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Abstract— Several issues concerning the current use of 

speech interfaces are discussed and the design and 

development of a speech interface that enables air traffic 

controllers to command and control their terminals by voice is 

presented. A special emphasis is made in the comparison 

between laboratory experiments and field experiments in 

which a set of ergonomics-related effects are detected that can 

not be observed in the controlled laboratory experiments. 

The paper presents both objective and subjective 

performance obtained in field evaluation of the system with 

student controllers at an air traffic control (ATC) training 

facility. The system exhibits high word recognition test rates 

(0.4% error in Spanish and 1.5% in English) and low 

command error (6% error in Spanish and 10.6% error in 

English in the field tests). Subjective impression has also been 

positive, encouraging future development and integration 

phases in the Spanish ATC terminals designed by Aeropuertos 

Españoles y Navegación Aérea (AENA). 

 
Index Terms—Air traffic control, Speech recognition, 

Command and control 

 

I. INTRODUCTION 

URRENT speech-based interfaces face the challenge of 

achieving acceptability in field applications, although a 

large degree of success has been obtained in specific areas 

such as medical or legal dictation. The main reason for the 

success in these environments is that the vocabulary is 

limited and specific, including long and easily identifiable 

words which enable high recognition test rates. The 

structure of sentences is mostly regular, requiring language 

models with lower complexity. 
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Both dictation and command & control systems have to 

compete with other well-established traditional interfaces 

such as keyboard and mouse. In some experiments carried 

out in a dictation task [3], errors with the keyboard were 

easy to identify just looking at the result on screen and took 

an average of 3 seconds to be corrected using additional key 

strokes. Alternatively, automatic speech recognition (ASR) 

errors were more difficult to locate and the average time for 

their correction was 25 seconds. However, for medical 

dictation applications, the keyboard is a less viable 

alternative [1] since physicians are used to recording 

machines and transcription services. Traditional manual 

procedures are slightly more accurate at the cost of a much 

higher turnaround time for the written report [2], compared 

to ASR. The harsh to admit higher error rates are 

counteracted by producing an overall decrease in medical 

costs and a faster service. In the case of legal services, 

dictation competes efficiently with the keyboard because 

there are many macros and shortcuts that can be used in a 

fast and easy way. 

Other areas of application have emerged with the mobile 

concept. At the beginning of the use of mobile phones, 

speech recognition was only feasible as “distributed speech 

recognition” (DSR) whose idea was to perform all the CPU 

intensive calculations in central mainframes while only the 

speech capture and feature extraction ran in the mobile 

terminal. Wireless networks presented several problems that 

posed challenges to the performance of ASR systems: 

bandwidth constraints and transmission errors [4]. Recently 

the terminals have gained enough CPU power so that the 

idea of distributed recognition has declined and some 

laboratories are even introducing complex stochastic 

predictive algorithms in the terminal to reduce error rates 

[5]. For example, in [6] a 26% error rate reduction is 

achieved through learning language models from a large 

population for mobile command and control and a 

significant additional improvement of 5% through the 

online adaptation of the model to user specific data. 

One of the sectors of the population that is more prone to 

accept speech interfaces is that of the persons with specific 

disabilities like persons that cannot use a keyboard or those 

with seeing impairments. In [15] an interesting study about 

ergonomics is presented that shows that about 75% of users 

with some of these disabilities continue to use ASR systems 
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and are satisfied with them. It is also shown that from the 

potential 150 words per minute (wpm) – promised in 

commercials for the speech product - a range from 8 to 30 

wpm is achieved for people with these disabilities, 

highlighting the difference between laboratory and field 

performance measurements. Its conclusion about the 

learning curve for speech interfacing is also interesting. The 

study mentions that continuous speech recognition systems 

can be used with some success after only 2 hours of 

training, but the operating skill is still being developed after 

20 hours of use over a period of weeks. In contrast, in the 

application presented in this paper, we use a very simple 

interface that shows high performance after short learning 

intervals (45 minutes) . 

An important issue for a speech interface is whether it 

works for non-native speakers. This is our case in which 

controllers are typically language-native in Spanish that 

have to speak both in Spanish and in English at work. Even 

when using a single language, we have to consider dialectal 

variations as another source of difficulty. For Spanish native 

speakers (as in our experiments) the designer has to 

consider proper dialectal variations common in Spanish and 

also uttering variations produced when speaking in English 

able to model the higher uttering variability due to the lower 

proficiency in this language as compared to the mother 

tongue. It is also observed that some words (such as alpha, 

bravo, charlie, etc., city names, company names, etc.) may 

not be pronounced differently when they speak in English or 

Spanish and this contamination effect lead us to consider all 

the possible variants for both Spanish and English 

recognizers. This problem inevitability increases the test 

error rates and we had to introduce specific solutions similar 

to those presented in [7], i.e. introducing pronunciation 

variants for some words. This technique is not simple, 

because the introduction of pronunciation variants increases 

the recognizer perplexity and it has to be done carefully to 

obtain the desired gain in recognition. 

Another problem of speech interfaces is the 

contamination of the speech signal with noises and the 

speech transmitting channel variability in a field 

environment. The solution to these issues implies more care 

in the design of the feature extractor. In [8] it is shown that 

for applications in which the signal to noise ratio (SNR) is 

greater than 15 dB, there are two key elements to take into 

consideration: an optimal setting of the feature extraction 

(in our case we study Cepstral Mean Normalization and 

Cepstral Variance Normalization techniques) and a proper 

setting for the “silence or non-speech” model (we use 14 

different non-speech models). 

In the history of the evaluation of the ergonomy of speech 

interfaces we find very positive opinions reached by Poock 

in the early 1980s [16], whose experiments showed a “very 

significant superiority” for speech over keying in a 

command and control application. Later Damper et al. 

showed that Poock´s experiments were carried out with an 

interface design more tailored to speech while easy 

improvements for the keying procedure could also be made. 

They carried out new experiments in an attempt to obtain a 

better experimental balance improving the keying interface 

and found that the big performance differences disappeared, 

although they reported that for cases where the user had to 

perform additional activities, many of the parallel tasks 

could be completed with the speech interface. Damper et al. 

stated in [17]: “Speech has an input potential for the future 

– especially for high workload situations involving 

concurrent tasks - if the technology can be developed to the 

point where most errors are attributable to the speaker rather 

than to the recognizer”. The application in this paper tries to 

fulfill the requirements set out in this statement as long as 

we are using the speech interface in an application were the 

user – the controller - has to perform many duties and we try 

to ease the interface with the systems commanded by the 

controller. It is well known that open and general speech 

recognition algorithms cannot attribute all the errors to the 

user, but we will show that by tailoring the vocabulary and 

controlling other aspects of the interface, test error rates can 

be reduced to usable figures. 

There have been several other works connecting speech 

technology and ATC as in [9], where the authors, under the 

direction of the Avionics Engineering Center at Ohio 

University and supported by the FAA and NASA conducted 

tests on the idea of controller-pilot data link 

communications system. They used a Verbex speech 

recognition engine that achieved a 97% accuracy in a 

different task. Unfortunately, no performance figures were 

given for the proposed application, although they discussed 

the need for error correction and prevention procedures in 

order to consider the system usable. In [10] and [11] our 

research group presented results in a very similar task for 

Madrid Barajas Airport tower controllers, including the 

understanding of the commands for the controller-to-pilot 

communications channel. In [12], Duke et al took on a very 

big challenge: to develop an unmanned aircraft control 

system capable of operating in the national airspace system 

in Italy under instrument flight rules by using the voice 

communication channel and passing the Turing test in 

respect both to the conventional air traffic control and to 

other pilots in the area, as far as its answers and behavior 

was indistinguishable from other planes piloted by humans.  

Other interesting applications are the use of speech 

technology for controller training, with the use of automatic 

pseudo pilots [13] and the estimation of controller workload 

[14]. These applications are examples of the quest for ideas 

where speech technology, with all its current weakness, may 

be really useful. 

In our paper we describe the development, laboratory 

tests and field tests of a command and control speech 

interface of ATC terminals. We place the emphasis in the 

comparison between the laboratory and field experiments 

where a set of ergonomic-related effects are detected that 

cannot be observed in the laboratory experiments. 
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The paper is organized as follows: Section II describes 

the characteristics and features of the developed interface; 

Section III presents the hardware and software architecture; 

Section IV contains the laboratory development and tests; 

Section V shows the field objective and subjective 

evaluations and Sections VI and VII establish the discussion 

and conclusions of the work. 

II. APPLICATION DESCRIPTION 

AENA is the Spanish company in charge of Spanish airports 

and air navigation. They led the FOCUCS (Future control 

position, Sector Control Position unit) project in complete 

cooperation with the SACTA initiative (Automation system 

of ATC). FOCUCS is currently fully deployed in several 

ATC facilities. 

 

 
 

Figure 1 SACTA FOCUCS terminal 

 

A FOCUCS terminal is made up of two sets for a pair of 

controllers working in a specific sector: one, the planning 

controller and the other, the executive controller (Figure 1). 

It consists of two main high resolution screens plus several 

other lateral screens, two of them touch-sensitive and other 

radio, audio and complementary equipment. The interface 

to the main screens in which the ATC information displayed 

is based on the keyboard and the mouse as well as a touch 

screen. The different functions and commands to get the 

information that appears on the main screens are introduced 

using two methods: with pop-up menus actuated by the 

keyboard or mouse and through strokes on virtual keys on 

the touch sensitive screen (for a limited list of relevant 

commands). For the case of pop-up menus, some commands 

appear under several (2 or 3) levels of selection.  

The objective of the research contract between AENA 

and UPM was to explore the suitability of a speech interface 

to access the whole spectrum of commands via voice 

commands and see if this new interface could be faster and 

would alleviate the demands of handling the keyboard and 

mouse. As the controller’s task is speech intensive, a special 

push-to-talk device had to be included to access the speech 

commander. 

The task is not one of the most difficult ones for state-of-

the-art speech recognizers in terms of vocabulary because it 

is very limited, but robustness was required in terms of the 

use of the system in real acoustics settings and professional 

environments. For the scalability of the system we decided 

that the vocabulary should be easily editable and 

expandable in the future. These characteristics forced us to 

consider different technological solutions as we will show 

later in this paper. 

III. SYSTEM COMPONENTS 

The hardware architecture of the system is presented in 

Figure 2. 

 

 
Figure 2 Hardware architecture of the system 

 

The system runs in a personal computer and interacts 

with the FOCUCS terminal via a standard RJ45 network 

connection to a FOCUCS-local HUB. The speech is 

captured with an ATC standard microphone which is 

connected to an adaptor, developed within the scope of the 

project, to transform the differential balanced signal from 

the microphone to an asymmetrical signal that the PC sound 

card needs. Another component is a mouse-sized interface 

with two keys: one is a large push-button that will act as a 

PTT (Push to talk) and the other is a smaller lateral red push 

button that is intended to be actuated with the thumb and 

that will act as a canceller of the last command in the event 

of a human or recognizer error. 

 

The software architecture that allows the operation of the 

system is set out in Figure 3. The system runs on Microsoft 

Windows XP operating system, making use of 3 application 

interfaces (APIs). The Winsock API is needed to be able to 

send the IP-UDP commands to the FOCUCS HUB. The 

multimedia API is needed for the management of the sound 

card, i.e., to sample the speech signal coming from the 

microphone adaptor. The PC port’s API is needed to be able 

to read the PTT / Cancel push buttons interface. Above this 

API layer, we run three processes: the PTT / Cancel 

signaling module, the UDP client that will order the delivery 

of the right commands and our speech recognition engine. 

The commands understood by the system and other 

development information are presented via a Windows user 
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interface on the PC. 

 

 
 

Figure 3 Software architecture of the system 

 

 

The recognizer itself is made up of the main modules 

presented in Figure 4. The first module calculates the end of 

the command utterance (Note that the start is given by the 

action of the user on the PTT). This module compares the 

energy of the signal to three energy thresholds which are all 

relative to a floor energy estimation for silent segments. For 

any candidate end point, the energy must remain below the 

medium energy threshold and the low energy threshold for a 

pre-defined time. If after some second pre-defined time the 

energy rises again and crosses the highest threshold level, 

the event is considered a pause between two words (which 

happens in some compound commands) and the decision 

process is reset until the new word ends. The time and 

energy threshold factors can be adjusted.  

 

 
 

Figure 4 Recognizer mechanism 

 

Once we have segmented the command utterance, the 

speech samples enter the feature extractor. The recognizer 

uses 13 LPC-Cepstrum [18] base features each of 10 msec. 

temporal analysis window (25 msec. wide each). These 

features are processed using CMN (Cepstral Mean 

Normalization) and CVN (Cestral Variance Normalization) 

in order to minimize the effect of the acoustic propagation 

channel of the speech signal. In other words, CMN and 

CVN achieve a certain degree of robustness against changes 

in microphones, in lines and in pre-amplifiers through which 

the signal may be transmitted before it enters our system. 

We also take the 13 first and second derivatives of these 

normalized LPC-Cepstrum features to compose a final 

feature vector of 39 components. 

The speech recognizer is based on the Viterbi algorithm 

[19] that calculates a score between the spoken utterance 

and the models for all the commands within the specified 

vocabulary, selecting the best scored one. The models are 

stochastic continuous density Hidden Markov Models 

(HMMs) [20] for allophones (as we will see later, we use 

context-dependent allophones). The recognizer builds up 

the model for each command to be recognized (and even for 

each possible pronunciation variant of the same command) 

concatenating the corresponding allophonic sequence 

models read from the vocabulary. This characteristic of the 

recognizer allows the easy expansion of the vocabulary of 

terms to be recognized (or the pronunciation variants of 

existing commands), by just writing down new entries in the 

command vocabulary. 

 

IV. LABORATORY DEVELOPMENT AND EVALUATION 

A. Database 

To build up the recognizer stochastic models, a large speech 

database is needed. We selected the SpeechDat database
1
 

(the isolated words part with 41.8 hours of speech) for the 

training of the Spanish recognizers because it matched our 

requirements very well for this project. The main 

characteristics of SpeechDat are as follows: 

 It consists of 4,000 speakers 

 It has been recorded through a narrow band 

(4KHz) telephone speech channel, very similar to 

the ATC equipment channel 

 Several tasks are recorded, including commands 

To complement this database, we recorded another 

specific database in the context of the project that we call 

the Invoca database. This database consists of recordings 

from 27 speakers (14 males and 13 females) from 18 to 40 

years old. Each speaker uttered 5 repetitions of each 

command (228 words for Spanish and 146 words for 

English). Two subsets were created: 18 speakers (20,380 

files containing 10.39 hours of speech) were kept both for 

task adaptation of the models and for testing the alternative 

of training from scratch; the other 9 speakers (10,220 files) 

were separated for speaker adaptation techniques tests and 

for the final laboratory validation of the system. 

We decided to use context-dependent models at the tri-

allophone level in which the states that make up a model 

can be shared with other similar states. The tri-allophone 

models are allophone models that are different depending 

on the lateral allophones adjacent to the considered center 

allophone. For example, when modeling an allophone [p], 

 
1 http://catalog.elra.info/product_info.php?products_id=635, as of 

september 2009. 
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instead of having just one model for all [p] occurrences we 

have different models if the [p] is preceded by a certain 

allophone [p1] and followed by another allophone [p2], thus 

constituting the allophone [p1 p p2]. We have to keep in 

mind that [p1 p p2] is a model just for the sound [p], not for 

the sequence “p1 p p2” but only for the occurrences where 

“p” is preceded by the allophone p1 and followed by p2. If 

we would consider all possibilities for the contexts, the 

modeling would be too big and not trainable. This is the 

reason to perform states sharing among all possible states 

resulting from the use of the tri-allophone idea. The 

objective of sharing states in a cluster is to obtain robust 

states. We mean robust in the sense that all states have 

enough training material for a reliable estimation of the 

model parameters. The clustering procedure (estimation of 

groups of “similar” or “close” states) is based on a phonetic 

decision tree, which is a binary tree in which a yes/no 

phonetic question is attached to each node. Initially all 

states in a given item list (typically a specific phone state 

position) are placed at the root node of a tree. Depending on 

each answer, the pool of states is successively split and this 

procedure continues until the states have trickled down to 

leaf-nodes. All states in the same leaf node are then tied. 

The question at each node is chosen to (locally) maximize 

the likelihood of the training data given the final set of state 

tying. Each question takes the form “Is the left or right 

context in the set P?” where the context is the model context 

as defined by its logical name. More details can be found at 

[21]. 

 

We will now summarize the process of the development 

of the Spanish recognizer with which the main design 

decisions were made. 

B. Development of the system 

Our initial HMM models were estimated applying the 

Baum-Welch algorithm [19] to the SpeechDat (isolated 

words part) database. With these initial experiments we 

found the optimum regression tree in 1,509 states with a 

mixture of 6 gaussians per state and we optimized several 

parameters of our system. With these models, we obtained 

2.08% test error rate for the ATC terminal command task. It 

is important to note that the SpeechDat database does not 

include any of the ATC terminal commands, so some 

allophonic contexts needed for the task could not exist in 

the SpeechDat training database. However the SpeechDat 

database has a lot of general training material so that our 

recognizer benefits from the generality of the HMM models 

obtained. This feature is relevant in order to augment the 

commands in the future.  

Our next step was to test whether using task adaptation 

would improve our results. Task adaptation means the use 

of some data from the proposed task to modify (adapt) the 

models obtained with speech material coming from another 

task in order to improve the performance. This is clearly our 

case in which we have SpeechDat-based trained HMM 

models whilst we would like the best performance on our 

ATC terminal command task. Thus, we used the Invoca 

subset of 18 speakers to adapt the HMM models and then 

we tested the results on the subset of 9 speakers. The results 

appear in Table 1, column 2 where two versions of two 

different adaptation techniques are presented. 

 

  Speaker adaptation 

 
Task 

adaptation 
1 rep 2 rep 3 rep 

MAP v1 1.00% 0.29% 0.17% 0.17% 

MAP v2 0.81% 0.27% 0.17% 0.17% 

MLLR v1 0.84% 0.47% 0.39% 0.29% 

MLLR v2 0.84% 0.27% 0.27% 0.15% 

 

Table 1. TEST WORD ERROR RATES FOR EXPERIMENTS OF MODEL 

ADAPTATION: THE FIRST COLUMN SHOWS TASK ADAPTATION AND THE 

3RD
 TO 5TH

 COLUMS, THE SPEAKER ADAPTATION EXPERIMENTS 

 

MAP (Maximum a posteriori) adaptation [22] uses the 

original model to estimate the probability of a 

representation link between each acoustic frame and the 

model states and then estimates a new model as an 

interpolation of the original parameters and those extracted 

from the new data, considering this estimate of linking. In 

Table 1 “MAP v1” stands for the use of CVN-compensated 

features and adaptation of only the means of the gaussians 

via MAP, and “MAP v2” stands for the CVN compensation 

of both means and variances with MAP. In the MLLR 

(Maximum Likelihood Linear Regression) technique 

[23][24], the adaptation data is used to learn simple 

regression trajectories for the gaussian parameters, in our 

case just for the means in the “MLLR v1” version and of 

both means and variances in “MLLR v2”. The best result is 

found for MAP v2 with a 0.81% test error rate. 

This result was considered enough to start the field 

evaluation (as we will see later), but we checked another 

adaptation possibility that consisted of using data from a 

specific speaker to further improve her/his model, thus 

adapting the previous models (speaker-independent models) 

to the personal pronunciation particularities of the user. For 

this new experiment we used the 9 speaker sub-set of the 

Invoca database and we started from the task-adapted 

models obtained from the previous phase. We decided to 

use two of the repetitions for testing in all the cases and use 

the remaining three repetitions to carry out different 

experiments. Three experiments were made: adaptation with 

just one repetition, with two repetitions or with the three 

repetitions (1.2 and 3 repetitions had an average of 7.1, 13.8 

and 20.8 minutes of speech respectively). The results are 

presented in columns 3, 4 and 5 of Table 1. Obviously, the 

system performs better when more data is used to adapt the 

models. We were also interested in evaluating how much 

adaptation data we would need for the addition of a new 

controller to the system. Again the best technique option is 

MAP v2 which produces a reduction to a 0.27% test error 
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rate with one repetition of the commands, to 0.17% with 

two and three repetitions. One repetition of all the 

commands means the repetition of 228 words in Spanish, a 

list that could be long. In a subsequent experiment we 

calculated the results of using the adaptation algorithm with 

a shorter list of words. We selected 50 words among the 

most acoustically confusing words (the ones that produced 

more errors in previous experiments) and at the same time 

more representative of the task (they better cover the 

original distribution of the allophones). These 50 words had 

an average duration of 1.6 minutes in total. The results of 

the experiment adapting with the short list are presented in 

Table 2. 

 

 Speaker adaptation with the 50 words list 

MAP v1 0.56% 

MAP v2 0.56% 

MLLR v1 0.61% 

MLLR v2 0.54% 

 
Table 2. TEST WORD ERROR RATES FOR EXPERIMENTS OF MODEL 

ADAPTATION WITH THE 50 WORDS LIST  

 

The results are in between the previous results (i.e. no 

speaker adaptation or full speaker adaptation). However the 

MAP technique is less effective in this case (the test error 

rate doubles from 0.27 % to 0.56%) while MLLR v1 

performs 0.54%, which is the first experiment in which 

MLLR gives a lower test error rate than MAP. 

It is also true that with the confidence margins produced 

by the low number of test words of the experiments, the 

differences between all speaker adaptation techniques were 

not statistically significant. This is also the reason for not 

carrying out speaker adaptation experiments in the English 

command recognizer as we even had less data for this task. 

For English we created the system by directly training the 

models with the Invoca database and it resulted in a 2.7% 

word error with the 241 word list. This performance was 

considered adequate for the purposes of this project. The 

optimum in English was found for 1,400 states and a 

mixture of 8 gaussians per state. 

We finally decided that the improvement obtained by 

speaker adaptation was not big enough to compensate the 

discomfort of using an enrollment procedure for every new 

speaker (who has to record the set of adaptation words) and 

the field experiments were carried out with the models 

adapted to the task but without speaker adaptation. 

 

V. FIELD EVALUATION 

The whole system was evaluated both in English and in 

Spanish. The purpose of the evaluation was twofold: we 

wanted to know actual field test error rates and we also 

wanted to extract information on the ergonomics of the new 

interface and to know about the opinion on usability of the 

users. 

The evaluation consisted of two phases, one called 

“guided evaluation” where the users had to utter specific 

items as they appeared on a screen. In this way, the system 

could automatically calculate the error rate. The other 

phase, called “free evaluation” was mainly intended for 

ergonomics evaluation and consisted of realistic working 

scenarios in which the interface was used to solve the 

programmed task. An external observer annotated the 

number of recognition errors in this second phase so that we 

also have this figure, but the main outcome was obtained 

through the answers from the users to a questionnaire with 

several questions about the usability of the interface. For 

these experiments we involved 22 users: 11 volunteers from 

the AENA Automation Division that made the guided 

evaluation and 11 controller students from SENASA (the 

controller’s training facility) who made the free evaluation 

on realistic scenarios. 

 

A. Guided evaluation 

The system was prepared so as to recognize 412 variants 

(different words plus pronunciation variants) in Spanish for 

a total of 228 commands and 383 variants in English for a 

total of 118 commands. A command may imply the uttering 

of several words and each word may have several 

alternative pronunciations, mainly for English as the speech 

is coming from non-native users. The 11 speakers uttered a 

list of 50 commands in Spanish and 30 in English. We 

separated the results in two sets: “single commands” is the 

one where each command consisted of just one word and 

“compound commands” is the one where each command 

consisted of several words and all of them have to be 

correctly recognized to consider the command recognized. 

The results that we have obtained are summarized in Table 

3. The line labeled “Overall” integrates the results for single 

and compound commands 

 

SPANISH word error 
command 

error 

single commands 2.6% 2.6% 

compound commands 3.5% 7.3% 

Overall 3.3% 6.0% 

   

ENGLISH word error 
command 

error 

single commands 4.9% 4.9% 

compound commands 5.4% 12.4% 

Overall 5.3% 10.6% 

 
Table 3. RECOGNITION ACCURACY FOR FIELD “GUIDED EVALUATION” 

 

Single commands perform better than compound 

commands because the latter need more than one word to be 

correctly recognized. For the same reason, compound 

commands evaluated at the word level give better results 

than the full-command recognition test rate. Overall results 
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integrate both single and compound commands so their 

results are the reference results.  

The errors of the field tests are considerable higher than 

the ones obtained in the development phase. An error 

analysis could be made since we had all the utterances 

recorded and labeled. The result of this analysis is shown in 

Table 4. 

 

 Spanish English 

Empty file 1.5% 1.5% 

Cut off recording 0.4% 0.5% 

Repeated word 0.1% 0.0% 

Badly labeled 0.9% 0.0% 

Wrong pronunciation 0.0% 0.3% 

Noise 0.0% 1.5% 

Rest of errors 0.4% 1.5% 

TOTAL 3.3% 5.3% 

 
Table 4. FIELD RECOGNITION ERRORS ANALYSIS 

 

The PTT procedure and the inexperience of the subjects 

of this experiment in the use of speech recognizers (they 

were volunteers from the Automation Division and not 

student controllers who at least have more experience in 

using PTT procedures) caused most of the system problems: 

some files were found to be empty of any signal or with a 

partial recording of the command with a significant part cut 

off (rows 1 and 2 of Table 4). In some cases we found the 

word uttered twice within the analysis window. In some 

other cases we found an error in our labeling procedure 

when writing down the reference text that caused the 

command not to be counted as recognized. Other cases 

contained errors in the pronunciation of the command (in 

English) or were corrupted with a significant noise. If we do 

not consider these cases, we find 0.4% words for Spanish 

and 1.5% for English to which we cannot impute any 

significant problem in the recording and these figures 

correlate quite well with the laboratory expectations for this 

“controlled” field guided evaluation.  

The results obtained are the natural consequence of using 

a system prepared in the laboratory in the field by real users 

and the “realistic recognition test error rate” is 6% for 

Spanish or 10.6% for the English overall command test 

error rate that includes the effect of all real field application 

problems and details. 

 

B. Free evaluation 

AENA´s DOR (Organization and Ruling Division) designed 

some realistic protocols or scenarios for interaction with 

FOCUCS. We asked the 11 student controllers to complete 

them using the speech interface instead of the traditional 

access through keyboard and mouse or touch commands. 

They were free to perform the task in any order and using 

the commands they would consider necessary at each 

moment. We gave them a briefing of about 45 minutes 

explaining the capabilities and operation of the new speech 

interface. They had to use both Spanish and English 

commands in these scenarios. 

After the completion of their task, they had to fill in a 

questionnaire with several questions. While they were 

working, an external observer manually wrote down the 

number of recognition errors that came to 65 out of 1,157 

observed commands. That makes a 5.62% command test 

error rate in this field use of the system, which is better than 

the “guided evaluation” results of previous section. The 

reason for this improvement can be attributed to the greater 

experience of the student controllers in the use of PTT 

procedures and the familiarity with the commands that 

produce better and more consistent pronunciations. 

As SENASA gives controller formation to students coming 

from all the regions in Spain, there are several 

pronunciation variants within the testing subjects. The 

distribution of the subjects pronunciation regions are shown 

in Figure 5. 
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Figure 5 Dialectal origin of “free evaluation” population. 

 

The main objective of this test was to learn about the 

usability of the speech interface as experienced by the 

testing subjects. Their feeling was captured through the 

answers to a questionnaire with the questions that appear in 

the head of each sub figure in Figure 6. 

The first question was about prior experience in speech 

recognition (Q1). The results show that most of the users 

were not used to speech interfaces, even though they are 

enrolled in a high technology-related training like that of an 

ATC controller. This factor is something that speech 

technology has to fight against: the majority of the 

population has a high degree of inexperience in the use and 

particularities of human-machine interfacing with speech. 

The second question (Q2) is whether the system is easy to 

use. The results indicate that the system is perceived to be 

easy to use, validating our efforts to take the user into 

account when we developed the system.  

The two following questions (Q3 & Q4) about the 

understanding capabilities of the system and the speed of 

execution are also answered quite positively with more than 

82% of the users happy with the new interface (Agree + 

Fully agree for both questions). 
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In Q5, we asked whether they found the phraseology 

adequate. 81% of the answers considered it adequate or 

very adequate, although we find that 9% of the subjects did 

not like it. The phraseology was prepared by AENA 

Automation Division in collaboration with the development 

team and this question clearly indicates that we have to 

consider user suggestions for future versions as they are the 

people that will actually use the interface and know about 

the phraseology preferences and operability of the 

commands. 
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Figure 6 Answers to the questionnaire 
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The following question (Q6) was whether the activation 

mechanism (PTT) was adequate. Although the results are 

quite positive, the answers also point out another weakness 

in the interface with 18% of the subjects with moderate or 

severe trouble when using this interface. We can also 

connect this question with the following one (Q7) about the 

cancellation mechanism with similar although not extreme 

answers. Our conclusion is related to the PTT procedure. 

Controllers have to use the radio PTT for their duty and we 

are forcing them to use a second different PTT for the 

recognizer and a special key near this PTT for the 

cancellation of the last command in the event of 

misrecognition. This is not the best way to achieve a good 

ergonomy and we have to consider a better way to integrate 

the interface for this application in the future. One idea 

could be to use a modified PTT that would integrate both 

the PTT for communications and that for recognition and 

the cancellation key. 

The last question (Q8) summarizes the user feeling by 

asking whether the system is a good system. The result is 

quite positive: 72% are happy, 18% indifferent and only 9% 

did not like the system, with no one voting for a full 

disagreement with the statement of the question. This fact 

encourages us to consider user suggestions to try to improve 

user acceptability. 

 

I would use this system instead of the 
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Figure 7 Answer to the most relevant question: would the user use the 

speech-based system instead of the traditional one? 

 

Finally, we end with the answers to the relevant sentence 

“I would use this system instead of the traditional one”, an 

overall question about the usability of the new interface (see 

Figure 7). The answers are broken down into 36% positive, 

45% indifferent and 18% negative, not a bad result for an 

interface competing with well-known and extensively used 

interfaces as is the case of keyboard and mouse plus the 

help of the touch screen for some commands. Our users also 

have the challenge to find an interface that makes use of the 

same intellectual channel (speech) that they use for the 

communications with the pilots or collaterals on their duty. 

This is the reason for considering the answers again 

encouraging. 

VI. SUMMARY & DISCUSSION 

Table 5 summarizes the speech recognition results for the 

different tests of the system. 

 

Experiment Spanish English Comments 

Laboratory 0.8% 2.7% word error rate 

Field, 

guided 

evaluation 

3.3% 5.3% 
overall word error rate, all 

effects included 

0.4% 1.5% overall rest word error rate 

6.0% 10.6% 
overall command error rate, 

all effects included 

Field, free 

evaluation 
5.6% 

overall command error rate, 

all effects included 

 
Table 5. TEST RECOGNITION ERRORS SUMMARY 

 

In the first row we present the results of the development 

in the laboratory, 0.8% word error (Spanish) and 2.7% word 

error (English).. When we carried out the field tests, first 

with the guided evaluation, where the speakers had to utter 

specific commands as they were required by the automatic 

evaluation system, these test word error rates rapidly rise to 

3.3% and 5.3%. After a close look at the causes of this 

increase in error, we find the effects that we have explained 

before when real users confront the interface. These effects 

include empty files, others with just part of the utterance, 

repetitions of the word within the analysis window, wrong 

pronunciation in English and inadmissible noises. Most of 

these “extra” effects come from the way of using the 

interface and should be dealt with using a thorough study of 

the best ways to produce a match between system 

requirements and real user use of the interface. If these 

effects could be minimized, we could come close to the 

laboratory performance (in our test, the estimation is of 

0.4% and 1.5% as can be seen in the third row of Table 5). 

Considering that our task needs the full command to be 

recognized even for those cases where the command 

consists of several words, we look at the fourth row and find 

a performance of 6% (Spanish) and 10.6% (English) full 

test command error rate. These errors will have to be 

corrected by making use of our “cancel” button prepared in 

the new interface, a feature that we consider eventually 

necessary for all speech interfaces as a 0% error rate is 

unfeasible in the laboratory and certainly in real working 

environments. This additional cancellation procedure has 

also been evaluated in the usability subjective tests. 

When we analyze the free evaluation tests, we observe a 

5.6% test command error rate, where Spanish and English 

commands are mixed up freely in the carrying out of the 

scenarios. In spite of this effect, we notice a better 

performance than in the guided evaluation. We must 

remember that the reason is that the free evaluation is made 

by student controllers that are more familiar with both the 

terminology and the PTT procedures. 

On the ergonomics and usability side, the answers to the 

questionnaire show the following summarized tendencies in 
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opinion: First, we see a low degree of previous experience 

on the use of speech technology products, the same as for 

the general population to the best of our knowledge. With 

this starting point of low experience of the users, they 

nevertheless consider our interface easy to use, they 

consider that the system actually understands their 

commands and they believe that the system reacts rapidly to 

their demands. When they give their opinion on the 

phraseology, although positive again in general, we find 9% 

of the answers negative which makes us think that more 

discussion with the final users is necessary to refine the 

vocabulary for the commands for the eventual use of the 

system in actual production. The activation mechanism 

(PTT for recognition) is received somewhat negatively with 

18% of the answers revealing moderate or severe trouble 

with this procedure. As we have already mentioned, we 

have analyzed the two main reasons for this problem: Our 

interface competes with other communications PTT, 

physically apart from each other and we are using the same 

intellectual channel (speech) that may produce some 

confusion to the user as he has to think to which of the 

receivers his/her commanding utterances are aiming at. The 

cancellation procedure shares the same tendency of opinion 

but a little attenuated and we think that this may relate to the 

fact that the users see the benefits of fast recovery from 

error that may come from the recognizer or from a mistake 

in the order. The strongest usability question in the test is 

posed by the answers to the statement “I would use this 

system instead of the traditional one” and we find the 

distribution of 36% positive, 45% indifferent and 18% 

negative opinion that encourages us to carry out further 

studies to bring this interface closer to actual production 

once the aforementioned difficulties are overcome. 

The sequenced project workload is given in Table 6 in 

order to perceive the intensity of each constituent task. Most 

of the effort was needed to prepare and adapt the speech 

recognizer (about 40% of the total effort). Another 

important part of the effort is used in the analysis of the 

control panel and the subsequent phraseology set up both 

for Spanish and English (about 30% of the total). We 

discovered that this part is critical and needs good synergy 

with the users in order to obtain a usable speech interface. 

Two issues were balanced in these phraseology preparation 

tasks: the designers heard the suggestions of the users for 

the commands and modulated their wills by the expertise 

knowledge about the acoustic confusability of the proposed 

commands. A consensus was reached to define ergonomic 

commands that exhibit the lower acoustic confusability 

possible. This is a relevant and time consuming task that 

must be carried out with care to pursue the highest success 

possible. Finally, we also note that about 18% of the effort 

was dedicated to evaluations and analysis that have also to 

be carefully performed to obtain sensible conclusions.  

 

 

Control panel analysis 3 p·m 

Phraseology design and validation 8 p·m 

Specifications of phraseology for English version 2 p·m 

Works on the recognition engine 18 p·m 

Tools to define command to action connections 2 p·m 

User interface design 3 p·m 

Laboratory evaluations 3 p·m 

Field prototype evaluations 4 p·m 

Results analysis 1 p·m 

TOTAL 44 p·m 
Table 6. SEQUENCED PROJECT WORKLOAD IN PERSONS·MONTH 

(p·m) BY TASKS 

VII. CONCLUSIONS 

We have designed an automatic speech recognition 

command and control system for ATC terminals, and we 

have made a field evaluation of the recognizer and of the 

full system by analyzing test command error rates as well as 

the ergonomics and usability of the interface. Speech 

recognition test error rates are low and this speech 

recognizer was judged usable by the users although the need 

for a canceling button for the cases of recognition or user 

error is also clear. The phraseology needs further refinement 

to reach full user acceptability, but the subjective evaluation 

shows that the users are already prepared to use this 

interface even when it is compared to the traditional and 

widely accepted keyboard and the mouse or even the touch 

input. Field performance of the recognizer worsens as a 

result of field effects not seen in the laboratory tests, making 

field tests and their analysis mandatory for the final design 

of the system and the eventual success of the interface. 
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