1: The Cartesian coordinate system. 

 

x

y 

z 
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3.2 Image transformation 
 
To acquire information from an image correctly the camera used in the 
acquisition system has to be calibrated. The calibration is a process finding 
the relation between an image of the environment taken by a camera and 
the image itself. This process includes the position of the camera in the 
environment and the cameras internal characteristics [4]. In this project the 
pinhole model is used, which is a model of an ideal camera. The model is 
shown in figure 3.2. 
 

 
Figure 3.2: The pinhole model and the related coordinate systems. 

 
In the pinhole model three coordinate systems can be considered to do the 
translation between 3D and 2D:  
 

• SCA (System of Absolute Coordinates) TZYX ),,(  - Information about 
position of the points in 3D space. The origin of this coordinate 
system will be the reference of the 3D coordinate position of the 
objects. 

 
• SCC (System of Camera Coordinates) TZYX ),,( ′′′  - A coordinate 

system whose origin is located in the optic center of the camera. The 
main restriction of the pinhole model is that the Z ′ -axis in the SCC 
coincides with the optical axis. 

 
• SCPI (System of Image Plane Coordinates) Tvu ),(  - 2D system that 

represents a position in the image plane. The SCPI coordinates u  
and v  are only a direct projection of the X ′  respective Y ′  axis.  

 
The transformation points from the SCA and SCPI can be divided into three 
steps: 
 

1. Move the origin of  the SCA to the origin of SCC.  
 
2. Rotate the SCA until its axes are coinciding with those of the SCC.  

xO  
yO  

V

U

Z’ 

 X’ 

Y’ (U,V)=projection in 
image plane 

(X’,Y’, Z’)=object 
three-dimensional space

f 

Z 

X 

Y 

Rotation + Translation 

SCA 

SCPI 
SCC 

β 

ϕ 

α 
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3. Move the SCPI laterally until there is complete agreement between 

the two coordinate systems.  
 
In the following paragraphs the different matrixes needed to do the SCA to 
SCPI point transformation are summarized. In the first step, the translation 
matrix T , that moves the origin of the absolute coordinates into the origin of 
the camera coordinates, is added. See equation 3.1. 
 

Equation 3.1 

 

In the second step the rotations around the coordinate axes are performed; 
α  around the X -axis, β  around the Y -axis and ϕ  around the Z -axis. 
Equation 3.2-3.4 shows these rotations. 

Equation 3.2 

 
Equation 3.3 

 
Equation 3.4 

 

The sequence of rotations around the SCA coordinate axes can be 
expressed as )()()(),,( ϕβαϕβα ZYXR =  where R is a composite rotation 
matrix, in which )(ϕZ  is applied first, then )(βY  and finally )(αX . The 
rotation matrix is orthogonal and thus it has the property that R-1= RT [4]. The 
rotation value is expressed by equation 3.5. 
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Equation 3.5 
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The generalized displacement (i.e. translation plus rotation) between SCA 
and SCC is shown by equation 3.6. 
 

Equation 3.6 
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To be able to express the generalized displacement as a product of 
matrices, they must be enlarged to 4x4 as shown by equation 3.7 
 

Equation 3.7 
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In the third step the SCC coordinates are normalized by Z ′  and multiplied by 
the camera focal length ( )f . In order to plot the coordinates in the image it is 
necessary to transform them into pixels. That is done by dividing by scaling 
factors sx and sy [5], and correcting the position of the image plane origin by 
the offsets ox and oy .The equation 3.8 below shows how to do the second 
transformation (from SCC to SCPI). 
 

Equation 3.8 

x
x

o
Z
X

s
fu +⋅=

'
' , y

x

o
Z
Y

s
fv +⋅=

'
'  

 

3.3 The output model 
 
The objects in the scene are considered to move on the floor, this means 
that the tracking is performed in the XZ-plane only. The KF models all 
systems with Gaussian probability distribution, so the objects can be 
characterized by a cylinder centered on their estimated center position. 
Figure 3.3 shows a description this “cylinder model”.  
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Figure 3.3: The objects are characterized by a cylinder around their estimated center 
position. The center of the Gaussian is the estimated center (yellow line), the 3 dB 
line (red) indicates the estimation error covariance (P). 

 
The cylinder is given a constant height since the tracking is performed in the 
XZ-plane. The radius is a tracking parameter that is specified to achieve 
different tracking behavior; the radius decides the maximum distance the 
measurements can be positioned at to be considered to come from the 
object. This parameter is important; imagine for example if two persons are 
walking next to each other. Then the radius has to be set so that both can be 
tracked as objects. If it is set too small one person can instead be identified 
as two.  
 
The cylinder is shown as a rectangle in the image plane projection, and as a 
circle in a XZ-projection plane plot. Figure 3.3 shows an example of these 
plots. For plotting purposes the width of the rectangle does not match exact 
width of the cylinder. 

Figure 3.4: An example of an object representation. 
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4 Tracking algorithms 
 
The tracking algorithm implemented is, as mentioned, part of the obstacle 
avoidance process in a robot’s navigation system. In this chapter the 
different “sub-processes” of the tracking algorithm is described. 
 

4.1 The discrete Kalman filter 
 
The KF is the optimal implementation of the Bayes’ filter [3]. A description of 
the KF functionality and the way to adjust its parameters are described in 
this section. The limitations of this filtering method are also mentioned.   

4.1.1 The process to be estimated  
 
The KF is a recursive algorithm used to obtain the optimal estimation value 

of a state vector na ℜ∈
→

 [3]. To use the KF, the process can be used with a 
linear set of equations shown in 4.1 and 4.2. Equation 4.1 is also called the 
state equation and it expresses the evolution of the process’ state vector 
with time. Equation 4.2 is also called the output equation and describes what 
is going to be the output of the system taken into account the current state 
vector. 

Equation 4.1 

111 −

→

−

→

−

→→

++= kkkk wuHaGa  
 

Equation 4.2 

kkk oaCm
→→→

+=  
 

kw  and ko represent the process respectively the measurement noise. In 
order to use the KF, the noises must be independent of each other, white 
and with Gaussian (normal) probability distributions and with zero mean.  
This is shown in equation 4.3 and 4.4. 
 

Equation 4.3 

).,0(~)( QNwp
→

 

Equation 4.4 

).,0(~)( RNop
→

 
 
In equation 4.1 G  is an nn×  matrix that relates the state vector at the 
previous time step to the one at the current time step, where n  is the 
number of states. H  is an ln×  matrix that relates the state vector to the 
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control input matrix, lu ℜ∈
→

, l  is the number of inputs. The nm×  matrix C  

relates the state vector to the measurement vector, km
→

, where m  in ( nm× ) 
is the number of measurements. R  and Q  are respectively the 
measurement and state noise covariance matrices. The vector sign )(→  will 
be left out in all equations from now on. 
 
As already mentioned above, the KF assumes that both the measurement 
model and the state model are linear, and that the errors have a Gaussian 
probability distribution. These inherent assumptions restrict its use. 
However, the system presented in this report is supposed to be linear and 
Gaussian system. 
 

4.1.2 Definition of the Kalman filter equations 
 
In the following equation: 

• na ℜ∈
−∧

 is defined to be priori state estimation at step k given 
knowledge of the process prior to step k; k-1. The ∧ sign indicates 
that it is an estimation and the minus sign indicates that it is a priori 
estimation. 

• na ℜ∈
∧

is defined to be posteriori state estimation at step k given the 

measurement km .  
 
• The errors for a priori and a posteriori estimation can then be defined 

as shown by equation 4.5 respectively 4.6. 
Equation 4.5 

 
Equation 4.6 

  
• The priori estimation error covariance is expressed by equation 4.7 

and the posteriori estimation error covariance is expressed by 4.8, T 
denotes the matrix transpose. 

Equation 4.7 

⎥⎦
⎤

⎢⎣
⎡= −−− TeeEP kkk  

Equation 4.8 

⎥⎦
⎤

⎢⎣
⎡= TeeEP kkk  

−∧
− −≡ kkk aae

kkk aae
∧

−≡
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These equations are achieved through the Bayes’ filter theory. They are 
useful when deriving the expressions for the KF as the goal, achieved by the 
algorithm formulation, is to find a formula that computes a posteriori state 

estimate, ka
∧

, as a linear combination of a priori estimate, 
−∧

ka , and a 
weighted difference between an actual measurement km  and prediction of 

the measurement vector 
−∧

kaC . The found expression is shown in equation 
4.9 below.  

Equation 4.9 

)(
−∧−∧∧

−+= kkkkk aCmKaa  
 

In the previous expression K  is called the KF gain and it is the mn×  matrix 
that minimizes the posteriori error covariance. This minimization is done in 
the following way: 
 

• Writing the equation 4.9 into the definition of the estimated error 
(equation 4.5 and 4.6). 

 
• Substituting the acquired expression into the estimate error 

covariance equation (equation 4.7 and 4.8).  
 
• Minimizing the expression with respect to K .  

 
The resulting KF gain, K , is given by equation 4.10 below. 

Equation 4.10 
1)'(' −−− += RCCPCPK kkk  

 
The minimized posteriori error covariance can then be obtained, using the 
Kalman filter gain in equation 4.10 above, resulting in equation 4.11 below. 

Equation 4.11 
−−= kkk PCKIP )(  

 
The KF does the estimation in two phases: prediction and correction. At 
the prediction step, the algorithm predicts the value of the state vector and 
the estimation covariance error using the system model (equation 4.1). 
Equation 4.12 and 4.13 describes the prediction process. 

Equation 4.12 

11 −−

∧−∧

+= kkk HuaGa  

 
Equation 4.13 

QGGPP kk += −

−∧

'1  
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In the correction phase the KF adjusts the prediction with an actual 
measurement, using equation 4.9 – 4.11, and Bayes’ rule, zeroing the 
process noise. Equation 4.14 shows Bayes’ rule and figure 4.1 below gives a 
complete picture of the operation and equations of the KF. 
 

Equation 4.14 

( ) ( ) ( )
( )BP

APABPBAP || =  

 
 

 
Figure 4.1: A summarize of the Kalman filter equations.  

4.1.3 Filter parameters and tuning 
 
When Q  and R  matrixes are constant, the estimation covariance kP  and the 
Kalman gain K  quickly stabilizes and remains constant [3].  
 
The time it takes the filter to converge has to do with the initial value of the 
estimation covariance error ( 0P ). If the initial value is too small it takes more 
time for the filter to converge [6], than if it is big. On the other hand, if the 
initial value is set too big the filter will never converge. So, the initial value 
should be chosen carefully. 
 
Manipulation of the filter behavior is possible through K , by changing the R . 
For example, if R  is made bigger the filter gets slower to respond to the 
measurements information, resulting in a reduced estimation covariance, 
since the KF gain, K , decreases. If the R  is made smaller the filter responds 
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to the measurements quickly, increasing the estimation covariance since K  
increases.  
 
The state noise covariance matrix Q  informs if the process is well known. If 
it is, the noise covariance can be set to a small value. In cases where the 
process model is a unknown, acceptable estimation results can be 
accomplished if enough uncertainty is injected via the of Q .  
 
In many applications the R  and Q  do not remain constant. In order to adjust 
this the matrices R  and Q  becomes kR  and kQ . This is a manipulation that 
can be done to simulate changes in the dynamics and in level if noise. In 
tracking algorithms for example, the magnitude of kQ  can be reduced when 
the object seems to be moving slowly and increase the magnitude if the 
dynamics start changing rapidly.  
 

4.1.4 The system to be implemented 
 
It is necessary further describing of the tracking algorithm developed to 
define the state vector of the system related to the tracking task. 
 

In the state equation, the state vector ( a ) consists of the X and Z position of 
the cylinder center in Cartesian coordinates. These coordinates are updated 
with the help of the velocity of the objects in both X and Z directions, that are 
considered the input vector ( v ) in the system model. The state vector is 
shown by equation 4.15 below. 

Equation 4.15 
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sT  is the expected sample time of the global discrete estimation process. 

The output equation that relates the state vector to the measurement one is 
defined by equation 4.16 below. The measurements are received in both X 
and Z Cartesian coordinates as well. 

Equation 4.16 
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The velocity in 4.15 is calculated in both X and Z directions according to 
equation 4.17, using the measured sample time.  

Equation 4.17 
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Figure 4.2 shows the Signal-flow-model of the KF process.  
 
 

Figure 4.2: Signal-flow-model of the Kalman filter process. 

 
The process noise covariance matrix and the measurement noise 
covariance matrix are then expressed by the following equations 4.18 and 
4.19. 

Equation 4.18 
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Equation 4.19 
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In equation 4.18 the 2σ  indicates the variance of the process noise and in 
4.19 the measurement noise, both in corresponding Cartesian coordinates. 
These values are discussed in section 6.1. 
 
 

4.2 Data association 
 
As stated in chapter 2 of this document the tracking system has to be able to 
handle multiple and various numbers of objects in the scene. In order to deal 
with this specification an algorithm for associating the measurement to the 
different objects is needed.  
 
There are several algorithms proposed for tracking multiple objects in the 
scientific literature. Some of them are discussed in Part I of this project. In 
this part the Nearest Neighbor Data Association Algorithm (NN), is used. 
The NN chooses the nearest measurement within its cylinder (for cylinder 
description see chapter 3.3) as the most adequate. To calculate the 
Euclidean distance between two points with coordinates ( )11, zx  and ( )22 , zx  
the equation 4.20 below can be used. 
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Equation 4.20 

( ) ( )212
2

12 zzxxd −+−=  
 

Since the NN chooses the nearest measurements in the estimation process 
it does not give good results in high clutter density tracking environments, 
when there is more than one target and when the tracks intersect. An 
advantage of this method is that it is computationally inexpensive, and 
regardless of the drawbacks, this method works well with low clutter density 
and when targets don’t interfere with each other. In addition to this the track 
management is also simple.  
 

4.2.1 The data association algorithm  
 
In figure 4.2 the association algorithm used in the implementation described 
in this document is shown, and the following points describe the process: 
 

• The distances from each of the measurements, at each time step, to 
the priori estimation of each object’s centers are calculated.  

 
• If the current measurement’s shortest distance to the closet of the 

priori estimation is smaller the predefined cylinder radius the 
measurement is associated with this estimator. Otherwise a new 
estimator is created, and then it is necessary to restart the association 
of measurements (see section 5.1.1 for further description). 

 
• When all the measurements are assigned, the posteriori objects that 

did not have any associated measurements this iteration are marked 
to be removed.  
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Figure 4.3: The data association algorithm. 

4.2.2 Improving the algorithm 
 
In order to reduce the miss-identification of input noise as objects, the newly 
created estimators are considered as candidate objects a programmable 
number of iterations. After these iterations, where the object has appeared 
all the iterations, the objects considered a validated object. The number of 
iterations you choose as a validation limit should be adapted to how noisy 
the input data is. 
 
When a posteriori object is marked to be removed by the association 
process the estimator is not removed at once. Instead it is set as a candidate 
to erase. Sometimes objects in the scene are occluded or the image 
acquisition system does not produce measurements from them. This 
improves the system’s performance with these problems. The number of 
iterations before the estimator is removed is a parameter, invalidation limit, 
that can be varied to achieve different system behavior. 
 
The validation and invalidation limits are tested in section 6.3. However the 
invalidation limit is usually the bigger one since it is used to handle 
occlusion, while the validation limit is set to suppress outliers.  
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5  Implementation 
 
This chapter describes the final implementation of the algorithms discussed 
theoretically in the previous one. Some improvements that are necessary for 
the thesis implemented are also presented. Figure 5.1 shows the flowchart 
of the global algorithm and the different tasks included in it are discussed 
more thoroughly in the following sections. The source code for the 
implementation can be found in chapter V. 

Figure 5.1: The global process. 

 
A struct named data has been created to store information about each 
object. It has the following members: 
 

• XZY[3] –  The coordinates for the Kalman estimated positions of the 
object center ( ka ). 

 
• Identify – Indicates if the struct data value is active. If its value is 1 it is 

active. If it is -1 the array member is empty and a new object can be 
stored in this position. 0 indicates that it is a newly created estimator. 

 
• addCand – Is updated during the time a new object is in the validation 

process.  
 
• remCand – Is updated during the time an object is in the process to 

be removed. 
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5.1 Data association 
 
The data association algorithm implemented in this thesis is shown in figure 
5.2, and described in the following steps: 

 
• Each set (XZY) of measurements’ distance to the priori objects’ 

centers is calculated (the priori object center is the predicted object 
center in the previous iteration). 

 
• If this distance to the nearest priori object is not longer than the 

maximum radius of the cylinder, the measurement is assigned to that 
priori object.  

 
• In the case where the minimum distance found between the mean 

and the priori objects is too big it is necessary to start a new 
estimator. This process is described more thoroughly below in this 
section. 

 
• After all the measurements have been associated, the remCand 

struct member is zeroed for those that have been assigned 
measurements.  

Figure 5.2: The data association process. 
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• Finally the mean is calculated for all the measurement associated to 
each priori object.  

 
The process of starting a new estimator is shown in figure 5.3 and it 
works as follows: 
 

• The data struct member addCand is initialized, to indicate that it is 
a candidate object before it is validated.  

 
• The first measurement assigned a new object is set to be 

considered the center of the object during the rest of the 
association this iteration. 

 
• The global association process is then restarted, because it is 

necessary to test if there might be measurements already 
associated with other object that are closer to this new candidate 
object. 

Figure 5.3: The process of creating a new object. 
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In figure 5.4 the process of the KF is shown and it is described in the 
following steps: 
 

• If it is the estimators’ first iteration, indicated by the struct member 
Identify, the starting values are assigned. The state is set to the mean 

Start 
new 

estim.

Free space 
allocated

Reallocate 
vector sizes 

Use free space 

Set measurement as 
object center 

Set addCand  

Reset counter to start 
object assignments  

End

yes no 



Tracking Multiple objects with Kalman filters - Part II 

Mikael Lindeborg 22 

calculated for the object, the starting velocity is set to zero and the 
start value of the estimation covariance error matrix are set to unity, 
see section 6.1.3. 

 
• Then the correction of the priori object position and priori estimation 

error covariance is performed; correcting the predictions from the 
previous iteration. The correction step is performed only in those 
iterations where there are measurements associated for the priori 
object. Table 5.1 shows how the different KF time steps for each 
object are performed. The equations shown in this table are the KF 
equations found in 4.9 and 4.12 and the velocity calculation equation 
in 4.17. 

 
• The next step is the prediction of a new priori object center and priori 

estimation covariance error (next iterations object center and 
estimation covariance error) is performed. If the object struct member 
remCand is non-zero, the velocity that this object struct had the last 
time it were associated with measurements is used to predict. This 
helps maintaining the tracking when the object is occluded. 

 
 

In the Kalman estimation function the data is put into matrices so the KF 
calculations can be performed more easily. 
 

Table 5.1: The time steps in the Kalman Filter. 
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Figure 5.4: The Kalman estimation process. 

5.3 Object validation 
 
The object validation process is performed according to figure 5.5 and in the 
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• The same process as in the point above is performed when 
measurements for a validated object has been missing for as long as 
the condition to be removed is fulfilled.  

Figure 5.5: The validation process. 
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The cameras’ frame rate is 15 fps, giving a sample time of the acquisition 
system ms6715
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the measured sample time is shorter than the expected, the system has to 
pause for the remaining of the sample time. If the execution time exceeds 
the expected, this may be partly compensated for in the Kalman filter since 
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load of the tracking algorithm.  
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• DotXZ – Draws the measurements and the estimation center in XZ-

projection plane (tracking plane in the Cartesian space).  
 

• Circ – Draws a circle around the Kalman estimated center, which 
represents the cylinder seen from above, in the XZ-projection plane. 

 
• Rect – Draws a rectangle around the estimated center position, 

representing the cylinder seen from the side. 
 

• Text – Draws a text in the image, giving information about the sample 
time and the number of the objects.  

 
 

5.6 Improving the performance with velocity smoothing 
 
In this section a performance improvement of standard tracking processes is 
described. The improvements with the object validation process and the 
predicting with “old velocity” have already been described. 
 
The quality of the input measurements, produced by the stereo-vision 
system, can vary depending on the intensity level in the scene [1]. In some 
images the vision system can extract measurements around the whole 
object and at other times only at on side of the object. This can lead to a 
rather unstable behavior in the Kalman filter, since the modulus and direction 
of the velocity that is calculated from the measurements will vary depending 
on the vision process. In order to deal with this problem a velocity smoothing 
process is developed, see equation 5.1.  
 

Equation 5.1 

2
1−+

= kk
k

VVV  

  
This smoothing produces a more even estimator behavior since changes in 
velocity are filtered.  
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6 Results 
 
In this chapter the results obtained from the implemented tracking algorithm 
are presented. The following questions are going to be analyzed in order to 
see the quality of the designed tracker:  

 
• Behaviour against different values for the measurement and state 

noise covariance matrices ( R  and Q ) and finding a good start value 
of the estimation noise covariance )( 0P , as described in section 4.1.3. 

 
• Velocity smoothing, as described in section 5.2. 
 
• Validation parameters, the validation and invalidation limits, as 

described in section 4.2.2.  
 

• Cylinder radius, as described in section 3.3. 
 
 
The issus analyzed are, in most cases, related to the different parameters 
the tracker has. The value of some that have been fixed rigorously through 
the theory (like RQ,  and 0P ), will be validated with these experiments 
presented in this chapter. The value of the rest will be tuned empirically, as 
shown here. 
 
The quality factors used to validate the parameters are mainly: number of 
objects detected, estimation error and execution time, at each frame. 
 
The exact position of the objects is not known. In order to get an idea about 
how good the estimations are, the distance to the mean of the 
measurements manually associated to an object is used. This is referred to 
as manual background truth. The number of objects will also be manually 
counted for each frame and used as manual background truth. 
 
The images that are shown in this chapter are the image plane projection 
and the XZ-projection plane. 
 

6.1 Adjusting the Kalman filter parameters 
 
In order to test the performance of the tracking algorithm for the different 
Kalman filter parameters ( RQ,  and 0P ) the following conditions are fixed in 
all the experiments in this section: 
 

• Single object position estimation, during all experiments in this 
section.  
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• Fixed validation parameters, validation limit = 3 and invalidation limit = 
10. Since it is an only object and it does not disappear nor reappear 
during the experiment the validation parameter has no importance.  

 
• Fixed cylinder radius, 900 mm. The radius is discussed more in 

section 6.4, however this value has empirically shown to give good 
tracking results. 

 
The quality factors to measure are the following: 

 
• Estimation error ( R and Q  test). 
• Convergence time ( 0P  test). 

 
To gain by the results of these experiments is: 
 

1. The best approximation value of R . 
2. The best approximation value of Q . 
3. A initial value for the estimation covariance error, 0P . 

 

6.1.1 Manipulation by changing the values in R  
 
The mean variance for the input measurements from the only object, during 
the 15 measured iterations in the middle of the field-view scene, are found to 
be:  2

xσ  =30871 2mm  and 2
zσ  =11226 2mm . Using these values in the KF 

causes the filter to diverge. Instead a ratio between the variance and the 
cylinder radius, in which the variance is measured, is calculated as shown by 
equation 6.1 below. 

Equation 6.1 
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The measurement noise covariance matrix then equals: ⎥
⎦

⎤
⎢
⎣

⎡
=

014.00
0038.0

R . 

Figure 6.1 shows how the estimation error changes with different values of 
R  in the tracking experiment. The values of the estimation covariance error 
(the diagonal of P ), for the tested R  values are shown in table 6.1. Notice 
that when R  is made bigger the estimation covariance error gets bigger, as 
explained in section 4.1.3. 
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Figure 6.1: The estimation error when testing with different sizes in the R matrix. 

 
Table 6.1: Estimation covariance error for different values in the R matrix. 

R ( 2mm ) P ( 2mm ) 
0038.02 =xσ , 0014.02 =zσ 0.0038 

038.02 =xσ , 014.02 =zσ  0.0381 

38.02 =xσ , 14.02 =zσ  0.4225 
 
The results in figure 6.1 show a small and smooth estimation error for the 
smaller values of R . It is necessary to keep in mind that it is only the manual 
background truth, so the values are not to be trusted entirely. 
 
The measured variance indicates that the 2

xσ  is bigger than 2
zσ  this is 

because the measurements are in a less comfortable situation for the x-
coordinate than for the z-coordinate. Based on this knowledge and the 
results in the experiments above the following value is thought to be the 
most adequate value of the measurement noise covariance matrix.  
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6.1.2 Manipulation by changing the values in Q 
 
As explained in section 4.1.3, the state noise covariance matrix, Q , informs 
if the process is well known. It is possible to achieve acceptable estimation 
results when the process model is unknown, as in this case, if the values in 
Q  is made big enough. The start value is thereby set to the unity matrix, 
both a bigger and a smaller value are also tested. Figure 6.2 shows the 
estimation error results of a series of testing with different Q -values and in 
table 6.2 the estimation covariance error (the diagonal) for the tested values 
are shown.  

Figure 6.2: The estimation error when testing with different values in the Q matrix. 

 
Table 6.2: Estimation covariance error for different values in the Q matrix. 

 
 
 
 
 
 
 
 
These results, in figure 6.2, show a smooth and small estimation error. 
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experiment Q  is set to 0.1∗unity matrix (left picture) respectively the unity 
matrix (right picture).  
 

 
Figure 6.3: Result of the implemented system, showing that much dynamics in the 
image requires a bigger Q. The picture on the left has a too small Q. 

 
Based on these experiments the process noise covariance matrix is fixed 
during the rest of the experiments to the following value: 
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6.1.3 Initial value of estimation covariance error 
 
As stated in section 4.1.3 the initial value of estimation covariance error, 0P , 
should not be set too small. A test with the unity matrix gives a good filter 
convergence time, around 1-2 iterations. The initial value of 0P  is therby 
fixed to the following value: 
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6.2 Velocity smoothing 
 
In order to test the effect of the tracking algorithm’s velocity smoothing the 
same conditions and parameters settings as in section 6.1 are used: 
 

• Single object position estimation. 
 

• QR,  and 0P , fixed to the values in section 6.1. 
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• Fixed validation parameters, validation limit = 3 and invalidation limit 
10.   

 
• Fixed cylinder radius, 900 mm.  

 
The quality factors to measure: 
  

• Estimation error. 
 

The objective with this experiment is to get a more smooth estimation 
behaviour, as described in section 5.2. 
 
Figure 6.4 and 6.5 below shows the effect of velocity smoothing for 35 
iterations on a single object tracking. The smoothed velocity (dashed line) 
does not change as much as the non-smoothed one (solid line) between 
different iterations, resulting in a more even estimation error behaviour. 

Figure 6.4: Velocity smoothing. 

 

Figure 6.5: Estimation error with velocity smoothing. 
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6.3 Validation parameters 
 
The following conditions are stated in order to test the tracking performance 
for different values of the validation parameters:  
 

• Different objects’ situations. 
• QR,  and 0P  fixed to the values in section 6.1  
• Radius fixed, 900 mm. 

 
The quality factors to measure are the following:  
 

• Outliers. 
• Number of objects. 
• Execution time. 

 
The objective of this test is to gain a validation parameters range.  
 
The object validation control is used in order to suppress outliers, as 
described in section 4.2.2. Figure 6.6 shows the effect of using the object 
validation control when there are outliers in the scene. The picture to the 
right is with the validation limit set to 5 iterations, the left one is without the 
object validation control. 

Figure 6.6: Two tracking results for the same scene. The picture to the right are the 
result obtained with the validation limit set to five iterations, and the one to the left is 
obtained without the validation control. 
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As described in section 4.2.2, in order to keep the tracking of an object while 
it is occluded invalidation limit has to be higher than the number of iterations 
it is occluded. In figure 6.7 the effect of the invalidation limit parameter is 
shown. In this experiment the object is occluded for 14 iterations and the 
invalidation parameter is set to 15 iterations, so the tracking is maintained.  
 

 
Figure 6.7: An example of when an object is occluded, in this example the 
invalidation limit is set to 15 iterations. 

 
The number of objects to track affects the execution time of the global 
algorithm, since there are more estimators to process when there are more 
objects to track. For this reason the validation process affects the execution 
time in the following way:  

 
• No change when using the object validation functionality. Since the 

objects are processed in the global algorithm already when they are 
candidates. 

 
• It increases when the invalidation limit is set higher. In the case where 

there are a lot of objects moving in and out of the scene, old 
estimators are kept longer with invalid limit high and meanwhile new 
ones are added. Resulting in many estimators to process.  

 
In the experiments done to test the difference in the tracker execution time 
for different validation parameter settings, this value is not measurable since 
it is too low (mean execution time around 1ms).  
 
A crossing is supposed to take less than 15 iterations (sample time 67 ms 
⇒1s). In other cases, for example when two objects are moving together 
and one gets occluded by the other one, the objects are considered as an 
only one. In this situation if one object starts moving away from the other it 
will appear as a new object. 
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Based on the statement above and the tests that are presented in this 
section the following validation parameters are used in the remaining 
experiments: 

 
• When validation limit = 5 the object is validated. 
 
• When invalidation limit = 15 the object is removed.  

 

6.4 Cylinder radius 
 
The following conditions are stated in order to test the tracking performance 
with different values for the cylinder radius:  
 

• Different objects’ situations. 
• QR,  and 0P  fixed to the values in section 6.1. 
• Validation parameters fixed, validation limit = 5 and invalidation limit = 

15. 
 
The quality factors to measure:  
 

• Number of objects detected.  
• Estimation error. 
• Execution time. 
 

The objective for this experiment is to find a range for the cylinder radius 
parameter. 
 
Three different values of the cylinder radius have been tested: 600, 850 and 
1000 mm. Figure 6.8 and 6.9 show the results of the three tests in two 
different situations. Figure 6.8 illustrates when the radius is set too big, then 
too few objects are found. However this particular situation is difficult since 
two persons’ paths are crossed and one of them is occluded, only a few 
measurements are acquired from this person. Figure 6.9 shows an example 
where too many objects are detected when the radius is set small. The 
correct number of objects in both scenes is four; the number of objects at 
each study is shown by table 6.3. 
 
Table 6.3: The number of objects detected in figure 6.9 and 6.10 for different sizes of 
the cylinder radius. 

Radius Detected objects 
in figure 6.9 

Detected objects 
in figure 6.10 

600 mm 4 7 
850 mm 3 4 

1000 mm 2 4 
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The mean estimation error during 40 iterations, in the middle of the field-view 
scene, with the different radius sizes has been tested and the results are 
shown in table 6.4. The estimation error with the different radii is not affected 
noticeable measuring the manual background truth. 
 

Table 6.4: The mean estimation error for different sizes of the cylinder radius. 

Radius (mm) Estimation error (mm) 
600  9.259 
850  9.251 
1000  9.256 

  

Figure 6.8: Result of a test with three different cylinder radiuses 600 mm to the left, 
850mm in the middle and 1000 mm on the right.  

Figure 6.9: Result of a test with three different cylinder radiuses 600 mm to the left, 
850mm in the middle and 1000 mm on the right. 
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The execution time increases when the cylinder radius is small, since more 
than one estimator is obtained for an only object. This effect cannot be 
measured due to the same reasons as described in section 6.3. 
 
 
Based on these tests the cylinder radius is fixed to 850 mm. 
 

6.5 Final results 
 
In this chapter tests showing the performance of the tracking algorithm in 
different situations are shown. These tests are performed with the 
parameters tuned to the values in the previous sections. 
 

6.5.1 One object 
 
The result of a single object tracking task is shown in figure 6.10. A test has 
been performed during 35 iterations resulting in the following: 
 

• A mean estimation error of: 4.464 mm . 
  

• An estimation error covariance of: ⎥
⎦

⎤
⎢
⎣

⎡
039.00
0039.0 2mm  

 
This estimation error is very small but not very confident since it is not the 
background truth only the manual background truth that is measured. 

Figure 6.10: Single object tracking. 
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The resolution of the acquisition system decreases with z. This can lead to 
the behavior shown in figure 6.11, where two estimators are started to track 
an only object. 

Figure 6.11: Single object tracking, two estimators started on the same object. 

6.5.2  Multiple objects 
 
Figure 6.12 below shows an example of a multi-object tracking task where 
the tracking algorithm’s performance is good. In this scene the five objects 
are tracked; one static object and four persons who are moving.  

Figure 6.12: Multi-object tracking. 



Tracking Multiple objects with Kalman filters - Part II 

Mikael Lindeborg 38 

In figure 6.13 a less successful tracking process is shown. There are five 
persons in the scene. No measurements have been acquired from two of 
them, so it is impossible to track them. From the two other persons that 
stand closely three estimators are running, one tracker originates from the 
person moving out of the scene, which no more measurements is acquired 
from. 

Figure 6.13: Multi-object tracking, less successful.  
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7 Conclusions and future work 
 

7.1 Conclusions 
 
An algorithm for multiple object tracking using Kalman filters has been 
implemented. The algorithm can be used in obstacle avoidance systems in 
autonomous robots, used in indoor environments. The tracking algorithm 
associates measurements, produced by a stereo-vision system, to the 
different estimators using the Nearest Neighborhood Data Association 
Algorithm. 
 
Different performance tests in different situations have been presented. 
Considering that the manual background truth is used the results show that 
in most cases the tracking is performed well; 
 

• The execution time demand is easily fulfilled. 
• The number of objects can, in most cases, be obtained.  
• The estimation error is small. 
  

In complicated situations where there are many object crossing each others 
paths the tracking sometimes fails. The most complicated situation for the 
algorithm is when this happens far away from the measurement acquisition 
system, since the noise level of the produced measurements is higher there. 
The tracking failures might be because of the following two reasons: 
 

1 The KF assumes all noise to be of Gaussian probability distribution. 
However, no tests identifying the input noise as Gaussian has been 
performed. 

 
2 The NN, used for the association, does not give good results in high 

clutter density tracking environments, where there is more than one 
object and when tracks intersect. 

 
In order to compensate the latter reason the cylinder radius, for which 
measurements are assumed to come from an object, has been set rather 
big. This can however lead to the misidentification of two objects as one.  
 

7.2 Future work 
 
In order to improve the performance of the tracking algorithm it is a good 
idea to use another data association algorithm. The NN was chosen 
because of its computationally inexpensiveness. However, since the 
execution time demands are fulfilled rather easily, a more advanced 
association algorithm could be afforded. Some are discussed in part I, such 



Tracking Multiple objects with Kalman filters - Part II 

Mikael Lindeborg 40 

as the PDAF, which calculate probability between the association and each 
object and then uses it for a weighted update.  
 
Another idea to improve the data association algorithm is to use a better 
segmentation method. The problem is that each time a new object is created 
all the measures should be reassigned since a previous assigned measure 
might actually be closer to the new object than to the one it has been 
assigned to. This would be a great improvement of the algorithm, but also 
time-consuming. Methods suggested for this can be found in [7].    
 
An interesting thing to test would be to implement the tracking algorithm with 
an only estimator for tracking all the objects. The size of the estimator must 
in that case be changed dynamical since the number of objects is varying. 
 
Since no noise identification has been made, to see if it is of Gaussian 
probability distribution, it is also of interest to test other estimation methods 
than the KF.   
 
The parameters discussed in the algorithm ( 0,, PRQ , cylinder radius and 
validation parameters) could be updated dynamically depending on different 
situations. For example the values in the Q  matrix could be updated with 
change in dynamics and the cylinder radius could change with different sizes 
of objects.  
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III. User Manual 
 
 
In this section all information needed to test the implementation of the 
presented tracking algorithm are described.  
 
To be able to test the tracking algorithm some of the implementation 
assessments (see chapter IV) that are used in this project have to be used; 
a PC with a Linux operating system, with the openCV library installed. 
 
The executable file tracking is built from the source code that can be found 
in chapter V. The file has three input arguments: 
 

• Argument 1 - decides whether or not to save the images showing the 
results of the tracking. The images will be stored in .JPG format. 0 = 
do not save, 1 = save. 

 
• Argument 2 – decides if to show a 2D likelihood histogram of the 

measurements, i.e. concentration of measurements in a discrete grid 
of the environment. 0 = no plot and 1 = plot. 

 
• Argument 3 – the number of the video file to test the tracking 

algorithm on. 
 
The following video files are to choose from (argument 3): 
 

• 001 – Two person walking towards the camera. 
• 004 – Two person walking away from the camera. 
• 010 – Many people in the scene, walking in different directions. 
• 041 – One person walking away from the camera. 
• 061 – One person walking towards the camera. 
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These files and the header file tracking.h, containing macros, must be in the 
same directory as the execution file, when executing. 
 
To execute the file do the following: 
 

• Open a terminal. 
 
• Localize the directory of the execution file. 

 
• Type ./tracking arg.1 arg.2 arg.3 to run the tracking. 
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IV. Implementation assessments 
 
 
In this section the hardware and software used for the implementation and 
simulations presented in this project are presented. 
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1 Hardware 
 

 
 
• Stationary computer 
 

Microprocessor  Intel Pentium III  
Speed  1.00 GHz 
RAM  256 MB 
Disk  80 GB 
Monitor  17” LCD 

 
 

• Printer Xerox Document Center 340 
 

Printer type  Laser 
Speed  40 ppm 
Resolution  600 dpi 
Communications  Standard TCP/IP 
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2 Software 
 

 
 
• Operating systems 

 
Windows XP Professional Version 2002, SP2 
Debian Linux Kernel 2.6.5 

 
 

• Office 2003 (English) 
Microsoft Office Professional Edition 2003, version 
11.5604.5606. 

 
 

• Panda titanium antivirus 2005 
Version 4.02.01. 

 
 

• OpenCV library 
OpenCV-0.9.5. 

 
 

• Matlab 
Version 6.5.0.180913a release 13. 
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V. Source code 
 
 
In this section the source code for the implemented tracking algorithm is 
presented.  
 
The following two files contain the code: 
 

1. tracking.c - The realization of the tracking algorithm which is made up 
of the following functions: 

 
• main   - The global algorithm. 
• sortData  - The data association. 
• mean  - Objects’ mean calculation. 
• kman  - Kalman filter. 
• plotting  - Used for drawing. 
• hist  - Plots a 2D likelihood histogram of the 

measurements. 
  

2. tracking.h - Contains all macros used in the above functions.  
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1 tracking.c 
 
// ================================================================= 
//   Multi-object tracking 
//   By: Mikael Lindeborg 
// 
//   tracking.c 2006-02-14 
// ================================================================= 
 
#include <stdio.h> 
#include <stdlib.h>  
#include <math.h> 
#include <sys/time.h>  
#include <time.h> 
#include "cv.h" 
#include "highgui.h" 
#include "tracking.h" 
 
typedef struct{ 
 float  XZY[3];  // Coordinates 
 int Identify; // -1=empty, 0=new object, 1=object 
 int remCand; // Number of iterations without appearing 
 int addCand; // 0 - no object candidate 
  
}data; 
 
int sortData(int ,float *,int *,int ); 
void meanCalc(int ,int, float *,int *); 
void kman(float *,float,int); 
void plotting(IplImage *,int ,int, float *,char *); 
void hist(int ,float *,IplImage *);  
void validation(int,int *); 
   
// ============== Global variables ================================= 
data  *aCorrArr=NULL;  
float  *aPredArr=NULL,*PPredArr=NULL,*mean=NULL,*PCorrArr=NULL,*velOld=NULL; 
// ================================================================= 
 
int main( int argc,   
  char *argv[] )    
{ 
 IplImage
 *iplLeft,*iplLeftColor,*iplUndistLeftMap,*iplUndistLeft,*iplXZ,*iplBoth, 

*iplHist; //Images 
 
 FILE   *pfLeft,*pfCoord; //file pointers  
  
 float   At=0,t=0,te=0;   //time variables 
 struct timeval tPrev,tNow,tExec;  
 
 int   i,j,plotHist,saveImages; 
 int   ny,hold=1,nFrame=1;    
 int  objsAlloc=0,NoObjs=0; 
 int  *objIndex=NULL; 
 float   *pMeas=NULL,XYZ[3];    
 char  text[MAX_STR_SIZE]; 
  
 saveImages = atoi(argv[1]); //translate input arguments 
 plotHist   = atoi(argv[2]); 
 text[0]='\0'; 
 sprintf(text,"left%03d.str",atoi(argv[3])); 
 pfLeft = fopen(text,"rb"); 
 sprintf(text,"data%03d.dat",atoi(argv[3])); 
 pfCoord = fopen(text,"rb");   
  
 //cvNamedWindow Creates a window(image placeholder) 
 cvNamedWindow("1. Left 2D Image",CV_WINDOW_AUTOSIZE);  
 if(plotHist) 
  cvNamedWindow("2. Histogram",CV_WINDOW_AUTOSIZE);  
  
 // Allocate space for images 
 iplLeft  = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,1);  
 iplUndistLeft  = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,1); 
 iplLeftColor  = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,3); 
 iplUndistLeftMap= cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_32S,3); 
 iplXZ  = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,3);  
 iplBoth  = cvCreateImage(cvSize(WIDTH,HEIGHT*2),IPL_DEPTH_8U,3);  
 iplHist  = cvCreateImage(cvSize(WIDTH,HEIGHT),IPL_DEPTH_8U,1); 
  
 if (ferror(pfLeft)) 
 { 
  printf("\nError when reading data...\n"); 
  fclose(pfLeft); 
 }  
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 if (ferror(pfCoord))  
 { 
  printf("\nError when reading data...\n"); 
  fclose(pfCoord); 
 } 
 
 //The first value in the string is for the undistortionmap initialization 
 if(!fread(iplLeft->imageData,1,FILE_SIZE,pfLeft)) 
 { 
  printf("\nEnd of video\n"); 
  return(-1); 
 } 
 

//Calculates arrays of distorted points indices and interpolation  
// coefficients, using known matrix of the camera intrinsic parameters and 
// distortion coefficients. 

 cvUnDistortInit(iplLeft,iplUndistLeftMap,intrMatrixLeft,distCoeffsLeft,1); 
  
 if(!fread(&ny,sizeof(int),1,pfCoord)) //N^o coordinates are read into ny 
 { 
  printf("\nNo more coordinates to read from file...\n"); 
  return(-1); 
 } 
 
 //Allocate space for the coordinates in an array 
 pMeas=(float*)malloc(3*ny*sizeof(float));
 objIndex=(int*)malloc(ny*sizeof(int)); 
 fread(pMeas,sizeof(float),3*ny,pfCoord); 
  
 if(gettimeofday(&tNow,NULL)) //start clock 
  printf("Error in gettimeofday() !!\n"); 
 do 
 { 
  if (hold==1) 
  { 
   if(!fread(iplLeft->imageData,1,FILE_SIZE,pfLeft)) 
   { 
    printf("\nEnd of video\n"); 
    break; 
   } 

  //cvUnDistort corrects camera lens distortion using previously 
// calculated undistortion map 

   cvUnDistort(iplLeft,iplUndistLeft,iplUndistLeftMap,1); 
   //cvCvtColor converts input img rom one color space to another 
   cvCvtColor(iplUndistLeft,iplLeftColor,CV_GRAY2BGR); 
   
   //Read coordinates 
   if(!fread(&ny,sizeof(int),1,pfCoord))   { 
    printf("\nThe End\n"); 
    break; 
   }    
   //Reallocate space for the coords 
   pMeas=(float*)realloc(pMeas,3*ny*sizeof(float));  
   objIndex=(int*)realloc(objIndex,ny*sizeof(int)); 
   fread(pMeas,sizeof(float),3*ny,pfCoord); 
  
   objsAlloc=sortData(ny,pMeas,objIndex,objsAlloc); 
   meanCalc(ny,objsAlloc,pMeas,objIndex); 
   kman(mean,At,objsAlloc);  
   validation(objsAlloc,&NoObjs); 
 
    
   //Calculate execution time 
   if(gettimeofday(&tExec,NULL))  
    printf("Error in gettimeofday() !!\n");  
   te=(tExec.tv_sec-tNow.tv_sec)*1000+(tExec.tv_usec-
tNow.tv_usec)/1000;   

cvZero(iplXZ); //clear image 
   //Plot measurements 
   for(i=0;i<(3*ny);i=i+3)    
   {  
    XYZ[0]=pMeas[i]; 
    XYZ[1]=pMeas[i+2]; 
    XYZ[2]=pMeas[i+1]; 
    //Plot in video 
    plotting(iplLeftColor,DOTUV,TURQUOISE,XYZ,NULL); 
    //XZ plot 
    plotting(iplXZ,DOTXZ,TURQUOISE,XYZ,NULL);  
   } 
    
   if(plotHist)//if a "histogram" plot is wanted 
    hist(ny,pMeas,iplHist); 
    
   //plot kalman estimations    
   for(i=0;i<objsAlloc;i++) 
   { 
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    //plot only validated objs 
if(aCorrArr[i].Identify==1 && !aCorrArr[i].addCand)  

    { 
     XYZ[0]=aCorrArr[i].XZY[0]; 
     XYZ[1]=aCorrArr[i].XZY[2]; 
     XYZ[2]=aCorrArr[i].XZY[1]; 
     plotting(iplLeftColor,DOTUV,RED,XYZ,NULL); 
     // %7 - 7 different colors  
     plotting(iplLeftColor,RECT,(RED+i)%7,XYZ,NULL); 
     sprintf(text,"%d",i+1); 
     plotting(iplLeftColor,TEXT,(RED+i)%7,XYZ,text); 
     plotting(iplXZ,DOTXZ,RED,XYZ,NULL); 
     plotting(iplXZ,CIRC,(RED+i)%7,XYZ,NULL); 
    } 
   } 
  } 
 
  //cvWaitKey- Waits for pressed key 
  if (cvWaitKey(10)>=0)  
  { 
   if (hold==1) hold = 2; 
   else hold = 1; 
  } 
   
  tPrev=tNow; 
  At=0; 
  while(At < ts)//delay get the right sample time 
  { 
   if(gettimeofday(&tNow,NULL)) 
    printf("Error in gettimeofday() !!\n"); 
   At=(tNow.tv_sec-tPrev.tv_sec)*1000+(tNow.tv_usec-
tPrev.tv_usec)/1000; 
  }  
 
  sprintf(text,"Execution time: %.0fms  No Objects: %d",te,NoObjs); 
  //Print the execution time 

plotting(iplLeftColor,TEXT,RED,NULL,text);  
 
  memcpy(iplBoth->imageData,iplLeftColor->imageData,3*FILE_SIZE); 
  memcpy(iplBoth->imageData+3*FILE_SIZE,iplXZ->imageData,3*FILE_SIZE); 
   
  if(saveImages) //Save images 
  { 
   sprintf(text,"Result%05d.jpg",nFrame); 
   cvSaveImage(text,iplBoth);  
    
  }  
  nFrame++; 
 
  cvShowImage("1. Left 2D Image",iplBoth); 
  if(plotHist) 
   cvShowImage("2. Histogram",iplHist); 
     
 }while(1); 
 
 
 free(pMeas);   //free allocated heap space 
 free(objIndex); 
 free(mean); 
 free(velOld); 
 free(aCorrArr); 
 free(aPredArr); 
 free(PPredArr);   
 free(PCorrArr); 
  
 cvReleaseImage(&iplLeft); //releases header and image data 
 cvReleaseImage(&iplUndistLeft); 
 cvReleaseImage(&iplUndistLeftMap); 
 cvReleaseImage(&iplLeftColor); 
 cvReleaseImage(&iplXZ); 
 cvReleaseImage(&iplBoth);  
 cvReleaseImage(&iplHist); 
 cvDestroyWindow("1. Left 2D Image");  //destroys windows  
 if(plotHist) 
  cvDestroyWindow("2. Histogram"); 
  
 fclose(pfLeft);  //close files 
 fclose(pfCoord);  
    
    return 0; 
} 
 
 
// ================================================================= 
// Function: SortData 
// 
// Purpose : Assign measurements to objects 
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// Input : ny - N^o measurements 
//    pMeas - Measurements 
//    objsAlloc - N^o excisting allocated obj  
//    aPredArr - KF-predicted pos. of objs 
// Output : objIndex - Meas to Objs Association vector 
//    objsAlloc -N^o allocated object's storage room     
  
// =================================================================  
 
int sortData(int ny,float *pMeas,int *objIndex,int objsAlloc) 
{ 
 int  i,j,k,p,minIndex,fill=0,newObj=1; 
 float  CenterDist,minDist,*temp;   
  
 while(newObj) 
 { 
  p=0; 
  newObj=0; 
  for(j=0;j<ny;j++)//loop through all meas 
  { 
   minDist=3000.0; //big number for first iter 
   for(i=0;i<objsAlloc;i++)//Checks which object is closest 
   {  
    //only the "active" objects 
    if(aCorrArr[i].Identify!=-1) 
     //euclidean distance calc 
     CenterDist=sqrt( powf((pMeas[j*3]-
aPredArr[i*3]),2)+powf((pMeas[j*3+1]-aPredArr[i*3+1]),2) );    
    else 
     CenterDist=4000.0; 
     
    if(CenterDist<minDist) 
    { 
     minIndex=i; 
     minDist=CenterDist; 
    } 
    
   } 
   //Check if minDist is too big, then create new object  

// otherwise set the right index 
   if(minDist>RMAX) //new object 
   { 
    k=0;fill=0; 
    newObj=1; //set to restart the allocation 
    while(k<objsAlloc) 
    { 
     //overwrite old object 
     if(aCorrArr[k].Identify==-1) 
     { 
      fill=1; 
      objIndex[p++]=k-1; 
      aCorrArr[k].Identify=0; 
      aCorrArr[k].addCand=1; 
      aCorrArr[k].remCand=1; 
      for(i=0;i<3;i++) 
       aPredArr[k*3+i]=pMeas[j*3+i]; 
      k=objsAlloc;//break 
      j=ny;//break to restart the allocation  
       
     } 
     k++; 
    } 
    if(!fill)//reallocate for new  object 
    {  
     objsAlloc++;//update the counter for new object 
      aCorrArr = (data*)realloc(aCorrArr, 
objsAlloc*sizeof(data));  
     aPredArr = (float*)realloc(aPredArr, 
objsAlloc*3*sizeof(float)); 
     PPredArr = (float*)realloc(PPredArr, 
objsAlloc*9* sizeof(float)); 
     mean = (float*)realloc(mean, 
objsAlloc*3*sizeof(float));  
     PCorrArr = (float*)realloc(PCorrArr, 
objsAlloc*9*sizeof(float));  
     velOld = (float*)realloc(velOld, 
objsAlloc*3*sizeof(float)); 
  
     objIndex[p++]=(objsAlloc-1); 
     aCorrArr[objsAlloc-1].Identify=0; 
     aCorrArr[objsAlloc-1].addCand=1; 
     aCorrArr[objsAlloc-1].remCand=1;  
  
     for(i=0;i<3;i++) 
      //set value too compare with 
      aPredArr[(objsAlloc-1)*3+i]= 
pMeas[j*3+i];  
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     j=ny;//break to restart the allocation  
    }  
   } 
   else 
   {  
    objIndex[p++]=minIndex; 
   }   
  } 
 } 
 //Check if there were objects not appering 
 for(i=0;i<ny;i++) 
  aCorrArr[(objIndex[i])].remCand=0; 
   
 return(objsAlloc);  
} 
 
// ================================================================= 
// Function: meanCalc 
// Purpose : Calculate mean of each objs meas 
// Input : ny - N^o measurements 
//    pMeas - Measurements 
//    objsAlloc - N^o allocated object space 
//    objIndex - Meas to Objs Association vector 
// Output : mean - Vector containing objs mean 
// ================================================================= 
 
void meanCalc(int ny,int objsAlloc,float *pMeas,int *objIndex) 
{ 
 int  i,j,objCount; 
 float  sumX,sumY,sumZ; 
  
 for(i=0;i<objsAlloc;i++)//calculate measured centers 
 {  
  //only when meas has been found 
  if(aCorrArr[i].remCand==0 && aCorrArr[i].Identify!=-1 && ny!=0) 
  { 
   sumX=0.0;sumY=0.0;sumZ=0.0;objCount=0; 
   for(j=0;j<ny;j++) 
   { 
    if(objIndex[j]==i) 
    { 
     sumX=sumX+pMeas[j*3]; 
     sumY=sumY+pMeas[j*3+1]; 
     sumZ=sumZ+pMeas[j*3+2]; 
     objCount++;  
    } 
   } 
   mean[i*3]=sumX/(float(objCount)); 
   mean[i*3+1]=sumY/(float(objCount)); 
   mean[i*3+2]=sumZ/(float(objCount)); 
  } 
 }    
 
} 
 
// ================================================================= 
// Function: kman 
// Purpose : Calculate kalman estimations 
// Input : aCorrArr - Prev. position correction 
//    aPredArr - Position prediction 
//    PPredArr - Error cov. prediction 
//    objsAlloc - No allocated obj spacr 
//    objIndex - Meas to Objs Association vector 
// Output : aCorrArr - Corrected position  
//    aPredArr - Position prediction for next iter 
//    PPredArr - Err cov. prediction for next iteration 
// ================================================================= 
 
void kman(float *mean,float At,int objsAlloc) 
{ 
 int  i,j; 
 float   Itemp[9]={1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0},Rtemp[9]; 
 float  Qtemp[9],arr[9];; 
 float  T[9]={ts,0.0,0.0,0.0,ts,0.0,0.0,0.0,ts}; 
 CvMat 
 *aPredict,*aCorrect,*PPredict,*PCorrect,*Velo,*I,*temp1,*temp2,*temp3,*temp4,
*K,*Q,*R,*M,*H; 
  
 aPredict=cvCreateMat(3,1,CV_32F); 
 aCorrect=cvCreateMat(3,1,CV_32F); 
 PPredict=cvCreateMat(3,3,CV_32F); 
 PCorrect=cvCreateMat(3,3,CV_32F); 
 I=cvCreateMat(3,3,CV_32F); 
 temp1=cvCreateMat(3,3,CV_32F); 
 temp2=cvCreateMat(3,1,CV_32F); 
 temp3=cvCreateMat(3,1,CV_32F);  
 temp4=cvCreateMat(3,3,CV_32F);  
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 Velo=cvCreateMat(3,1,CV_32F); 
 K=cvCreateMat(3,3,CV_32F); 
 R=cvCreateMat(3,3,CV_32F);  
 M=cvCreateMat(3,1,CV_32F); 
 Q=cvCreateMat(3,3,CV_32F); 
 H=cvCreateMat(3,3,CV_32F); 
 for(i=0;i<9;i++) 
 { 
  Qtemp[i]=Itemp[i]*1.0; 
  Rtemp[i]=0.0; 
 } 
 Rtemp[0]=0.038; 
 Rtemp[5]=0.038; 
 Rtemp[8]=0.014; 
 
 cvInitMatHeader(H,3,3,CV_32F,T); 
 cvInitMatHeader(I,3,3,CV_32F,Itemp); 
 cvInitMatHeader(R,3,3,CV_32F,Rtemp); 
 cvInitMatHeader(Q,3,3,CV_32F,Qtemp); 
 
// ================================================== 
// Correction 
// ================================================== 
 for(i=0;i<objsAlloc;i++) 
 {  
  if(aCorrArr[i].Identify==0) //if first appearence set X0 and P0  
  { 
   aCorrArr[i].XZY[0]=mean[i*3]; // X0 
   aCorrArr[i].XZY[1]=mean[i*3+1]; 
   aCorrArr[i].XZY[2]=mean[i*3+2]; 
   aCorrArr[i].Identify=1;   
   aPredArr[i*3]=mean[i*3]; //X0+V0, V0=0 
   aPredArr[i*3+1]=mean[i*3+1]; 
   aPredArr[i*3+2]=mean[i*3+2];  
    
   for(j=0;j<9;j++) //P0  
    PPredArr[i*9+j]=Itemp[j]; 
  } 
  else if(aCorrArr[i].Identify==1) // if it has “appeared” this iter 
  {  
    
   aPredict->data.fl[0]=aPredArr[i*3]; 
   aPredict->data.fl[1]=aPredArr[i*3+1]; 
   aPredict->data.fl[2]=aPredArr[i*3+2]; 
 
   aCorrect->data.fl[0]=aCorrArr[i].XZY[0]; 
   aCorrect->data.fl[1]=aCorrArr[i].XZY[1]; 
   aCorrect->data.fl[2]=aCorrArr[i].XZY[2]; 
   arr[9]; 
   M->data.fl[0] = mean[i*3]; 
   M->data.fl[1] = mean[i*3+1]; 
   M->data.fl[2] = mean[i*3+2];    
   
   for(j=0;j<9;j++) 
   { 
    arr[j]=PPredArr[i*3+j]; 
   } 
   cvInitMatHeader(PPredict,3,3,CV_32F,arr);  
 
   //Correction only when measurments have been found. 
   if(aCorrArr[i].remCand==0)  
   {  
    //Calculate velo for prediction before old val. is  

// overwritten. 
    Velo->data.fl[0]=(M->data.fl[0]-aCorrect-> 
data.fl[0])/At; 
    Velo->data.fl[1]=(M->data.fl[1]-aCorrect-> 
data.fl[1])/At; 
    Velo->data.fl[2]=(M->data.fl[2]-aCorrect-> 
data.fl[2])/At; 
     
    // Velocity smoothing     
    Velo->data.fl[0] = (Velo->data.fl[0]+velOld[i*3])  
/2.0; 
    Velo->data.fl[1] = (Velo->data.fl[1]+velOld[i*3+1]) 
/2.0; 
    Velo->data.fl[2] = (Velo->data.fl[2]+velOld[i*3+2]) 
/2.0; 
 
    cvAdd(PPredict,R,temp1);    
    cvInv(temp1,temp4,CV_LU);   
    cvMatMul(PPredict,temp4,K);//Correction equation (1) 
   
    cvSub(M,aPredict,temp2);   
    cvMatMul(K,temp2,temp3);   
    cvAdd(aPredict,temp3,aCorrect);//Correction eq (2) 
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    cvSub(I,K,temp1);    
    cvMatMul(temp1,PPredict,PCorrect);//Correction eq (3) 
    
    aCorrArr[i].XZY[0]=aCorrect->data.fl[0];// Save values 
    aCorrArr[i].XZY[1]=aCorrect->data.fl[1]; 
    aCorrArr[i].XZY[2]=aCorrect->data.fl[2]; 
    for(j=0;j<9;j++) 
     PCorrArr[i*9+j]=PCorrect->data.fl[j]; 
    velOld[i*3]=Velo->data.fl[0]; 
    velOld[i*3+1]=Velo->data.fl[1]; 
    velOld[i*3+2]=Velo->data.fl[2];  
      
   } 
   else //maintain old velocity if it disapperas 
   {   
    Velo->data.fl[0]=velOld[i*3]; 
    Velo->data.fl[1]=velOld[i*3+1]; 
    Velo->data.fl[2]=velOld[i*3+2];  
   } 
// ================================================== 
// Prediction  
// ==================================================     
  
   cvMatMul(H,Velo,temp2); 
   if(aCorrArr[i].remCand!=0) 
    cvAdd(aPredict,temp2,aPredict);//prediction eq (1) 
   else 
    cvAdd(aCorrect,temp2,aPredict);//prediction eq (1) 
   cvAdd(Q,PCorrect,PPredict);   //prediction eq (2)  
   aPredArr[i*3]=aPredict->data.fl[0];  //Save values 
   aPredArr[i*3+1]=aPredict->data.fl[1]; 
   aPredArr[i*3+2]=aPredict->data.fl[2]; 
   for(j=0;j<9;j++) 
    PPredArr[i*9+j]=PPredict->data.fl[j]; 
  } 
 } 
  
// ================================================== 
 cvReleaseMat(&aPredict); 
 cvReleaseMat(&aCorrect); 
 cvReleaseMat(&PPredict); 
 cvReleaseMat(&PCorrect); 
 
 cvReleaseMat(&temp1); 
 cvReleaseMat(&temp2); 
 cvReleaseMat(&temp3); 
 cvReleaseMat(&temp4); 
 cvReleaseMat(&Velo); 
 cvReleaseMat(&I); 
 cvReleaseMat(&K); 
 cvReleaseMat(&R); 
 cvReleaseMat(&M); 
 cvReleaseMat(&Q); 
 cvReleaseMat(&H); 
} 
 
 
 
// ================================================================= 
// Function: validation 
// Purpose : remove or add object candidates 
// Input : aCorrArr - Objects 
//    objsAlloc - No allocated obj space 
//    NoObjs   - Number of validated objects   
// Output : aCorrArr - Objects  
//    NoObjs   - Number of validated objects 
// ================================================================= 
void validation(int objsAlloc,int *NoObjs) 
{ 
 int   i; 
  
 for(i=0;i<objsAlloc;i++)//loop trough all objs 
 { 
  //validate as object 

if(aCorrArr[i].addCand==ITERADD && aCorrArr[i].remCand==0) 
  {  
   aCorrArr[i].addCand=0; 
   (*NoObjs)++; 
  } 
  //still a candidate 
  else if(aCorrArr[i].addCand!=0 && aCorrArr[i].remCand==0)  
  { 
   aCorrArr[i].addCand++; 
  } 
  //invalid candidate 
  else if(aCorrArr[i].addCand!=0 && aCorrArr[i].remCand!=0) 
  {  
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   aCorrArr[i].addCand=0;  //empty 
   aCorrArr[i].Identify=-1; 
   aCorrArr[i].remCand=0;  
  } 
  //if x iterations without appearing, delete object 
  if(aCorrArr[i].remCand>=ITERREM) 
  { 
   aCorrArr[i].Identify=-1; 
   aCorrArr[i].remCand=0; 
   aCorrArr[i].addCand=0; 
   (*NoObjs)--;  
  } 
  //will be reseted in next iter if it appears 
  if(aCorrArr[i].Identify!=-1)  
   aCorrArr[i].remCand++; 
 } 
 
} 
 
 
// ================================================================= 
// Function: plotting 
// 
// Purpose : Plot  
// Input : *ipl - Pointer to image in which to plot 
//    type - Type of plot to be made 
//    color - Wanted color of plot 
//    XYX - Vector containing coordinates to plot  
// ================================================================= 
void plotting(IplImage *ipl,int type,int color,float *XYZ,char *text) 
{ 
 int   i,j; 
 int  U,V,X1,Y1,X2,Y2; 
 float  arr[3]; 
 double   setColor; 
 CvMat  *matRotSCC,*matCoords,*matSCC;  
 CvFont  font; 
 switch(color) 
 { 
  case BLACK:  
   setColor=CV_RGB(0,0,0); 
   break; 
  case BLUE:  
   setColor=CV_RGB(0,0,255); 
   break; 
  case GREEN:  
   setColor=CV_RGB(0,255,0); 
   break; 
  case TURQUOISE:  
   setColor=CV_RGB(0,255,255); 
   break; 
  case RED:  
   setColor=CV_RGB(255,0,0); 
   break; 
  case MAGNETA:  
   setColor=CV_RGB(255,0,255); 
   break; 
  case YELLOW:  
   setColor=CV_RGB(255,255,0); 
   break; 
  case WHITE:  
   setColor=CV_RGB(255,255,255); 
   break; 
  default: 
   printf("Unknown color"); 
 } 
 
 matRotSCC=cvCreateMat(3,3,CV_32F);  //Creates new matrix.  
 cvInitMatHeader(matRotSCC,3,3,CV_32F,RotationSCC);//rotation matrix. 
 matSCC=cvCreateMat(3,1,CV_32F); 
 matCoords=cvCreateMat(3,1,CV_32F);        
 
 switch(type) 
 { 
  case DOTUV: 
   arr[0]=XYZ[0];    
   arr[1]=TRAS_Y-XYZ[1]; 
   arr[2]=XYZ[2]; 
   cvInitMatHeader(matCoords,3,1,CV_32F,&arr);  
   cvMatMulAdd(matRotSCC,matCoords,0,matSCC);//make SCC matrix 
   U=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC-> 
data.fl[2]))+U0L); //x' to u 
    V=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC-> 
data.fl[2]))+V0L);//y' to v 
   cvCircle(ipl,cvPoint(U,V),1,setColor,-1); 
   break; 
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  case DOTXZ: 
   X1=(int)(round( (XYZ[0]+(float)XMAX) / CONVX )); 
   Y1=(int)(round( ((float)ZMAX-XYZ[2])/ CONVZXZ)); 
   cvCircle(ipl,cvPoint(X1,Y1),2,setColor,-1); 
   break;  
 
  case CIRC:   
   X1=(int)(round( (XYZ[0]+(float)XMAX) / CONVX )); 
   Y1=(int)(round( ((float)ZMAX-XYZ[2])/ CONVZXZ)); 
   X2=(int)(round( RMAX/(2.0*CONVX) )); 
   cvCircle(ipl,cvPoint(X1,Y1),X2,setColor,1); 
   break; 
 
  case RECT: 
   arr[0]=XYZ[0]-(RMAX/2.0);    
   arr[1]=-XYZ[1]; 
   arr[2]=XYZ[2]; 
   cvInitMatHeader(matCoords,3,1,CV_32F,&arr);  
   cvMatMul(matRotSCC,matCoords,matSCC); 
   X1=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC-> 
data.fl[2]))+U0L); //x' to u 
    Y1=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC-> 
data.fl[2]))+V0L);//y' to v 
   arr[0]=XYZ[0]+(RMAX/2.0);    
   arr[1]=2*TRAS_Y-XYZ[1]; 
   arr[2]=XYZ[2]; 
   cvInitMatHeader(matCoords,3,1,CV_32F,&arr);  
   cvMatMul(matRotSCC,matCoords,matSCC); 
   X2=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC-> 
data.fl[2]))+U0L); //x' to u 
    Y2=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC-> 
data.fl[2]))+V0L);//y' to v 
   cvRectangle(ipl,cvPoint(X1,Y1),cvPoint(X2,Y2),setColor,1); 
   break; 
 
  case TEXT: 
   if(XYZ!=NULL) 
   { 
    arr[0]=XYZ[0]+150.0;    
    arr[1]=-XYZ[1]+250.0; 
    arr[2]=XYZ[2]; 
    cvInitMatHeader(matCoords,3,1,CV_32F,&arr);  
    cvMatMul(matRotSCC,matCoords,matSCC); 
    U=(int)round(((float)FXL*(matSCC->data.fl[0]/matSCC-> 
data.fl[2]))+U0L); //x' to u 
     V=(int)round(((float)FYL*(matSCC->data.fl[1]/matSCC-> 
data.fl[2]))+V0L);//y' to v 
   } 
   else 
   { 
    U=10; 
    V=10; 
   } 
   cvInitFont(&font,CV_FONT_VECTOR0,0.3f,0.3f,0.0f,1); 
   cvPutText(ipl,text,cvPoint(U,V),&font,setColor); 
   break; 
   
  default: 
   printf("\nNot a valid plotting type....\n"); 
 } 
  
 cvReleaseMat(&matRotSCC);   
 cvReleaseMat(&matCoords); 
 cvReleaseMat(&matSCC); 
 
} 
 
// ================================================================= 
// Function: hist 
// Purpose : Plot measurement histogram (2D) 
// Input : iplHist - image to plot the hist. in 
//    ny   - Number of measurements   
//    pMeas   - Measurements 
//    NoObjs   - Number of validated objects   
// ================================================================= 
 
void hist(int ny,float *pMeas,IplImage *iplHist)  
{ 
 int   i,j,X,Z,X1,X2,Y1,Y2; 
 int   max=0; 
 int   histMat[40][32]; 
 float  temp; 
  
 for(i=0;i<40;i++)//rows 
 { 
  for(j=0;j<32;j++)//columns 
  { 
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   histMat[i][j]=0;  
  } 
 }  
 for(i=0;i<ny;i++) 
 { 
  X = (int)floorf(((pMeas[i*3]+8000.0)/500.0)); 
  Z = (int)floorf(((pMeas[i*3+1]-500.0)/500.0)); 
  histMat[Z][X]++;   
  if(histMat[Z][X]>max) 
   max=histMat[Z][X]; 
 } 
 cvRectangle(iplHist,cvPoint(0,0),cvPoint(320,240),255,-1);//white 
 for(i=0;i<40;i++)//rows 
 { 
  for(j=0;j<32;j++)//columns 
  {  
   if(max) 
    temp=((float)histMat[i][j]/(float)max); 
   else  
    temp=0.0; 
   histMat[i][j]= (int)round(((1-temp)*255)); //sets greyscale 
   X1=j*10; 
   Y1=(40-i)*6; // 6=240/40 
   X2=X1-10; 
   Y2=Y1-6; 
  
 cvRectangle(iplHist,cvPoint(X1,Y1),cvPoint(X2,Y2),histMat[i][j],-1); 
  } 
 }     
} 
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2 tracking.h 
 
 
/* ---------------------------------------------- */ 
#define TRUE 1 
#define FALSE 0 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Image parameters      */ 
#define WIDTH 320 
#define HEIGHT 240 
#define FILE_SIZE (WIDTH*HEIGHT) 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Intrinsic parameters, left camera     */ 
#define FXL 430.79014  
#define FYL 431.72027  
#define U0L 151.26555  
#define V0L 117.03242  
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Matrix calibration of the intrinsic cameras- */ 
float intrMatrixLeft[9] = {FXL,0.0,U0L,0.0,FYL,V0L,0.0,0.0,1.0};  
float distCoeffsLeft[4] = {-0.06108,-0.14348,0.00345,-0.00526};   
 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Camera rotation angels i radians     */ 
#define alpha (0.94972*3.14159/180) // X-axis rotation  
#define beta 0.019508  // Y-axis rotation  
#define phi -0.014053  // Z-axis rotation  
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Rotation matrix      */ 
float RotationSCC[9] = {cos(beta)*cos(phi),-
cos(beta)*sin(phi),sin(beta),sin(alpha)*sin(beta)*cos(phi)+cos(alpha)*sin(phi),sin(a
lpha)*sin(beta)*sin(phi)+cos(alpha)*cos(phi),-sin(alpha)*cos(beta),-
cos(alpha)*sin(beta)*cos(phi)+sin(alpha)*sin(phi),cos(alpha)*sin(beta)*sin(phi)+sin(
alpha)*cos(phi),cos(alpha)*cos(beta)}; 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* translation of the Y-axis     */ 
#define TRAS_Y 970 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Borders X-Y-Z (in mm)     */ 
#define XMIN -8000 
#define XMAX 8000 
#define YMIN 100 
#define YMAX 2100   
#define ZMIN 500   
#define ZMAX 20500 
#define ZMAX2 16500 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Transformation constants     */ 
#define CONVX  ((float)(XMAX-XMIN)/WIDTH) 
#define CONVZXZ ((float)(ZMAX-ZMIN)/HEIGHT) 
#define CONVZXZ2 ((float)(ZMAX2-ZMIN)/HEIGHT) 
#define CONVY  ((float)(YMAX-YMIN)/HEIGHT) 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Object parameters      */ 
#define RMAX  850.0 
#define ITERREM  15 
#define ITERADD  5 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Object representation     */ 
#define WHITE  0 
#define BLUE  1 
#define GREEN  2 
#define TURQUOISE 3 
#define RED  4 
#define MAGNETA  5 
#define YELLOW  6 
#define BLACK  7 
 
#define DOTUV  0 
#define DOTXZ  1 
#define CIRC  2 
#define RECT  3 
#define TEXT  4 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* Sample time       */ 
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#define ts  66.0 
/* ---------------------------------------------- */ 
/* ---------------------------------------------- */ 
/* String        */ 
#define MAX_STR_SIZE 40 
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VI. Budget 
 
 
In this section the different costs for this project are described. 
 
 

• Cost for laboratory equipment   
 

 

Items Cost per hour Hours of usage Total 

PC 0.4 € 920 h 368 € 

Software for PC 1.4 € 920 h 1288 € 

Printer paper - - 10 € 

 

 
• Cost for manual work 

 

Function Number of hours €/h Total 

Engineering 700 60.00 42000 € 

Writing 220 12.00 2640 € 

Total cost for laboratory equipment 1666.00 € 

Total cost for manual work 44640 € 
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• Total cost for execution material 
 

Items Total 

Cost for laboratory equipment 1666.00 € 

Cost for manual work 44640.00 € 

 
 
• Contracting cost 
 

Items Total 

Total cost for execution 
material 46306.00 € 

Industrial benefit (30%) 13891.80 € 

 
 
• Writing remunerations 

 
 
• Grand total cost 
 

Items Total 

Cost for contracting 60197.80 

Writing remunerations 3124,80 

 

Total cost for execution material 46306.00 € 

Cost for contracting 60197.80 € 

Writing remunerations (7%) 3124,80 € 

Grand total cost 63322,60 € 
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