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Müjdat Çetin
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Abstract

The theme for this thesis is the application of the inverse problem framework with
sparsity-enforcing regularization to passive source localization in sensor array process-
ing. The approach involves reformulating the problem in an optimization framework
by using an overcomplete basis, and applying sparsifying regularization, thus focusing
the signal energy to achieve excellent resolution. We develop numerical methods for
enforcing sparsity by using �1 and �p regularization. We use the second order cone
programming framework for �1 regularization, which allows efficient solutions using
interior point methods. For the �p counterpart, the numerical solution is based on half-
quadratic regularization. We propose several approaches of using multiple time samples
of sensor outputs in synergy, and a method for the automatic choice of the regulariza-
tion parameter. We conduct extensive numerical experiments analyzing the behavior of
our approach and comparing it to existing source localization methods. This analysis
demonstrates that our approach has important advantages such as superresolution, ro-
bustness to noise and limited data, robustness to correlation of the sources and lack of
need for accurate initialization. The approach is also extended to allow self-calibration
of sensor position errors by using a procedure similar in spirit to block-coordinate de-
scent on an augmented objective function including both the locations of the sources
and the positions of the sensors.

The second direction of the work done in the thesis, which is intimately related
to our approach for source localization, is theoretical analysis of the noiseless signal
representation problem using overcomplete bases. Questions considered in this analysis
include the uniqueness of solutions to the noiseless �0 problem, and the equivalence of
solutions of the �0, �1 and �p problems. We consider an arbitrary overcomplete basis,
and we show that under certain sparsity conditions on the underlying signal, such
uniqueness and equivalence holds.
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Chapter 1

Introduction

In this thesis we consider the problem of sensor array source localization, and present a
new approach based on a sparse signal representation perspective. The purpose of this
chapter is to introduce the problem addressed in the thesis, motivate the need for a
new approach, and describe our main contributions and the organization of the thesis.

� 1.1 Overview of the problem addressed in the thesis

At the core of this thesis is the solution of the sensor array source localization problem
by representing it as an inverse problem and imposing sparsifying regularization.

Source localization using sensor arrays is a problem with many important practical
applications including wireless communications [1, 2], radar [3, 4], sonar [5], and ex-
ploration seismology [6], among many others. The goal is to find the locations of the
sources of wavefields which are impinging on an array of sensors. Practical applications
require that the estimates of the locations be not only accurate under ideal conditions,
but also robust to factors such as measurement noise, limitations in the amount of data,
correlation of the sources, and modeling errors. For non-parametric methods, which re-
sult in a spatial energy spectrum, it is desired that the spectra have narrow peaks, low
sidelobes, and the ability to localize sources even if they are within Rayleigh resolution
of each other, i.e. the ability to achieve superresolution. Rayleigh resolution of an
array depends on the number of sensors and on the spatial extent of the array, so it is
possible to achieve any resolution simply by making larger arrays with more sensors.
However, many practical applications have strict limits on the size of the array. One
such application is surveillance using sensor networks. For example, suppose a large
number of sensors are deployed into unknown terrain to monitor the activity in the
area. Sensors are deployed over a large spatial extent, but power consumption limits
severely the amount of communications that sensors can have, so source localization
cannot be done coherently using all the sensors. Hence local groups of sensors have
to provide accurate estimates of the locations of the objects of interest. These small
arrays also have to be robust against noise, limited data, and modeling errors.

In many source localization applications the physical dimensions of the sources of
energy are small, or the sources are far enough from the array, so that they can be
considered point sources. If, in addition, the number of sources is small, then the
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12 CHAPTER 1. INTRODUCTION

spectrum of energy vs. location is sparse. Sparsity is a very valuable property to
have. Many advanced source localization techniques for the localization of point-sources
achieve superresolution by exploiting sparsity. For example, the key component of the
MUSIC method [7] is the assumption of a small-dimensional signal subspace. We follow
a different approach for exploiting such structure: we pose source localization as a
linear inverse problem and use sparsity enforcing regularization. More specifically, our
approach can be viewed as sparse representation of signals in terms of overcomplete
bases. In this context, each basis vector corresponds to an array manifold vector for a
possible source location among a sampling grid of locations. The representation of the
observed sensor data in terms of an overcomplete basis is not unique, and we impose a
penalty on lack of sparsity to regain uniqueness and, more importantly, to get sparse
spectra.

What penalties enforce sparsity? The ideal penalty to enforce sparsity is the count
of nonzero elements of the resulting spectrum (which is sometimes referred to as the
�0-norm of the spectrum). However, the resulting problem is combinatorial in nature,
and requires very heavy computational methods for its solution. We use related �1-
norm and �p-norm penalties instead. The solution of a noiseless signal representation
problem using �0 penalty has a close connection to solutions using �1 and �p penalties.
In fact, under some assumptions on the number of sources, we show that in the noiseless
case, the solution of these problems is the same for a general overcomplete basis. That
means that if the signal of interest has a sparse enough representation in terms of an
overcomplete basis, then, instead of using combinatorial optimization associated with �0

norms, we can find that sparse representation by imposing an �1 or an �p penalty, which
leads to more tractable optimization problems. Prior work on this topic considered
minimum �1-norm representations in terms of a basis consisting of pairs of orthogonal
bases [8, 9], and our work extends their results to arbitrary overcomplete bases. The
results of equivalence of noiseless representations with minimum �0, �1, and �p norms for
sparse signals serve as a strong motivation for the use of �1 and �p penalties to enforce
sparsity in the noisy case as well.

The numerical solution of �1-norm regularized linear inverse problems is much sim-
pler that the solution of the �0 counterpart, since the �1-norm penalty leads to convex
objective functions. However, the solution is by no means trivial. The objective func-
tion is neither linear nor quadratic since we are dealing with �1-norms of complex-valued
data. We are led to consider second order cone programming (SOC) [10] which can be
used to represent the resulting objective function, and also has an efficient procedure
for solution through the use of interior point methods. The objective function corre-
sponding to �p-norm regularization for p < 1 is a closer approximation to the objective
function with �0 regularization, but, unlike the �1 objective function, it is non-convex1.
We can only expect to converge to local optima using smooth local optimization tech-
niques. Global optimization methods are inherently computation-intensive, thus we do

1For p < 1 �p-norm is not a valid norm, (it does not satisfy the triangle inequality) but we choose
to keep the same terminology for convenience.
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not use them. For local optimization of the objective function for �p-norm regularization
we use an iterative half-quadratic method [11].

The representation of the source localization problem in the linear inverse problem
form can be immediately used to solve single time sample problems. Unfortunately,
there is limited information that can be extracted from a single time sample, and
we are faced with the question of how to represent the multiple time sample source
localization problem in our framework. In principle, we can represent the data for
each of the multiple time samples in the linear inverse problem form and use sparsity
enforcing regularization for each problem separately. Much better robustness to noise
is achieved if we use multiple time samples in synergy. We look into several possibilities
of joint use of multiple time samples. The one that appears the most promising is
based on the singular value decomposition of the outputs of the sensors. We also
consider additional practical problems, such as removing the effects of the grid, and
automatically choosing the regularization parameter which balances the level of sparsity
of the resulting spectrum versus the fidelity to the sensor measurements.
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Figure 1.1. (a) Comparison of beamforming, Capon’s, MUSIC, and �1-SVD spectra for SNR=0 dB,
and two sources coming from directions 60◦ and 65◦ with respect to the array axis.(b) Detail of (a).

To give a flavor of what we are able to do with our source localization technique, we
present a simulation of an 8-sensor uniform linear array with 2 incoming narrowband
farfield signals in Figure 1.1. The SNR is very low, 0 dB, and the sources are very close,
the angular separation is 5◦, so neither beamforming nor Capon’s method nor MUSIC
are able to separate these two sources. However, one of the methods that we propose in
the thesis, �1-SVD has a clear separation between the two peaks in the spectrum. Also
the sidelobes are nearly non-existent, which happens due to the fact that we explicitly
optimized a measure related to sparsity! These results may look too good to be true, so
we have to mention that the �1-SVD technique is biased for closely spaced signals when
the SNR is low. Nevertheless, small bias seems to be a good compromise for having
excellent resolution and robustness to noise.
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An additional concern that practical source localization methods have to handle is
model errors, such as sensor position uncertainty. To that end we look into using a
block-coordinate descent-like procedure on an extended cost function which takes into
account both the locations of the sources and the positions of the sensors. The procedure
alternates between two steps: the first step is source localization with estimated model
parameters, and the second step is calibration of model parameters given the estimates
of source locations from the previous step.

� 1.2 Outline and contributions

Before describing the contents of the thesis chapter by chapter, we briefly summarize
our main contributions. The first major contribution is the development of a sparse
signal reconstruction framework for source localization. In this framework we formu-
late various optimization problems for single and multiple snapshot sensor data for
the narrowband, wideband, farfield, and nearfield scenarios. We adapt and use two
paradigms for the numerical solution of the optimization problems. Finally, we carry
out an extensive performance analysis of the proposed source localization methods. The
second contribution of the thesis is the extension of our source localization framework
to perform self-calibration in the case of modeling errors. The third contribution is
the development of conditions on the sparsity of the underlying signals that guarantee
the uniqueness of solutions to the noiseless �0 sparse representation problem, and the
equivalence of �0, �1, and �p problems for a general overcomplete basis.

Chapter 2: Introduction to Source Localization using Sensor Arrays

In this chapter we formulate the problem of source localization using an array of sen-
sors. We describe several existing source localization methods. We end the chapter by
describing some of the limitations of existing techniques thus motivating the need for
our source localization framework.

Chapter 3: Introduction to Inverse Problems and Regularization

We start by giving a brief overview of discrete ill-posed inverse problems, and motivate
the need for regularization. We summarize the well-established quadratic regularization
methods and discuss why they are inappropriate for the purpose of enforcing sparsity.
Next we switch to non-quadratic regularization methods, an important subset of which
is sparsity-enforcing regularization. Lastly, we describe an important linear inverse
problem, sparse representation of signals using overcomplete bases. This problem serves
a central role in the thesis: the basis of our work is the transformation of the source
localization problem into the problem of sparse signal representation.

Chapter 4: �1 and �p Regularization

In this chapter we describe numerical optimization of the objective functions corre-
sponding to �1 and �p regularization. We start with the noiseless �1 signal represen-
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tation problem, and continue to several versions of noisy �1 problems. The data for
source localization is complex-valued, and we are led to consider second order cone
(SOC) programming for the numerical optimization of objective functions associated
with �1-norm penalization of complex quantities. We briefly summarize the SOC frame-
work, and describe how to use it to represent our objective functions. In addition to
showing numerical examples of �1-regularization, we also solve a small problem analyti-
cally using non-smooth optimality conditions. We finish the �1 section by describing an
interesting observation that we have made concerning sign patterns of exact solutions
to the noiseless �1 problem.

Next we describe �p regularization using an iterative half-quadratic procedure. Al-
ternatively, it can be viewed as a quasi-Newton method with a positive definite Hessian
approximation. The procedure relies on the conjugate gradients method for iterative
solution of positive definite linear systems.

Our main contribution in this chapter is the adaptation of the SOC framework for
sparse complex signal representation with �1 regularization. In addition some theoretical
analysis involving the analytic solution of a noisy �1 problem, and the observation of
the existence of sign patterns of exact solutions, are also original.

Chapter 5: Sparse-Regularization Framework for Source Localization

This chapter is the main contribution of the thesis. It describes the application of sparse
regularization methodology from Chapter 4 to source localization using sensor arrays.

We start by describing how to represent the nonlinear narrowband source localiza-
tion problem with one time snapshot as a linear inverse problem. This problem can be
viewed as signal representation using an overcomplete basis composed of a grid of sam-
ples from the array manifold. Next we present several approaches to use multiple time
samples together in an efficient manner, and take a look at how to apply our frame-
work to wideband source localization. Also, we develop an adaptive grid refinement
procedure to get rid of the grid effects. An important issue in our framework is the
choice of the regularization parameter. We describe a novel method for its automatic
choice based on the discrepancy principle. In the course of our research we found that
some previous work has been done with a similar flavor of enforcing sparsity for signal
processing and even array processing applications, [12–14]. However, most of what we
present has not been considered in these papers.

Chapter 6: Practical Issues and Performance Analysis

This chapter is devoted to the analysis of the techniques developed in the previous chap-
ter. First, we describe some details of the techniques and their implementation, such
as the effects of the grid, comparison of �1 and �p, initialization, parameter selection,
and the number of resolvable sources.

Next we illustrate the benefits of using the sparse regularization framework for source
localization. These include superresolution, robustness to SNR, to limited number of
samples and to correlated sources, as well as no need for accurate initialization.
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Finally, we analyze the bias, and compare the variance of our source localization
methodology to the Cramer Rao Bound, as well as to the variances of existing source
localization methods, using numerical simulations.

Chapter 7: Theoretical Analysis: solving the �0 problem by �p and related topics

This chapter is another contribution of our thesis. We address theoretical analysis of
uniqueness of solutions to the noiseless �0 regularization, and the equivalence of the
noiseless �0 problems with noiseless �1 and �p problems. For the sake of generality, our
analysis is separated from the array processing context, and presented in the context
of signal representation using an overcomplete basis. This work was motivated by two
papers [8] and [9], which consider the question of equivalence of �0 and �1 optimization
for an overcomplete basis composed of two orthogonal bases. We extend their results
to the general overcomplete basis case. In addition we prove some novel results: on the
uniqueness of solutions of �0 problems using the notion of rank-K unambiguity, on the
equivalence of �0 and �p problems for p < 1, and on sensitivity of noisy �1 regularization.

Chapter 8: Model Errors and Self-Calibration

We motivate self-calibration of sensor arrays, briefly touch upon the observability con-
ditions, and describe two existing methods based on block-coordinate descent. Next we
use the same block-coordinate idea to extend our source localization framework to do
self-calibration. This extension is also a contribution of the thesis.

Chapter 9: Conclusion

This chapter summarizes the main ideas of the thesis and gives suggestions for further
research in the area.



Chapter 2

Introduction to Source Localization
using Sensor Arrays

The universal goal of array processing is to gather information from propagating waves.
This nontrivial task is approached by sampling the spatiotemporal wavefield using an
array of sensors. Some pieces of information that are commonly being sought about
the wavefield include: the number and location of the sources of energy (or spatial
energy spectrum), the signals generated by these sources, and the time evolution of all
of the above. Using an array instead of a single sensor furnishes numerous benefits,
comprising an improvement in signal to noise ratio, possibility of electronic steering
and jamming suppression (instead of mechanical), and easier reconfiguration, among
others. More importantly, source localization with omni-directional sensors is possible
only when multiple sensors are available. Sensor array processing lends itself to many
applications such as sonar, radar, exploration seismology and radio astronomy. Source
localization is a branch of array processing which deals with determining the number
and location of multiple sources using an array. In this chapter we formulate the
source localization problem mathematically, provide an overview of most notable source
localization methods, and describe some of their limitations as a motivation for our
work.

� 2.1 Observation model

Before we describe the conventional methods of source localization, it is necessary to
present the mathematical model for the problem. For a more thorough covering of the
material in this section the reader is referred to [15,16].

Narrowband signal in the farfield of the array

We start with the most basic case, the localization of narrowband sources in the farfield
of a uniform linear array. Let the uniform linear array in consideration consist of M
omni-directional sensors with equal spacing d, residing on the x-coordinate axis.

Taking the phase center of the array at the origin, the position of the m-th sensor
is pm = (m − (M + 1)/2)d, m ∈ {1, .., M}. For the sources in the farfield of the array,

17
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Figure 2.1. An illustration of the geometry of source localization: sources uk(t), impinging on the
array at angles θk producing sensor outputs ym(t).

the curvature of the wavefront is insignificant across the aperture of the array, and the
plane wavefront approximation works very well. The solution of the wave equation with
a single source generating signal f(t) has the form f(t−pT α), where p is the position,
and α is the so called slowness vector aligned with the direction of propagation of the
wave, and whose magnitude is equal to 1/c, the inverse of the propagation speed. The
distance attenuation factor is not considered in the farfield model since it will be almost
constant across the array if the sources indeed come from the farfield.

The signal in the narrowband case can be expressed as u(t)exp(jω0t), where u(t) is
the baseband signal. It is modulated to frequency ω0, which has to be much greater
than the bandwidth of u(t) for the narrowband assumption to hold. In order to avoid
spatial aliasing, sensor spacing has to be smaller than the half of the wavelength, d ≤
λ/2 = 2πc/(2ω0). Unless otherwise stated, we always take d = λ/2 for the narrowband
case. The output of sensor m is ym(t) = u(t−τcenter)exp(j(ω0(t−τcenter)−kTp)), where
τcenter is the delay from the source to the phase-center of the array, and the wavenumber
is given by k = ω0α. Narrowband assumption allows us to ignore the delay between
the sensors, kTp, in the baseband signal u(t); it is only present in the modulation. The
complex envelope of the output of sensor m (i.e. the output after demodulation) can be
written as ym(t) = u(t − τcenter)exp(−j(ω0τcenter + kTp)). By measuring time relative
to the phase center, the dependence on τcenter can be dropped. Thus, for a single source
the complex envelope of the sensor outputs has the following form: y(t) = a(θ)u(t).
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The manifold vector, a(θ) = exp(−jkTp) contains the phase delay information for the
source coming from bearing θ with respect to the array axis. The parameterization of
the manifold vector by θ can be done since kTpm = −(ω0/c)(m − (M + 1)/2)dcos(θ).

Due to the linearity of the system the superposition principle holds, and the model
for K narrowband signals with the same center frequency can be written as y(t) =
A(θ)u(t). The M × K matrix A(θ) is the manifold matrix containing the manifold
vectors for different sources as its columns, A(θ) = [a(θ1),a(θ2), ...,a(θK)]. Sensor
signal vector y(t) is a column vector whose m-th element is ym(t), and similarly u(t)
is a column vector containing the signals uk(t) coming from all K sources. Vector θ
contains source locations for all the K sources: θ = [θ1, ..., θK ]T . Taking into account
the inevitable presence of noise, and discretizing the waveforms, the final version of the
model takes the following form:

y(t) = A(θ)u(t) + n(t), t ∈ {1, .., T} (2.1)

For simplicity, the noise is assumed to be spatially and temporally stationary and white,
uncorrelated with the sources, and circularly symmetric. The covariance matrix takes
the following form: E[n(t1)nH(t2)] = σ2 I δ(t1 − t2), where δ() is the Kronecker delta
function, and I is an identity matrix. The circular symmetry of the noise leads to
E[n(t1)nT (t2)] = 0.

Nearfield of the array

The generalization of the model to the case where the sources lie in the nearfield of
the model has a number of applications, for example audio speaker separation using a
microphone array in enclosed spaces. The plane-wave approximation no longer holds,
and the solution to the spherical wave equation at distance r from a single source
f(t) is as follows: f(r, t) = (1/r)f(t − r/c). Again, considering the narrowband signal
f(t) = u(t)exp(jω0t), the complex envelope of the array output becomes ym(t) =
(1/rm)u(t − rm/c)exp(−j(ω0rm/c)). Here, rm is the distance from the source to the
m-th sensor. Let rc be the distance from the source to the phase center of the array,
and pm the position of m-th sensor. Taking into account the narrowband assumption,
and shifting the time origin to correspond to the signal arriving at the phase center, the
output can be rewritten as ym(t) = (1/rm)u(t)exp(−j(ω0(rm − rc)/c)) = a(pm)u(t).
The m-th component of the manifold vector, a(pm) contains the phase and attenuation
factors for the source arriving at sensor m. Using superposition, the model for K sources
takes the exact same form as (2.1), except the columns of A(θ) contain the nearfield
manifold vectors instead of the farfield ones. Unlike the farfield case, the response at
the array depends not only on the bearings of the sources but also on their range, thus
source localization furnishes both of these parameters.
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Wideband signals

Finally, in the wideband case, the signal can no longer be well-approximated by a
baseband signal modulated by a carrier. However, using the Fourier transform, a nar-
rowband model can be written for each frequency:

y(ω) = A(θ, ω)u(ω) + n(ω), ω ∈ {ω1, .., ωW } (2.2)

where y(ω) and u(ω) are Fourier transforms of y(t) and u(t) respectively. Note that in
the narrowband case there is only one manifold matrix, whereas in the wideband case
each frequency component ω yields a new manifold matrix, A(θ, ω). This happens since
phase shift for a given delay depends on the frequency of the signal. To have multiple
observations for each frequency, temporal data is usually divided into several blocks,
and the Fourier transforms of each block are calculated. Or more generally, short-time
Fourier transform, which allows the blocks to overlap, can be used.

Second-order statistics

Most modern source localization methods rely on statistical characterization of the
sensor outputs. The majority of them considers second-order statistics. The spatial
covariance of the sensor outputs is R = E[y(t)yH(t)] = A(θ)PA(θ)H + σ2I, where the
signal covariance matrix is P = E[u(t)uH(t)], and as discussed previously noise has a
diagonal covariance: E[n(t)nH(t)] = σ2I. Many methods require that P is nonsingular,
however situations in which this is not the case, e.g. due to the presence of multipath or
coherent jamming, occur as well. Since the exact expectation is unknown, the standard
sample covariance approximation is used: R̂ = 1

M

∑M
t=1 y(t)yH(t). In the rest of this

manuscript, we use R for both the actual and sample expectations, but the meaning of
the symbol should be clear from context.

� 2.2 Methods for source localization

� 2.2.1 Classical beamforming

The classical approach to source localization relies on scanning the power from different
locations by steering the array. We discuss the farfield case1. The array is steered by
compensating the delays for the different sensor outputs by appropriately shifting the
waveforms. When the weights on all the sensors are unity and no delays are introduced,
the array is effectively steered at broadside (perpendicular to the array axis). For waves
traveling in that direction, the delays for all the sensors are equal, and the delays with
respect to the phase center are zero, requiring no compensation. Thus unity weighting
produces constructive interference of the sensor outputs, and achieves the maximum
power at broadside among all directions.

Similarly, if the array is steered at an angle θ, the waveforms on the m-th sensor
are advanced or delayed by −τm(θ), the negative of the delay relative to the phase

1The nearfield case is analogous with the addition of a range parameter instead of just using bearing.
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center. The maximum power is achieved by steering at the direction from which the
waves are arriving, assuming no aliasing is present. For the narrowband case the delays
amount to phase shifts which can be implemented by complex weights w on the sensors.
The array output thus becomes: z(t) = wHy(t) = wHa(θ)u(t). To steer the array to
angle θ, the weights have to be set as w = a(θ). Due to the linearity of the system,
the same approach is used to look for a superposition of plane-waves traveling from
different directions, with identical carrier-frequencies. The beamforming spectrum can
be represented as

Pbf (θ) =
T∑

t=1

‖wH(θ)y(t)‖2
2 (2.3)

Beamforming is a very simple and robust approach, which is widely used in practice.
However, beamforming suffers from the Rayleigh resolution limit [15], which can be
mitigated only by increasing the width of the array (the number of sensors): improving
SNR or increasing observation time does not change resolution. The method parallels
FIR time-series analysis. For example, to decrease the sidelobes levels, windowing
can be used; however, no simple extensions are able to improve resolution. In the
wideband case, the processing is usually done in frequency domain using short-time
Fourier transforms. To work with wideband signals in the time domain, actual delays
have to be implemented instead of phase shifts.

� 2.2.2 Optimal beamforming: Capon’s method (MVDR)

The classical beamforming method has weights which are independent of the signals
and noise. The idea of optimal beamforming is to use the estimated signal and noise
parameters to improve the performance. One widely used method is Capon’s method,
also called Minimum Variance Distortionless Response (MVDR), and Applebaum’s ar-
ray [17]. It attempts to minimize the variance due to noise, while keeping the gain in
the direction of steering equal to unity: wCAP (θ) = arg minw(E[wHyyHw]), subject
to Re[wHa(θ)] = 1. The term variance is misleading: if the signals are random and
zero-mean, then this is indeed the case, however, when the signals are non-random,
wHRw does not correspond to variance. Also, no attempt is made to separate the
signal from the noise, so the aggregate energy is being minimized. The solution of this
optimization problem can be shown to have the following form:

wCAP (θ) =
R−1a(θ)

aH(θ)R−1a(θ)
(2.4)

The source location estimate is obtained in the same way as for classical beamforming
- simply by steering the array at a range of θ’s, and looking for maximum power. The
resulting spectrum has an analytic expression:

PCAP (θ) =
1

aH(θ)R−1a(θ)
(2.5)
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The main benefit of this method is a substantial increase in resolution compared
with standard beamforming. In fact, as opposed to beamforming, the number of sen-
sors does not impose a limit on resolution. With a non-degenerate array geometry
(which avoids spatial aliasing), resolution increases without limit as SNR or the obser-
vation time are increased. An additional benefit is the lower amount of ripple in the
sidelobes. However, the sidelobe level cannot go below σ2/M , the same value as for
standard beamforming with unity weights. Some of the other shortcomings include an
increase in the amount of computation compared to beamforming, poor performance
with small amounts of time-samples (due to the difficulty of estimation of the sensor-
data covariance matrix) and inability to handle strongly correlated or coherent sources.
Nevertheless, the combination of increased resolution, only moderate increase in com-
putational complexity, and the robustness due to model errors which occur in practice
(unlike some of the other conventional super-resolution methods) make this method one
of the most widely used in practical applications. A more elaborate discussion of the
method with motivations for all of the above assertions can be found in [15].

� 2.2.3 Subspace methods: MUSIC

The MUSIC method [7] is the most prominent member of the family of eigen-expansion
based source location estimators. The underlying idea is to separate the eigenspace
of the covariance matrix of sensor outputs into the signal and noise components using
the knowledge about the covariance of the noise. The sensor output correlation matrix
admits the following decomposition:

R = A(θ)PA(θ)H + σ2I = UΛUH = (2.6)

UsΛsUH
s + UnΛnUH

n = UsΛsUH
s + σ2UnUH

n (2.7)

Here, U and Λ form the eigenvalue decomposition of R, and Us, Un, Λs, and Λn =
σ2IM−K are the partitions of the eigenspectrum into signal plus noise and signal sub-
spaces. Provided that P is nonsingular, A(θ)PA(θ)H has rank K. The number of
sources, K, has to be strictly less than the number of sensors, M , for the method to
work. Hence, R has K eigenvalues which are due to the combined signal plus noise
subspace, and M − K eigenvalues due to the noise subspace alone. Assuming that the
noise has a flat spectrum of σ2, K eigenvalues corresponding to the signal and noise
subspace are larger than the remaining M −K noise eigenvalues, which are equal to σ2.
This information can be used to separate the two eigensubspaces. Due to the orthogo-
nality of eigensubspaces corresponding to different eigenvalues for Hermitian matrices,
the noise subspace is orthogonal to the steering vectors corresponding to the direction
of propagation, thus UH

n a(θ) = 0 for all directions from which the signals are imping-
ing. MUSIC spectrum is obtained by putting the squared norm of this term into the
denominator, which leads to very sharp estimates of the positions of the sources, (in
the noiseless case the peaks of the spectrum approach infinity):
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PMUS(θ) =
1

aH(θ)UnUH
n a(θ)

(2.8)

In contrast with the previously discussed techniques, MUSIC spectrum has no direct
relation to power; it simply exhibits sharp peaks at the estimated source locations.
Also, it cannot be used as a beamformer, since the spectrum is not obtained by steering
the array. Unlike the the methods previously discussed, MUSIC provides a consistent
(in the sense of estimation theory) estimate of the locations of the sources, as SNR and
the number of sensors go to infinity. Despite the dramatic improvement in resolution,
MUSIC suffers from a high sensitivity to model errors, such as sensor position uncer-
tainty. Also, the resolution capabilities decrease when the signals are correlated. When
some of the signals are coherent (perfectly correlated), the method fails to work. The
computational complexity is dominated by the computation of the eigenexpansion of
the covariance matrix.

There are multiple extensions of MUSIC by using a weight matrix in the denomi-
nator, one of which is the Min-Norm algorithm [16]. Root-MUSIC [18] is a variant of
MUSIC which instead of computing a spectrum, forms a polynomial using the noise
subspace, and the source location estimates are the roots of the polynomial. Root-
MUSIC relies on the structure of the steering matrix for a uniform linear array (ULA),
and cannot be extended to general arrays. The performance for ULAs is very similar
to that of MUSIC, except for a somewhat higher robustness at limited numbers of time
samples.

� 2.2.4 Maximum Likelihood techniques

Maximum Likelihood (ML) methods [16,19] belong to the class of parametric methods.
In contrast to the methods described above, the spectrum is not computed, but instead
parameters of the model are estimated. A variety of methods resides under the ML
header. One notable classification is in the assumed form of the signal. When the
signals are modeled as deterministic, the method is called Deterministic ML (DML),
when the signals are modeled as Gaussian, the method is called Stochastic ML (SML).
Noise is usually modeled as stationary Gaussian. For deterministic maximum likelihood,
the objective is to find θ, u(t), and σ2, to maximize the likelihood function:

LDML(θ,u(t), σ2) =
T∏

t=1

(πσ2)−Mexp(−‖y(t) − A(θ)u(t)‖2
2/σ2), (2.9)

where θ is the vector of source locations. The log-likelihood is:

lDML(θ,u(t), σ2) = −2M log σ +
1

σ2T

T∑
t=1

(−‖y(t) − A(θ)u(t)‖2
2), (2.10)
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Fortunately, it is not necessary to optimize over all the parameters, θ, u(t), and σ
simultaneously, since once θ is known, we can use A(θ) to get explicit values for the
other parameters:

σ̂2 =
1
M

trace{Π⊥
A(θ)R} and û(t) = A(θ)†y(t) (2.11)

where A(θ)† is the pseudo-inverse of A(θ), and Π⊥
A(θ) is the projection matrix onto the

orthogonal complement of the range space of A(θ). 2

The remaining unknown, the locations of the sources, can be found by minimizing
the following cost function:

θ̂DML = arg min
θ

T∑
t=1

‖Π⊥
A(θ)y(t)‖2

2 = arg min
θ

trace{Π⊥
A(θ)R} (2.12)

This cost function measures the sum of squares of projections of y(t) onto the
orthogonal complement of the array manifold matrix, i.e. lack of fit of the range space
of the manifold matrix to the data y(t). The optimization involves a K-dimensional
search, where K is the number of impinging signals. K can be estimated using a
variety of methods, such as Akaike information criterion (AIC) or minimum description
length (MDL) [16, 20]. The computational complexity is considerably higher than for
any of the methods described before. The benefits of ML family of methods is the
ability to resolve coherent signals, ability to handle single snapshot scenarios, and better
statistical properties [21]. A major problem with the ML-family of methods is the need
for a very accurate starting point for the optimization procedure; otherwise the solution
may converge to a local extremum.

� 2.2.5 Limitations of current methods

Despite the existence of a multitude of various source localization methods we took the
time to develop a new one. Part of the reason for such an undertaking is the desire
to improve upon the performance of the existing methods; to that end we summarize
some of their limitations.

Beamforming is a very robust and simple source localization technique, but it has
limited resolution. In Figure 2.2 we present two plots with beamforming spectra. We
simulate a uniform linear array (ULA) with 8 sensors spaced at half-wavelength which
is exposed to two farfield narrowband sources. In plot (a) the separation between the
two sources is 20◦, and beamforming is able to resolve the two sources. However once
we move the sources closer together to 13◦, within the Rayleigh resolution limit, the
two peaks are merged, and the locations of the two sources cannot be determined.

MUSIC and Capon’s methods go a long way to improve the resolution capabilities
of beamforming. However, when the sources are close, and the SNR is low, they also

2A(θ)† = (A(θ)HA(θ))−1A(θ)H , and Π⊥
A(θ) = I − A(θ)A(θ)†, where I is an identity matrix.
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Figure 2.2. Resolution limitations of beamforming. (a) Separation between the sources is 20◦, peaks
are resolved. (b) Separation between the sources is 13◦, peaks are merged.
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Figure 2.3. Limitations of MUSIC and Capon’s methods (a) SNR=20 dB, separation between the
sources is 10◦, peaks are resolved by both MUSIC and Capon’s methods. (b) SNR=0 dB, separation
between the sources is 5◦, peaks are merged for both.

lose resolution and eventually are unable to separate the sources3. Figure 2.3 illustrates
what happens when we lower the SNR and bring the sources close together. In plot (a)
SNR is 20 dB, and separation between the sources is 10◦, so both MUSIC and Capon’s
methods are able to resolve the two sources well. However, plot (b) shows that when
SNR is decreased to 0 dB, and source separation is decreased to 5◦, neither of the two
methods can resolve the two sources. Some additional limitations of these two methods
include inferior performance for correlated and coherent sources, and for scenarios with
limited number of time samples. We present an in-depth comparison of these methods
with our proposed source localization method in Chapter 6.

3In fact every source localization technique has a lower limit on the SNR that it can withstand, but
the method that we propose in the rest of the thesis has better robustness to low SNR than MUSIC
and Capon’s methods.
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Maximum Likelihood source localization techniques are parametric, so the result is
not a spectrum but a set of point estimates of source locations. In general they are
more robust than beamforming, MUSIC and Capon’s methods, but are computationally
more demanding. Apart from computational complexity, the major drawback of ML
source localization is the need for accurate initialization to insure convergence to global
minima (instead of local ones). The method that we propose in this thesis does not
suffer from the need for accurate initialization4. A longer discussion of this issue appears
in Chapter 6.

4But, it does not decrease the computational cost of ML.



Chapter 3

Introduction to Inverse Problems
and Regularization

We start this chapter by describing linear ill-posed inverse problems. Later in the
thesis (in Chapter 5) we transform the source localization problem into this form. The
solution of ill-posed inverse problems relies on regularization. Quadratic regularization
is mentioned first. As we discuss, it is not well-suited for our goals, and we switch next to
non-quadratic regularization and in particular sparsifying regularization. Sparsifying
regularization is discussed in the context of signal representation using overcomplete
bases, a special case of a linear ill-posed inverse problem. Our transformed source
localization problem can be viewed as signal representation using overcomplete bases.

� 3.1 Ill-posed inverse problems and regularization

In inverse problems [22–24] the function from the unknown quantity that we wish to
find to the observations is known. The goal is to find a meaningful inverse function.
Mathematically, we have y = T(x), where x ∈ X is the unknown and y ∈ Y is the vector
of observations.1 Usually, T() is a well-behaved continuous operator, and the solution
of the forward problem (find y given x) meets no significant obstacles. The inverse
mapping from y to x in the problems of interest is much less friendly. The difficulties
may include lack of solution, non-unique solutions, or a discontinuous dependence of
the solution on the observations. The presence of any of these issues makes the problem
ill-posed.

As we stated it, the problem is too general, and we make additional assumptions
that X and Y are finite-dimensional, and T is a linear operator:

y = Tx, y ∈ C
M , x ∈ C

N , T ∈ C
M×N (3.1)

Lack of solutions means that y does not lie in the range of T (T is not surjective),
and lack of uniqueness means that the nullspace of T is not trivial (T is not injective).
The standard approach to treat these two obstacles is by taking the Moore-Penrose

1X and Y are Hilbert spaces, i.e. complete metric spaces with an inner product defined.

27
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pseudo-inverse, T†. Consider the singular value decomposition (SVD):

T = UΣV′ =
min(M,N)∑

i=1

uiσiv′
i (3.2)

Let K = rank(T). Then the pseudo-inverse is defined as

T† =
K∑

i=1

viσ
−1
i u′

i (3.3)

By applying the pseudo-inverse we find the minimum-norm least squares solution. If
y = Tx, then the reconstruction is

x̂ = T†y =


 K∑

j=1

vjσ
−1
j u′

j


y =

K∑
j=1

vjσ
−1
j u′

j

min(M,N)∑
i=1

uiσiv′
ix =

K∑
j=1

min(M,N)∑
i=1

σi

σj
vju′

juiv′
ix =

K∑
i=1

viv′
ix = (IN −

N∑
i=K+1

viv′
i)x

Here IN is an N × N identity matrix. Whenever K < N , the reconstruction x̂ is
only an approximation to x. The component of x that lies in the nullspace of T is set
to zero (T† chooses the min-norm solution).

Since T† is a linear function in a finite dimensional space, then it is necessarily
continuous. However, in some applications the condition number of T† may be very
large, making the pseudo-inverse discontinuous for all practical purposes. Now let
us consider what happens when we add noise: y = Tx + n. Even the addition of
small amount of noise to the observations may render the solution completely useless:
T†y = T†(Tx + n) = x̂ +

∑K
i=1 viσ

−1
i u′

in. The power distribution of projections of
white noise on all the left singular vectors is uniform, (E[(u′

in)2] is not a function of i).
By applying the pseudo-inverse we are multiplying the noise components by inverses of
σi, the last few of which are very large since T is ill-conditioned. The amplification of
these noise components dominates the solution, and the signal component of interest
becomes hidden under the noise floor. Much of the effort in the field of discrete ill-
posed problems is directed at making good approximations to T† which are much less
sensitive to noise.

Regularization is used to solve ill-posed problems by incorporating apriori knowledge
about x to stabilize the problem and to provide reasonable and useful solutions. For
example, if it is known that the solution should be a discretization of a continuous
function, this knowledge allows us to discard the wildest looking candidates, and to
considerably reduce the set of possible solutions. The task is to minimize some measure
J1(x) of proximity of y to the range space of T, as well as to satisfy as much as possible
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the apriori information about x, by minimizing some appropriate measure J2(x). The
two objectives typically cannot be both minimized at the same time, so we need a
compromise, which can be simply obtained by taking a linear combination of the two:

J(x) = J1(x) + λJ2(x) (3.4)

Scalar λ is the regularization parameter balancing the tradeoff between the fidelity to
the data, J1(x), and the fidelity to the prior information, J2(x). There is a whole family
of solutions indexed by λ, with the non-regularized (least squares) solution if λ = 0,
and a solution strongly favoring the apriori information when λ is large. In general,
choosing an appropriate λ is problem-dependent, and is a nontrivial task.

With an appropriate choice for J(x), regularization effectively deals with all the
three aspects of ill-posedness. Solution exists for any y ∈ Y, since we are allowing
y outside the range of T with the use of J1(x). Also, proper choice of J2(x) deals
with lack of uniqueness and can dramatically reduce sensitivity to noise (improve the
Lipschitz constant of the inverse function), making it “continuous enough” for practical
applications.

� 3.1.1 Quadratic regularization methods

One of the most well-known approaches to regularization is due to Tikhonov [25].
Tikhonov’s method assumes that the norm of the solution should be small, which limits
the amount of amplification due to small eigenvalues. The cost function takes the form

J(x) = ‖Tx − y‖2
2 + λ‖x‖2

2 (3.5)

The �2-norm of the residual is the data-fidelity term, J1(x), and the term ‖x‖2
2 serves

as J2(x) in (3.4). The Tikhonov cost function has a closed-form solution:

x̂ =
K∑

i=1

(
σ2

i

σ2
i + λ

)
u′

iy
σi

vi (3.6)

Other quadratic regularization methods, such as the truncated or damped SVD follow
a similar pattern [26]: x̂ =

∑K
i=1 wi

u′
iy
σi

vi. They can be regarded as weighted pseudo-

inverses with weights wi. Tikhonov regularization is a special case with wi =
(

σ2
i

σ2
i +λ

)
.

The idea of all of these methods is to leave the large singular values almost unchanged,
and to limit the effects of the inverses of small singular values.

To incorporate other forms of prior information, the following generalization of
the cost function can be used: J(x) = ‖Tx − y‖2

2 + λ‖L(x − x∗)‖2
2, where L is a

linear operator most suitable for the prior of interest, and x∗ is an apriori estimate.
The quadratic family of regularization methods is very suitable for many practical
applications, and has the benefit of a closed-form solution, and tractable methods for
choosing the regularization parameters. However, since the inverse operator is always a
linear function of the data, there are limitations on what can be achieved. In particular,
due to the linearity it is impossible to recover the part of x which belongs to the nullspace
of T.
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� 3.1.2 Non-quadratic regularization methods

Using a quadratic form for both the data-fidelity and the prior term leads to a linear
dependence of the reconstruction on the data. The most important benefit of linearity
is the computational tractability of the problem. However, linearity also suffers from a
salient drawback of irrecoverability of sharp features. This occurs due to the fact that
forward operators T in most inverse problems of interest have a low-pass frequency
response, and a smoothing effect. High-frequency components belong to the nullspace
of T, and cannot be recovered by a linear inverse mapping. It has been shown both
theoretically and practically that allowing for the more general non-linear form of reg-
ularization can lead to a dramatic improvement in this respect, preserving sharp edges
and other strong features and leading to super-resolution in the reconstruction [26].
However, computational complexity increases considerably due to this generalization.
That is particularly true for the case of non-convex functions.

Two popular non-quadratic cost functions are total variation and entropy [26]. Total
variation puts a penalty on the sum of variations of the signal J2 = ‖Dx‖1 =

∑ |[Dx]i|,
where D is a discrete approximation to the gradient operator. Total variation is most
frequently used in image processing applications, such as image restoration. In compar-
ison to the Tikhonov regularization with L = D, the penalty on strong features is less
severe, and the reconstruction can contain sharp edges. It works very well in practice
with images that can be described as piecewise-smooth.

Maximum entropy regularization uses an entropy-like prior term: J2(x) =
∑ |xi|log(|xi|).

Some variations are possible using cross-entropy, and divergence. Cost functions with
this form lead to greater energy concentration in the reconstruction (most coefficients
are very small, and a few are large). Another term for energy concentration is sparsity.
This is most suitable for data which exhibit the same behavior, for example in spectrum
estimation for signals with several harmonics, or point source localization.

Another regularizing function which has the same sparsifying effect is the �1-penalty:
J2 = ‖x‖1. This is similar to the total-variation except we take the �1-norm of the values
of x instead of their derivatives. Total variation allows sparse jumps of the gradient of x,
whereas the �1 penalty favors sparse values of x. To lower the penalty on strong features
even further, several non-convex functions have also found use. The �p-quasi-norm with
p < 1, J2 = ‖x‖p

p =
∑

i |xi|p, produces even stronger energy concentration in the
reconstruction. Strong energy-concentration property makes �1 and �p-regularization
very suitable for the reconstruction of sparse signals, for example for those arising in
array processing. We rely on �1 and �p penalization for the rest of the thesis. We discuss
the benefits of sparsity in much greater detail in the next section, since it is the heart
of our source localization methodology.

� 3.2 Sparsity regularization

The selection of a proper regularizer intimately depends on the property of x that one
wishes to enforce, and that depends on the particular application. In many mathe-
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matical inverse problems, priors of choice are different forms of smoothness or energy
constraints, and the corresponding regularizers are the �2 norms of x or its derivatives.

Sparsity prior is useful when signals x that we look for have to be sparse. We
define sparsity of a vector x by the presence of a small number of large elements and
zeros elsewhere. An appropriate numerical measure of sparsity is the count of non-zero
elements. An important linear inverse problem which has a good use for sparsity priors
is the problem of signal representation using overcomplete bases. Our source localization
framework, the subject of this manuscript, is built on such overcomplete representation
ideas. The base for this discussion is the work of Mallat [27], Donoho [28], Rao [14] and
others on function approximation and optimal basis selection.

The problem of choosing an appropriate basis for a family of signals has received a
great deal of attention over the past decade, and many new bases were introduced, such
as wavelet bases, ridgelets, and curvelets, among many others [29]. Despite the fact
that any minimal spanning basis for a finite-dimensional space can represent perfectly
any signal in the space, when only a subset of possible signals is of interest, some bases
have better representational properties than others. For example, using the Fourier
basis for signals consisting of a few harmonics is more natural than using the standard
basis. What do we mean by “more natural”? In this context that means that the
representation is much sparser with the Fourier basis than with the standard basis.
If the signal consists of harmonics with frequencies on the standard discrete Fourier
grid, then the number of nonzero elements in the discrete Fourier transform is equal to
the number of harmonics. However, using the standard basis, the number of nonzero
elements is in general equal to the dimension of the space, which may be much greater
than the number of harmonics.

Some applications which benefit greatly from sparsity of representation are signal
compression, denoising, and parameter estimation. In compression for information
transmission, if the representation of the signal is not sparse then we need to transmit
the whole signal. However, if under a change of basis the representation becomes sparse,
then substantial savings are possible. Most coefficients of the representation are very
small (by definition of sparsity) and if we set them to zero the perceptual quality of
the signal will be affected very little. So we are left with transmitting only the large
coefficients, which are few in number. This idea found use in commercial compression
algorithms. For example, the JPEG2000 standard 2 uses the fact that the representation
of natural images using Daubechies maxflat wavelet bases is considerably sparser than
the original representation (in terms of the standard basis). Another application where
sparsity plays a key role is denoising. If the signal is sparse then separating it from
the noise requires considerably less effort than when signal power is evenly distributed
along the support of the signal. Therefore, for the purpose of facility of denoising of a
class of signals, it is worthwhile to find a basis in which the representation of all signals
belonging to this class is as sparse as possible.

The number of sparsely representable signals directly depends on the number of

2See http://www.jpeg2000info.com for details.
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elements in the signal dictionary. Every minimal basis has the same number of sparsely
representable signals. In order to increase the number of signals with sparse repre-
sentation, an overcomplete basis has to be used. Some overcomplete bases that have
been considered include a concatenation of several orthogonal bases, e.g. standard and
Fourier which can sparsely represent superpositions of continuous sinusoids and local
sharp phenomena. Another possibility is to use a single extended non-orthogonal ba-
sis such as a Fourier basis with the number of considered frequencies exceeding the
dimension of the space. The overcomplete Fourier basis allows to represent sparsely
harmonics with frequencies in between the standard Fourier grid.

By turning to an overcomplete basis we lose a very important property, the unique-
ness of representation. To regain uniqueness, we search for the sparsest solution among
the many possible solutions. Mathematically, when no noise is present the problem is
as follows: given a signal y ∈ C

M , and an overcomplete basis T ∈ C
M×N , we would

like to find x ∈ C
N such that y = Tx, and x is sparse. Define ‖x‖0

0 to be the number of
non-zero elements of x. We would like to find min ‖x‖0

0 subject to y = Tx. This is a
very hard combinatorial problem. In Chapter 7 we show 3 that under some conditions
on T and x, the optimal value of this problem can be found exactly by solving a related
problem: min ‖x‖p

p subject to y = Tx, where 0 < p ≤ 1 (we consider separately two
cases, p = 1, and general p, 0 < p ≤ 1).

A natural extension when we allow white Gaussian noise n is

y = Tx + n, (3.7)

which can be solved by

min ‖y − Tx‖2
2 + λ‖x‖p

p. (3.8)

If we let J1(x) = ‖y − Tx‖2
2, and J2(x) = ‖x‖p

p, then we have nothing but a
regularized inverse problem of the form in (3.4). When p = 1 this method is called basis
pursuit [29] (or LASSO [30] in the statistical literature). The prior term, J2(x) has an
effect of enforcing sparsity. Figure 3.1 gives some insight into why �p-regularization
with p ≤ 1 favors sparse x. In plot (b), we show the level sets of �p norms to the p-th
power (‖x‖p

p) for p = 0.5, p = 1, and p = 2 of a two-dimensional vector. For a fixed
�2-norm, i.e. for all vectors that lie on a circle with fixed radius, �p norms with p ≤ 1
are minimized on the coordinate axes, i.e. preferring that some of the coefficients are
set exactly to zero, while others are large. In other words it prefers sparse solutions.
This argument can be generalized to vectors in higher dimensions. Plot (a) shows �p

norms for the same p’s in one dimension. It shows that the penalty on large features
(large xi) is less for smaller p. Strong features are penalized much less severely in
�p penalization with p ≤ 1 than in �2 penalization (Tikhonov regularization). This
motivates the smoothing effect of �2-penalization, and the feature-preserving behavior
of �p for p ≤ 1.

3Our results extend the work of [8] and [9].
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Figure 3.1. (a) 1-D Plot of ‖x‖p
p, p = 0.5, 1, 2. (b) 2-D Level sets of ‖x‖p

p, same p.

Another observation from Figure 3.1 is that �1 norm is convex, whereas when p < 1,
�p-norm is no longer convex4. The computational complexity for the minimization of
some non-convex cost functions (�p in particular) can be ameliorated by using the half-
quadratic regularization method [31]. The key idea is to introduce a supplementary
vector s, and an extended cost function, Q(x, s) which is quadratic in x for a fixed s,
and mins Q(x, s) = J(x), for any x. If Q(x, s) is also easy to minimize in s (or even
better if there is a closed-form solution), then the resulting extended cost function can
be optimized with reasonable efficiency by iterative coordinate descent.

The problem of signal representation in overcomplete bases is somewhat different
from the more usual inverse problems such as image deconvolution. The focus in the
latter one is to make the inverse function continuous. However, for our problem of
optimal basis selection, the pseudo-inverse usually already has a small condition number,
and no additional regularization is necessary. The trouble with the pseudo-inverse is
that it is optimizing an inappropriate measure for the signal representation problem,
minimizing the �2 norm of x, which does not lead to sparse solutions. We use the other
aspect of regularization, finding a unique solution among a large set of possibilities.
Regularization is a very flexible framework, and allows us to use an appropriate prior
term, an �p norm with p ≤ 1, which enforces sparsity.

Another reason to use regularization is that we can even relax the overcompleteness
assumption. That means that our matrix T does not have to be overcomplete, and
it does not even have to span the space of y. Suppose y lies in the range of T,
but some coefficients of x obtained by the plain inverse are very small. By using the
same approach we have a family of solutions which allow a sparser (but less accurate)

4When p < 1, the triangle inequality is not satisfied and it would be more precise to use the term
“quasi-norm”, rather than “norm”. However, we will ignore this subtle point, and use the term �p-norm
for any value of p.
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representation of y.
Apart from the signal representation in an overcomplete basis, sparsity enforcing

regularization has applications in many other fields, such as statistics, data mining and
machine learning. An important problem in all three fields is subset selection. Suppose
an observed quantity y depends on many parameters x = [x1, .., xN ], but the influence
of a small subset of the parameters is much stronger than the influence of the others.
In order to build a simple model for y in terms of x we must find a small subset of {xi}
which predicts y well. In machine learning a similar problem is called feature selection.
Previous approaches to feature selection include stepwise regression [32] (similar to
matching pursuit [27]), which is a heuristic method for approximate optimization of the
�0 norm, i.e. the direct count of variables that we select. If we have a linear model, then
the methodology described in this chapter can be used. LASSO [30] (�1 penalization)
is starting to gain popularity, since it does not have many of the drawbacks of stepwise
regression.

In Chapter 4 we describe numerical procedures that can be used to solve our sparsity
regularization problems. Regularization using �1-norms is described in more detail than
�p with p < 1 due to the fact that the latter one is non-convex. This makes �p very
hard to analyze, and limits the interest of researchers. Quite surprisingly, for the source
localization application �p regularization tends to give excellent results despite the fact
that the technique for its optimization is only guaranteed to converge to local minima.
Arguments to use �1 versus �p can be found in Section 6.



Chapter 4

�1 and �p Regularization

The goal of this chapter is to provide intuition and details for the use of �p regularization,
and to introduce numerical tools that can be used to optimize the objective functions
corresponding to different forms of �p-regularization. These numerical tools are used
later (in Chapter 5) in the context of source localization. Additionally, we present
some observations regarding �1 regularization that we made by solving a small problem
analytically, and describe a curious property of the noiseless �1 problem dealing with
sign patterns of exact solutions.

The chapter is divided into two parts: we consider the case when p = 1 (e.g. �1

regularization) separately from the general p ≤ 1. The reason for this bifurcation is that
for p < 1 the cost function is not convex, which makes the problem very challenging.
In particular, the theory for �1 penalization and the relevant numerical methods are
more developed, because few researchers dare to enter the murky realms of nonconvex
optimization associated with p < 1.

We start with p = 1 in Section 4.1. We describe the noiseless problem formulation
first, and the noisy problem afterwards. We represent the problems in a second order
cone (SOC) programming framework and use an interior point method implementation
for their solution. Second order cone programming is motivated in Section 4.1.3. We
describe how we recast our objective functions into SOC framework in Section 4.1.4, and
illustrate �1 techniques on several numerical examples in Section 4.1.5. The analytical
solution of a small problem and the topic of sign patterns of exact solutions are presented
in Sections 4.1.6 and 4.1.7.

Next, in Section 4.2, we consider general p ≤ 1. We describe the iterative procedure
developed by [11] for �p optimization which is based on the half-quadratic regularization
method of [31].

� 4.1 �1-regularization

The use of �1-norms to achieve sparsity has been known for almost a decade. The
Least Absolute Shrinkage and Selection Operator (LASSO) has been introduced in the
statistics literature [33], and Basis Pursuit algorithm [29] for choosing a sparse basis has
been proposed in the signal representation community at around the same time. Some
applications to signal processing, and even to array processing, have been considered

35
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[13,14]. The most important advantages of �1 penalization schemes are their convexity,
and the strong sparsity of the results (most indices of the result are set exactly to zero).
Different versions of �1-regularization problems can be reformulated as linear, convex
constrained or unconstrained quadratic, or second order cone (SOC) programming, all
of which allow efficient and globally convergent algorithms. Another significant benefit
of using �1 penalization is a number of recent theoretical (e.g. [8]) results showing that
under certain sparsity conditions on the underlying unknown signal, the signal can be
recovered exactly. This is quite surprising since the direct combinatorial formulation
of the problem requires comparing solutions with all possible permutations of non-zero
indices, which is very hard. These theoretical results and some extensions that we have
made are postponed until Chapter 7.

� 4.1.1 Noiseless case

First we consider the noiseless version of the problem of signal representation in over-
complete bases, and describe its solution using �1-penalization. Although the scenario
without noise has little practical value in array processing, it has close connection to the
noisy formulation, and most theoretical results have been developed for the noiseless
case. Thus much insight into the behavior and properties of the noisy counterpart can
be acquired by taking the noiseless case into consideration.

We repeat the noiseless signal representation problem from the previous chapter.
Suppose we have a signal y, which is a combination of a few weighted elements of
an overcomplete basis1 A: y =

∑K
i=1 xiai, where A = [a1...aN ]. We would like to

find out the weighting coefficients xi, using the available information, y, and A. A is
overcomplete, and uncovering xi is an ill-posed inverse problem, since infinitely many
solutions exist. The situation is however not hopeless, because only a few xi are non-
zero (although apriori we do not know either the number of non-zero coefficients, or
their indices). A meaningful way to attempt to find out the solution is to try to solve

min ‖x‖0
0, subject to y = Ax (4.1)

Recall that ‖x‖0
0 represents the number of nonzero elements of x. This a hard combi-

natorial problem, and we replace it by a related problem,

min ‖x‖1, subject to y = Ax (4.2)

Equation (4.2) can be reformulated as a linear programming problem when the data is
real, and as a second order cone problem when the data is complex. In Section 7 we
describe the conditions under which the two problems (4.1) and (4.2) are equivalent.

First, we describe the numerical solution for the case when the data is real. The
procedure for reformulating problems involving minimization of �1-norms as linear pro-
gramming problems (provided all other terms are linear functions) is well known to

1We used T in last chapter. For the rest of the thesis we are dealing with the specific inverse problem
of signal representation and we use A instead.
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the optimization community. First we introduce two variables x+ and x−, defined
as x+

i = max{xi, 0}, x−
i = max{−xi, 0}, from which x can be simply recovered as

x = x+ − x−. The variables x+ and x− are limited to the positive orthant, and they
must satisfy x+

i x−
i = 0,∀i. The last condition gets automatically satisfied when we

consider minimization problems. Rewriting the problem (4.2), we have

min 1′
(

x+

x−

)
subject to ( A −A )

(
x+

x−

)
= y and

(
x+

x−

)
≥ 0 (4.3)

The numerical solution of (4.3) is easily accomplished using the simplex method, or
an interior point method for linear programming.

We illustrate noiseless �1 minimization on a simple numerical example. We use a
random overcomplete basis, where each element of a 10 × 40 matrix A is a zero-mean
unit-variance Gaussian random variable independent of other elements. Figure 4.1 (a)
illustrates that the procedure is able to recover the underlying coefficients exactly (the
original and the recovered signals match). However, when small amounts of noise are
added (y = Ax + n, where ni are i.i.d. Gaussian with σ = .02), the reconstruction
breaks down, and bears little information about the underlying signal, see Figure 4.1
(b).
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Figure 4.1. Noiseless formulation of �1 regularization: real-valued data. (a) No noise is present.
Solution is exact. (b) Data corrupted by noise. Solution breaks.

We show another aspect of �1 penalization in Figure 4.2. This can be called super-
resolution. In plot (a) we continue our random basis example, except we bring two of
the peaks of the original signal close together. In this plot we compare the result of
solving the noiseless �1 problem, e.g. minimizing �1 norm subject to y = Ax against
the result of doing a plain pseudo-inverse. The pseudo-inverse solution is not sparse; in
addition it also loses the third peak and distorts the amplitude of the other two which
happen to be above the floor of spurious peaks. The �1 solution on the other hand
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perfectly recovers the signals2.
In plot (b) of Figure 4.2 we use an overcomplete discrete Fourier basis instead of

the random one. Now the data is complex. The dimensions of A are again 10 × 40.
In this context y ∈ C

M can be viewed as the time-domain signal, and x ∈ C
N as its

overcomplete Fourier representation. Let F ∈ C
N×M be a matrix with the following

entries: Fn,m = exp(−j2π n−1
N m). It corresponds to taking the first M columns of the

usual N ×N DFT matrix FN . Let A = 1
N F′. Then we have our usual inverse problem,

y = Ax. The pseudo-inverse solution xPINV = A†y is nothing but the spectrum of y
obtained by zero-padding: xPINV = xZPD = FN ( y

0 ). All the columns of FN that are
not present in F are multiplied by zeros. The real part of xPINV is shown in plot (b)2.
The result is smooth and not sparse. Two of the original peaks which are close together
are not resolved by the pseudo-inverse spectrum. This is an example of the fundamental
limit on resolution using linear operators. If instead of taking the pseudo-inverse we
use the �1 approach, we obtain the original x exactly (also shown in plot (b)). Thus
in a sense we are able to go beyond the limits of resolution, which is possible due to
the fact that the number of entries in x is small. This example has direct connection
with the source localization problem. The overcomplete DFT basis is more suitable for
explaining superresolution, because columns of A which are close in terms of column-
index are also close in terms of Euclidean distance. This leads to smooth pseudo-inverse
spectra. When A is a random overcomplete basis this is no longer the case, and that is
the reason why the pseudo-inverse solution in plot (a) appears to have little structure.
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Figure 4.2. Comparison of noiseless �1 penalization with pseudo-inverse solutions: (a) Overcomplete
10 × 40 random basis (real data). (b) Overcomplete 10 × 40 DFT basis (complex data).

So far we have discussed the numerical solution of the real-valued scenario only,
but in our array processing application (and for the example in plot (b) of Figure

2The basis in this example is random, and on rare occasions it does not satisfy the conditions for
exact solutions from Chapter 7. Then the solution minimizing the �1-norm will not be the same as the
original signal.
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4.2) we are forced to deal with complex-valued data. All the formulations (noiseless
and all the noisy ones in the next section) remain the same, but the �1 norm can no
longer be represented as a linear function of the arguments (of their real and imaginary
parts): ‖x‖1 =

∑N
i=1

√
Re(xi)2 + Im(xi)2, where Re() and Im() represent the real

and imaginary parts. Notice that even if we square the �1 norm we still get terms
which involve square roots, thus none of the problems can be reformulated as quadratic
programming. The use of complex-valued data compels us to enter the domain of second
order cone (SOC) programming. Fortunately, SOC problems have efficient globally
convergent algorithms implemented in the framework of Interior Point Methods (IPM).
We discuss SOC later on in this chapter, and IPM in Appendix B.

� 4.1.2 Handling noise

An equivalent form of the noiseless problem (4.2) is

min ‖x‖1, subject to ‖y − Ax‖2
2 = 0, (4.4)

which right away suggests how to accommodate noise:

min ‖x‖1, subject to ‖y − Ax‖2
2 ≤ β2, (4.5)

where β is a regularization parameter which sets the amount of noise that we wish to
allow. Also, several alternative equivalent formulations can be considered. The most
widely considered formulation (in particular it is used in [29,33]) is the penalized form:

min ‖y − Ax‖2
2 + λ‖x‖1 (4.6)

And, if we switch the constraints with the objective, then we arrive at the third form:

min ‖y − Ax‖2
2, subject to ‖x‖1 ≤ δ (4.7)

Notice that in (4.5), we can rewrite the constraint ‖y −Ax‖2
2 ≤ β2 as ‖y −Ax‖2 ≤ β,

which leads to an equivalent penalized form:

min ‖y − Ax‖2 + λ̃‖x‖1 (4.8)

The difference from (4.6) lies in the absence of the square for �2 norm term. This version
can be represented more readily in the SOC framework.

For convenience of referring to the different formulations we introduce the fol-
lowing labels for the problems: we refer to the first constrained form, (4.5), which
minimizes an �1 norm subject to an �2 constraint as “ML1”. The other constrained
form, (4.7) which minimizes an �2 norm subject to an �1 constraint is labeled “ML2”.
And the two unconstrained problems, (4.8), (4.6), which minimize a joint cost func-
tion, we call MLJ and MLJSQ respectively (SQ is for square of the �2 norm). Also,
note that in ML1 and ML2 problems the square on the constraint and on the objec-
tive respectively can be removed without changing the problem. Thus we also refer
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to the problem min ‖x‖1 subject to ‖y − Ax‖2 ≤ β as ML1, and to the problem
min ‖y − Ax‖2 subject to ‖x‖1 ≤ δ as ML2.

All of the formulations, ML1, ML2, MLJ, and MLJSQ are equivalent in the sense
that the sets of solutions corresponding to all possible choices of the regularization
parameters are the same for all the formulations. That means that going from one
formulation to another we only have to properly map the corresponding regularization
parameters (this is not trivial to do, but such a mapping exists, although possibly
nonlinear, and discontinuous).

All of the above formulations may have their applications, but for the source lo-
calization method we mainly use ML1, MLJ, and MLJSQ. The numerical solution is
obtained for all of them in a second order cone framework (Section 4.1.3) via an interior
point implementation. We present numerical examples and comparison of the virtues
of different versions in Section 4.1.5. Next we discuss second order cone programming.

� 4.1.3 Second order cone programming

We remind the reader that the need to consider SOC arose from the use of �1 norm
with complex data. For x ∈ CN , ‖x‖1 is neither a linear nor a quadratic function
of the real and imaginary components, and cannot be rewritten as one: ‖x‖1 =∑N

i=1

√
Re(xi)2 + Im(xi)2.

SOC programming explicitly deals with constraints of the form ‖x2, ..., xn‖2 ≤ x1,
which bear the name second order cone, or Lorentz cone. To represent �1 norms of
complex data we only need to consider direct products of several second order cones.
We delay the details of representation until Section 4.1.4. It turns out that SOC pro-
gramming has many favorable properties, efficient algorithms for computation, and
substantial theoretical foundation.

We briefly summarize some of the reasons why SOC is endowed with so many
benefits [10]. It can be easily verified that second order cone is a closed pointed convex
cone which possesses a non-empty interior 3. As such it falls under the realm of convex
conic programming (CP). As we illustrate, conic programming may be regarded as a
generalization of linear programming (LP), and many important attributes of LP carry
over to CP.

LP problems can be written in the following form:

min c′x such that Ax ≥ b (4.9)

The constraint Ax ≥ b is equivalent to Ax − b ≥ 0, or Ax − b ∈ R
N
+ , where R

N
+ =

{x ∈ R
N |xi ≥ 0}, the positive quadrant. Hence, the order relation a ≥ b is equivalent

to a−b ∈ R
N
+ . R

N
+ is a closed pointed convex cone, and R

N
+ induces a partial ordering4

on R
N . This partial ordering of R

N is not unique, and in fact it can be shown that
any pointed convex cone K induces a partial ordering in the same fashion. Using the

3Closed means that it contains all its limit points, [34], and pointed means that it contains no lines
(+x and −x cannot both belong to a pointed cone unless x = 0).

4A partial order is basically an order relation where some elements may not be comparable.
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notation from [10], a− b ∈ K induces a partial ordering a ≥K b, i.e. K induces a new
partial ordering on R

N , denoted by “≥K”. We can consider a new class of optimization
problems:

min c′x such that Ax ≥K b (4.10)

If we impose the additional restrictions that K is closed, and possesses non-empty
interior, (thus eliminating some possible degenerate partial orderings), the new class of
optimization problems not only looks similar to the formulation of LP in (4.9), but also
shares many of its properties. The depth of the similarity between LP and CP can be
seen by looking at duality. Duality is a very strong result in LP theory, and it concerns
the problem dual5 to (4.9) (the derivation can be found in any linear programming
book):

min b′y such that A′y = c,y ≥ 0 (4.11)

The weak LP duality theorem states that any y feasible for the dual problem has the
objective value b′y lower than or equal to the optimal objective value of the primal
problem. The strong LP Duality theorem, a central result in LP theory states that if
either the primal (4.9) or the dual (4.11) are solvable (feasible and bounded above),
then the primal and the dual objective values are equal (i.e. there is no duality gap).

A similar result holds for conic programming. First we define the dual cone, K∗:

K∗ = {y ∈ R
N |y′x ≥ 0,∀x ∈ K} (4.12)

If K is a closed convex pointed cone with non-empty interior, then so is K∗, and
additionally the cone dual to K∗ is K. The problem dual to the conic programming
program in (4.10) takes the following form [10]:

min b′y such that A′y = c,y ≥K∗ 0 (4.13)

As in LP case, the problem dual to the dual problem is the primal problem. The weak
duality theorem holds exactly as for LP, and the strong duality also holds but with
some extra assumptions on non-degeneracy of solutions.

If we take K to be a second order cone, then we get a second order cone programming
problem. It immediately inherits all the properties of conic programming, but also has
a multitude of its own. For example, second order cones are self dual, i.e. K =
K∗. Another extremely rich and useful subclass of cone programming is semidefinite
programming (SDP), where K is the cone of positive semidefinite matrices. Both SOC
programming and SDP allow very efficient solutions using an interior point approach.

5Define the Lagrangian function: L(x, λ) = c′x − λ′(Ax − b). Define the dual function: q(λ) =
infx L(x, λ). Then the dual problem is max q(λ) subject to λ ≥ 0. See [35] for more general definitions.
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� 4.1.4 Representing �1 problems with complex data in SOC framework

We now describe how to pose the �1 optimization problems described in Sections 4.1.1
and 4.1.2 in the form of second order cone programming. SOC representation of the
problems allows us to use an implementation [36] of a path-following interior point
method for optimization over symmetric cones for their solution. We touch upon the
topic of interior point methods in Appendix B.

The general form of a second order cone problem is:

min c′x
such that Ax = b, and x ∈ K

where K = R
N
+ × L1... × LNL

. R
N
+ is the N -dimensional positive orthant cone, and

L1, ...,LNL
are second order cones (Lorentz cones). Second order cone of dimension n

(n does not have to equal to N) has the following definition:

L = {x : x1 ≥ ‖x2, ..., xn‖2} (4.14)

We are interested in representing problems (4.2, 4.5, 4.6, 4.7, 4.8) with real and complex
data in terms of SOC constraints.

Noiseless �1 problem

The most basic �1 problem with complex data is (4.2), which we restate here for con-
venience:

min ‖x‖1, subject to y = Ax, (4.15)

Since in the formulation of SOC we cannot have nonlinear objective functions, we
rewrite it as

min t, such that ‖x‖1 ≤ t, y = Ax. (4.16)

Furthermore, the inequality with the �1-norm of x ∈ C
n can be restated as a direct

product of N second order cones of dimension 3:

‖x‖1 ≤ t ⇔ ‖Re(xi), Im(xi)‖2 ≤ ti, for i ∈ {1, .., N} and t =
N∑

i=1

ti (4.17)

Using the above two steps, the SOC formulation of (4.2) becomes:

min1′t (4.18)
subject to ‖Re(xi), Im(xi)‖2 ≤ ti, i ∈ {1, .., N}, (4.19)

y = Ax (4.20)

Each of the N constraints ‖Re(xi), Im(xi)‖2 ≤ ti can be written as (ti, Re(xi), Im(xi)) ∈
Li, meaning that the triple belongs to a second order cone. The reformulation of the
other problems proceeds in a similar fashion.
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Constrained noisy �1 problems, ML1 and ML2

Consider the ML1 problem first: min ‖x‖1 subject to ‖y−Ax‖2 ≤ β. This is the form
without squaring β and the �2-norm of the residual; it fits easier into SOC framework
without the squares. We introduce a new variable, z = y − Ax. The problem is
transformed into the following:

min1′t (4.21)
subject to ‖Re(xi), Im(xi)‖2 ≤ ti, i ∈ {1, .., N}, (4.22)

z = y − Ax and ‖z‖2 ≤ β (4.23)

For the representation we use a new second order cone, ‖z‖2 ≤ β, i.e. (β, z) ∈ L.
This new cone has dimension 2M + 1, since z is a complex M-dimensional vector, i.e.
the second order cone constraint can be expanded to (β, Re(z), Im(z)) ∈ L.

The ML2 problem, min ‖y − Ax‖2, subject to ‖x‖1 ≤ δ, has a very similar repre-
sentation:

min s (4.24)
subject to z = y − Ax and ‖z‖2 ≤ s (4.25)

‖Re(xi), Im(xi)‖2 ≤ ti, i ∈ {1, .., N}, and 1′t ≤ δ (4.26)

Joint noisy �1 problems, MLJ and MLJSQ

The representation of the MLJ problem, min ‖y −Ax‖2 + λ‖x‖1, differs slightly from
the previous two:

min s + λ1′t (4.27)
subject to z = y − Ax and ‖z‖2 ≤ s (4.28)

and ‖Re(xi), Im(xi)‖2 ≤ ti, i ∈ {1, .., N}, (4.29)

Some difficulty arises with the MLJSQ problem, since the norm in ‖y − Ax‖2
2 is

squared. We repeat that (4.8) and (4.6) are equivalent up to a nonlinear mapping of
the regularization parameter, but since the latter form is the one that is used in LASSO
and Basis Pursuit, it is worthwhile to have an implementation for comparison’s sake. It
is surprising that the trouble is caused by the simple squared �2 norm constraint, but
fortunately, there is a simple trick that can be used to represent the squared �2 norm
inequalities in terms of second order cones [10].

We again have z = y − Ax. We need to minimize ‖z‖2
2, or z′z. This can also be

expressed as minimizing s, such that z′z ≤ s. Now, it is a fact that s = (s+1)2

4 − (s−1)2

4 ,

thus the above inequality is the same as z′z + (s−1)2

4 ≤ (s+1)2

4 , which can be expressed
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as ‖z, (s−1/2)‖2 ≤ (s+1)/2. Let u = (s+1)/2, and v = (s−1)/2, then the constraint
becomes ‖z, v‖2 ≤ u, which is in SOC form. The full representation of the MLJSQ
version is:

min s + λ1′t (4.30)
subject to z = y − Ax and ‖z, v‖2 ≤ u (4.31)

u =
s + 1

2
, v =

s − 1
2

, s ≥ 0 and ‖Re(xi), Im(xi)‖2 ≤ ti, i ∈ {1, .., N}, (4.32)

Other problems representable in SOC framework

To illustrate the power of SOC constraints, we list some other functions and sets which
can be represented in terms of SOC constraints using more sophisticated procedures of
the same flavor as was done for the square of �2 norm in (4.32), [10]. The set {(t, s) ∈
R

2|ts ≥ 1, t > 0}, as well as {(x1, x2, t) ∈ R
3|x1, x2 ≥ 0, t ≤ √

x1x2} can be reformulated
as SOCs. Also, quite surprisingly, constraints with p-norm, ‖x‖p = (

∑
i |xi|p)1/p, where

p ≥ 1, and p being a rational number can also be represented. (However, this is only
practical for fractions with numerators and denominators which are small integers).
Hence, the use of efficient algorithms induced by SOC representation is applicable to a
much wider set of problems than is readily apparent at first sight.

Optimizing SOC problems by an interior point method

Several implementations of SOC programming by interior point methods (IPM) have
been developed in the optimization community, and we use a package for optimiza-
tion over self-dual homogeneous cones (which includes direct products of the positive
orthant-constraints, SOC constraints and semidefinite cone constraints), SeDuMi [36],
developed by J. Sturm at Tilburg University. Other non-commercial interior point
alternatives which allow SOC constraints include SDPT3 [37].

The topic of interior point methods is an exciting recent development in optimiza-
tion. The original role of the interior point approach to optimization was that of a
competitor to the simplex method for linear programming problems. Nowadays it is
well understood that the scope of problems efficiently tackled by the interior point ap-
proach is much wider. For linear programming some classes of problems can be solved
by interior point methods much more efficiently than using the simplex method [38].
For second order cone programming and semidefinite programming, the importance of
interior point methods is even greater, since there are no other efficient alternatives.
We give a brief introduction of interior point methods in Appendix B. However, for the
purposes of the thesis interior point methods are simply a convenient efficient tool.

The general form of a problem solved by SeDuMi is:

min c′x
such that Ax = b, and x ∈ K
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where K = R
N
+ × L1...× LNL

× S1... × SNS
. R

N
+ is the N -dimensional positive orthant

cone, L1, ...,LNL
are second order (Lorentz) cones, and S1, ...,SNS

are semidefinite
cones. The representative power of second order cones suffices for our tasks, thus we do
not use the option of more powerful SDP constrains. We already have representations
of all our �1 problems in this form, thus using SeDuMi to solve them poses no additional
difficulties.

Semidefinite representation of SOC constraints

Alternatively, it is also possible to represent SOC constraints as semidefinite constraints.
The overhead in rewriting SOC constraints in terms of the semidefinite cone is substan-
tial; it is more efficient to use a SOC solver if one is available. However, semidefinite
programming is more emphasized in current optimization research; software implemen-
tations of SDP are more readily available and may evolve at a faster pace than SOC
programming. For that reason we show how to represent SOC constraints as semidefi-
nite cone constraints.

First, the semidefinite cone is defined for the space of symmetric matrices, X ∈
R

M×M , which is equivalent to a plain M(M + 1)/2-dimensional vector space. The
semidefinite cone constraint requires that the matrix X is positive semidefinite, i.e.
y′Xy ≥ 0 ∀y, which is the same as requiring that the eigenspectrum of X is non-
negative. The second order cone constraint t ≥ ‖x‖2, where t ∈ R

1,x ∈ R
N , is equiva-

lent to positive semidefiniteness of the following matrix:
(

tIN x
x′ t

)
, where IN is an identity

matrix. Needless to say, the representation is not efficient, since we have gone from an
N + 1-dimensional space to (N + 1)(N + 2)/2-dimensional space. Nevertheless, when
an SOC solver is not available, this may be a good idea. To pay the dues to the power
of SDP, it has to be said that SOC problems are but a small subset of the possible
problems that can be handled using SDP constraints. Some other examples include
eigenvalue and singular-value problems, as well as relaxations of many combinatorial
optimization problems.

� 4.1.5 Numerical examples of �1 regularization

Armed with an implementation of a path-following interior point method for second
order cone optimization we undertake several numerical experiments with �1 penaliza-
tion. First we consider the joint unconstrained formulation of the problem, (4.6). We
take A to be a random-Gaussian matrix (all Ai,j are i.i.d. standard normal random
numbers), A ∈ R

10×40, x is sparse, and y = Ax + n, where n is an i.i.d. Gaussian
random vector with standard deviation σ = 0.02. This is the same problem as the one
considered in Section (4.1.1), which could not be handled using the noiseless version
of �1 penalization. It can be seen from Figure 4.3 (a) that with a proper choice of the
regularization parameter λ (we discuss it later, in Chapter 5) the noisy formulation of
(4.6) has no difficulty with the added noise, and we recover a very close approximation
to the original signal. The crucial assumption for this scheme to work is the sparsity
of the unknown signal x. In Figure 4.3 (b), we see the outcome when the assumption
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does not hold. In this example, x has 5 non-zero entries, which is half of the dimension
of the embedding column space of A, and is no longer sparse. The recovered signal has
little resemblance to the original hidden signal. The topic of the required sparsity is
very challenging, and we discuss it in more detail in Chapter 7.

In Figure 4.4 we return to the overcomplete 10 × 40 DFT basis, and compare the
�1 reconstruction with the �2 reconstruction. We use the same sparse signal x with
3-nonzero elements as in Figure 4.3, plot (a). It can be seen that with the noise added
the �1 reconstruction is not exact, but is a good approximation to the original signal.
However, the �2 reconstruction bears little resemblance to the original signal.
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(a) (b)

Figure 4.3. Data corrupted by noise, random overcomplete basis, joint �1 formulation MLJSQ. (a) x
is sparse, and the method works well. (b) x is not sparse, method breaks.

According to the previous examples, the joint formulation (4.6) appears quite promis-
ing for practical linear inverse problems with sparse signals, and the reader may question
the need to consider the other equivalents. We discuss the answer to this question next.

Each version has a scalar regularization parameter, and we plot the set of solutions
over the grid of possible regularization parameters, along with the �1-norms of the
solutions, and the residuals, ‖y−Ax‖2 in Figure 4.5. The true underlying signal is the
same as the one in Figure 4.3 (a). It has three nonzero entries: x5 = 3, x25 = 1, x32 = 2.
ML1 version is in plot (a), ML2 in plot (b), MLJ in plot (c), and MLJSQ in plot (d).
The top subplot in each plot has the set of solutions for a grid of parameters, displayed
as an intensity map. In plot (a), vertical coordinate is the index of the vector, and
horizontal is the relevant regularization parameter. The middle and bottom subplots
contain ‖x‖1 and ‖y − Ax‖2 as a function of the relevant regularization parameter6.

The main attraction of ML1 and ML2 formulations is in their ability to directly
control the resulting ‖y − Ax‖2, and ‖x‖1 respectively. Plots (a) and (b) show that

6In MLJ and MLJSQ problems we added a factor 1 − λ in front of ‖y − Ax‖2
2 in order to limit the

useful grid of λ to the range [0, 1]. Compared to the original formulation this leads to an invertible
nonlinear continuous scaling of the λ-axis.



Sec. 4.1. �1-regularization 47

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
original
reconstruction
pseudo−inverse

Figure 4.4. Data corrupted by noise, overcomplete DFT basis, joint �1 formulation MLJSQ. The
underlying x is sparse, and �1 gives good sparse solutions but the pseudo-inverse gives poor blurred
solutions with notable sidelobes.

as we vary β in the ML1 problem, the resulting norm of the residual of the optimal
solution, ‖y − Ax‖2 is equal to β (until β = ‖y‖2). Similarly as we vary δ in ML2,
‖x‖1 follows it closely up to ‖xN‖1, where xN is the solution of the noiseless problem
min ‖x‖1 subject to y = Ax.

Unlike ML1 and ML2, the joint formulations MLJ and MLJSQ have a very erratic
behavior of the residual ‖y − Ax‖2, and the �1 norm of the optimal solution, as a
function of λ (plots (c) and (d)). The curves for MLJSQ appear to be smooth, but
a closer look (by zooming in) uncovers discontinuities of the derivative. This erratic
behavior has advantages as well as drawbacks. On the positive side, the choice of
regularization parameter is fairly robust due to the long flat regions in both curves.
In ML1 and ML2, on the contrary, any small change of the regularization parameter
leads to a commensurate change in the optimal solution, and therefore β and δ must
be chosen with care.

On the other hand, since λ is not directly linked to either ‖x‖1, or ‖y−Ax‖2, it is
hard to predict apriori a good choice for λ. The dependence of λ on β is highly nonlinear,
and there is no known way to predict the proper choice for λ with the knowledge of β
or δ in the ML1 and ML2 formulations.

Another small point to make is the difference between MLJ and MLJSQ problems.
MLJSQ is the standard formulation considered in statistics and signal representation
communities, but MLJ is a little more efficient computationally using the SOC frame-
work (square of the norm in MLJSQ is accommodated using a trick). Also MLJ appears
to be more robust to the choice of regularization parameter, but further investigation
is necessary to support this claim.

Finally, we include a plot of λ‖x‖1 + (1 − λ)‖y − Ax‖2 for MLJ problem and a
plot of λ‖x‖1 + (1 − λ)‖y − Ax‖2

2 (extra square) for MLJSQ problem in Figure 4.6.
This weighted sum of the jagged curves ‖x‖1 and ‖y −Ax‖2 from Figure 4.5 plots (c)
and (d) appears to be smooth. These plots pose several interesting questions, which
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ML1 problem
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Figure 4.5. Versions of �1. Top: Solutions vs. reg param, Middle: ‖x‖1, Bottom: ‖y−Ax‖2. (a) ML1
(b) ML2 (c) MLJ (d) MLJSQ

may or may not be useful practically, but are definitely interesting from a theoretical
perspective. Some of the questions include: the nature of the maximum of the curve
λ‖x‖1 + (1 − λ)‖y − Ax‖2, also whether the curve has properties such as smoothness,
concavity, etc. Next, in order to better understand the dependence of the solutions
of MLJSQ on λ we solve a small problem analytically using nonsmooth optimization
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Figure 4.6. Top: MLJ, λ‖x‖1 +(1−λ)‖y−Ax‖2 vs. λ. Bottom: MLJSQ, λ‖x‖1 +(1−λ)‖y−Ax‖2
2

vs. λ.

theory.

� 4.1.6 Analytical solution of a small problem

We consider a small real-valued instance of the MLJSQ problem (4.6), for which we
can find an analytic form of the solution using optimality conditions for convex non-
differentiable unconstrained optimization. Refer to Appendix C for a short overview of
the mathematics involved. The value of considering this problem is the insight that it
gives on the dependence of the solutions of MLJSQ on λ. Let

A =
(

1 2 3
1 3 1.5

)
, and y =

(
6
6

)

The MLJSQ problem is

min f(x) = min ‖y − Ax‖2
2 + λ‖x‖1 (4.33)

This is an unconstrained convex minimization problem. The first term, ‖y −Ax‖2
2

is convex, and the second term λ‖x‖1 is also convex, thus the total cost function is
convex. In fact, it has one global optimum ∀ λ > 0. The difficulty with the optimality
conditions for this problem lies in the fact that ‖x‖1 is not differentiable at 0. Thus
we have to use the optimality conditions from non-smooth convex optimization. They
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state that the subdifferential of f at x has to contain the 0-vector for f to achieve a
global minimum at x. Appendix C reviews the terminology.

The subdifferential of g(x) = ‖x‖1 is the following set:

∂g =


u such that




ui = 1 if xi > 0
ui = −1 if xi < 0
ui ∈ [−1, .., 1] if xi = 0


 (4.34)

The interesting part of this subdifferential is when some of the coordinates are equal to
0, where g is non-differentiable.

The subdifferential of the MLJSQ function, f = ‖y − Ax‖2
2 + λ‖x‖1 is the set

∂f =
{
2A′(Ax − y) + λu(x)

}
(4.35)

where u(x) is defined above in (4.34). For our example this translates into:

∂f =


2


1 1

2 3
3 1.5




(1 2 3

1 3 1.5

)x1

x2

x3


−

(
6
6

)+ λ


u(x1)

u(x2)
u(x3)




 (4.36)

Note that the product A′A is rank-2, thus the first row can be expressed as a linear
combination of the other two. The coefficients are 1/4 and 1/6. Thus rewriting the
equation we get:

∂f = 2


1/4(5x1 + 13x2 + 10.5x3 − 30) + 1/6(4.5x1 + 10.5x2 + 11.25x3 − 27)

5x1 + 13x2 + 10.5x3 − 30
4.5x1 + 10.5x2 + 11.25x3 − 27


+ λ


u(x1)

u(x2)
u(x3)




(4.37)

The optimality condition states that 0 ∈ ∂f at the optimum. Since we do not know
which indices of x are positive, negative or zero, in general it is necessary to try out all
the cases, and see which ones have a non-empty solution set. For example, if λ > 0,
then the case when all xi > 0 does not have solutions: otherwise all u(xi) = 1, and if
the second and the third rows are equal to zero, then the first one is 7λ/12. Thus λ = 0,
and the set of solutions is

(
6
0
0

)
+ n, where n ∈ Null(A), any vector in the nullspace of

A.
The regions which do have solutions for some λ > 0 are 0×R

+×R
+, and 0×R

+×0.
For the first region we have: 

2(1
4p + 1

6q) + λa
2p + λ
2q + λ


 =


0

0
0


 (4.38)
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where p = 5x1 + 13x2 + 10.5x3 − 30, and q = 4.5x1 + 10.5x2 + 11.25x3 − 27. Thus
p = q = −λ/2, and a = −5/12. Solving for x2 and x3 as a function of λ, we get
x2 = 3

2 − λ
96 , and x3 = 1− 5λ

144 . The solutions satisfy the assumed positivity constraints
as long as 0 < λ ≤ 144/5 = 28.8.

Similarly, for the second region, x2 = 30
13 − λ

26 , and 28.8 ≤ λ ≤ 60. For λ ≥ 60
the solution is x = 0. We illustrate the solution path as a function of λ in Figure 4.7.
The two bold triangles are the two planes corresponding to the two rows of A. The
nullspace of A goes through 0 parallel to their intersection, the line connecting (6, 0, 0),
and (0, 1.5, 1). When λ goes from zero to a very small value, the solution to the problem
jumps right away to (0, 1.5, 1), which is the point satisfying y = Ax with minimum
‖x‖1. Whenever λ > 0, no matter how small, the optimum solution no longer satisfies
y = Ax, but is still very close to the line where this is true. The broken two-segment
line originating from (0, 1.5, 1), and ending at (0, 0, 0) is the solution path as a function
of λ.

When instead we consider the convex combination formulation with (1−λ) in front
of the �2 norm of the residuals, we have a very similar situation7. Now instead of
being a function of λ, the coordinates of the optimal solution are a function of λ

1−λ .
The intervals for the new λ for which the optimal solution falls into the two regions
that we considered above are (0, 0.9664], and [0.9664, 0.9836]. For λ ≥ 0.9836, the
optimal solution is 0. For comparison, the solution obtained using the pseudo-inverse
is xPINV = [78/157, 216/157, 144/157]′ ≈ [0.4968, 1.3758, 0.9172]′. In contrast to �1

solutions with appropriate λ, the pseudo-inverse solution is not sparse.
This small example is not useful for practical purposes; yet it demonstrates some of

the properties of the solution set that are useful to know for practical �1 optimization
problems described in previous sections. For example, the first formulation (the one
without the (1−λ) term) always leads to piecewise linear solutions paths, and whenever
λ ≥ 0, the solution does not satisfy y = Ax. Similar analysis can be done for the MLJ
problem. This will allow to compare virtues of the two formulations analytically.

� 4.1.7 Sign patterns of solutions, noiseless version

We conclude the part of this chapter devoted to �1 optimization by describing a very
interesting observation that we have made regarding the optimal solutions to the noise-
less �1 penalization, (4.2). We consider the case when the matrix A and the level of
sparsity of the signals do not guarantee that the underlying signal can be perfectly
recovered 8. However, exact reconstructions can still be obtained for a subset of such
signals. It appears that the signals which do yield correct reconstructions using noise-
less �1-penalty minimization can be determined apriori, by looking at a finite number
of test cases and their sign patterns. The observation applies to the real-valued case
(x is real-valued, and A may still be complex). For complex x case no extensions have

7The reason to introduce (1 − λ) is to limit the possible set of λ to the interval [0, 1]. Otherwise an
upper bound for λ is hard to find.

8These conditions are described in Chapter 7.
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Figure 4.7. Solution path x̂(λ). Two bold triangles are the two planes corresponding to the rows of
A. The solution path is the broken line that goes to (0, 0, 0).

been found so far.
Define the sparsity profile as the set of nonzero indices of x. Also define the sign

pattern of x as the vector s with elements equal to +1 for positive indices of x, −1 for

negative indices, and 0 otherwise. Thus si =




1, if xi > 0
−1, if xi < 0
0, if xi = 0

. We also normalize s so

that the first non-zero index is equal to 1 (by multiplying by −1 if necessary). This
is done to remove an ambiguity, since negating x leads to the negation of y, with no
effect on the �1 norm and the residual.

Let an overcomplete A be fixed, and y = Ax, where x is not sparse enough to allow
exact solutions using the �1 approach. (If it is sparse enough then all signals allow exact
reconstructions). We try to find x given A and y. We have empirically discovered the
following property: if x having a specified sparsity profile has a particular sign pattern,
and the �1 reconstruction uncovers it exactly, then any x̃ with the same sparsity profile,
and the same sign pattern will also produce the correct result under �1 optimization.
Similarly, if x leads to an incorrect reconstruction, then all x̃ with the same sign pattern
and sparsity profiles will not produce an exact answer. That means that the property
of allowing exact reconstructions using �1 penalization is invariant under multiplying
each element of x with arbitrary positive scalars.

For a fixed sparsity profile we can run �1 optimization for signals x with all possible
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sign patterns, and make a note whether they resulted in exact answers or not. Then
we can determine whether any signal x will lead to an exact reconstruction simply by
looking at its sign pattern. Making a loop over all possible sparsity profiles we will be
able to classify recoverability of all possible signals.

To illustrate this behavior, we include several examples with A a random basis (each
element being an independent realization of a standard normal random variable with
mean 0, and variance 1). We illustrate the case when ‖x‖0

0 = 3, but the observation
holds for any number of non-zero elements of x. (We have conducted a large number of
experiments to test this surprising behavior, so although we do not have a theoretical
proof, we have high confidence in its veracity). The sparsity profile (the support of x)
is (10, 20, 30). The maximum number of non-zero elements which is allowed to have
exact solutions using �1 penalization for this realization of A is less than three. Some
of the signals are reconstructed exactly, while others are not.
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Figure 4.8. Sign patterns of exact solutions. Sparsity profile (support of x) is (10, 20, 30). (a) Sign
pattern for exact solutions: (+,−,−). Two signals along with exact reconstructions. (b) Sign pattern
for wrong solutions: (+, +,−). Two signals, and the corresponding wrong reconstructions.

For the specific case that we considered the sign pattern that yields correct recon-
struction is (+,−,−), and the other sign patterns (+, +,−), (+,−, +), and (+, +, +)
yield incorrect reconstructions (+ and − correspond to +1 and −1 respectively). In Fig-
ure 4.8 we plot the original signal, xi, and its reconstruction, x̂i, vs. i, for i ∈ {1, .., 40}.
We include two examples of signals with sign patterns that lead to exact solutions in
plot (a), and two examples of signals with sign patterns that do not get exact answers
in plot(b). The first sign pattern is (+,−,−), and the second is (+, +,−).
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Considering a random basis is not representative of other bases, in particular those
that are associated with our source localization problem. In general, the fact that a
particular solution does not yield the reconstruction exactly does not mean that the re-
construction carries no information about the underlying x. For our source localization
application overcomplete bases A have a strong structure (columns of A are samples
from a parameterized manifold). Nearby columns of A (in terms of their index) are
also very close in terms of the Euclidean distance. When the solution is not exact, it is
usually very close in terms of the column number to the exact one. The solution is still
very useful even if it does not lead to the exact true answer. We describe this more in
Chapters 6 and 7. Nevertheless, it is definitely useful to know when we obtain exact
solutions.

� 4.2 �p Regularization

The numerical method for noisy �p optimization,

min J(x) = min ‖y − Ax‖2
2 + λ‖x‖p

p. (4.39)

that we present in this section was developed by Cetin in [11], and some previous work
was done in [39]. The method has very good performance when p < 1, (comparable to
that of �1). The use of �p techniques with p < 1 has been limited in the literature due
to the many challenges involved.

The �p-norm is not convex for p < 1, (and, even its level sets are not convex) so we
are not guaranteed to achieve global minima by local optimization methods. Instead
of turning to computationally very demanding global optimization methods, we choose
to stay with local optimization methods, but rely on having a good starting point 9.

The use of �p norms with p < 1 to enforce sparsity can be justified in the same way
as we did it for �1. In fact, when p < 1 the necessary conditions for the global optimum
of the noiseless �p problem (min ‖x‖p

p subject to y = Ax) to be equal to the global
optimum of the �0 problem (min ‖x‖0

0 subject to y = Ax) are less stringent (see Section
7.3). However, finding the global solution of the noiseless �p problem for p < 1 is more
difficult than for the case when p = 1 (the noiseless �p problem is non-convex as well).
Our theoretical results about �p regularization in Chapter 7 are based on global optima
and cannot be directly applied to local solutions obtained by the numerical method we
describe here. We skip the noiseless version and go directly to the noisy formulation,
J(x) = min ‖y − Ax‖2

2 + λ‖x‖p
p.

Apart from non-convexity, the other difficulty arising with using the �p cost function,
is that it is not differentiable at 0. Actually, the cost functions are not differentiable for
both p = 1 and p < 1, but for p = 1 there is a way to go around this difficulty: in the

9Looking ahead, a good starting point in the context of array processing does not mean that we have
to have the peaks corresponding to the sources resolved (which is necessary for maximum likelihood
methods). We get away with the beamforming solution and sometimes even with a non-zero constant
signal as a good starting point. More information on this topic can be found in Chapter 5.
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real data case we look at x+ and x−, as defined in Section 4.1.1, and get an equivalent
linear programming problem; in the complex case we use SOC representation. For p < 1
this is not possible, and instead we consider differentiable approximations of the �p cost
function; one might use such approximations for the �1 cost as well. Differentiable
approximations typically have a parameter which controls the trade-off between the
smoothness of the approximation and the closeness to the non-differentiable function
which is being approximated. In other words, a differentiable approximation is a family
of functions.

For p = 1, a well-known approximation is:

‖x‖1 ≈
N∑

i=1

ρ(xi), where (4.40)

ρ(x) =

{
x2

i , if |xi| < γ

|xi| − γ + γ2, if |xi| ≥ γ
(4.41)

where γ is the parameter. As γ → 0, the approximation converges uniformly to the �1

norm. However, for any γ > 0, it is differentiable. This approximation can actually
be reformulated as a quadratic program (or SOC in complex case) [40]. However, we
are much more interested in the case where p < 1. Another approximation [39] which
works for p < 1 as well as for p = 1 is:

‖x‖p
p ≈

N∑
i=1

(|xi|2 + ε)p/2 (4.42)

Now ε ≥ 0 is the smoothing parameter. This differentiable approximation suits our
purposes well, and we get the following modified cost function:

J(x) ≈ Jε(x) = ‖y − Ax‖2
2 + λ

N∑
i=1

(|xi|2 + ε)p/2 (4.43)

Note that Jε(x) → J(x) as ε → 0. For our applications we usually set ε to be a small
constant. The minimization of Jε(x) does not yield a closed-form solution in general,
so numerical optimization techniques must be used.

For the solution of this optimization problem, Cetin [11] uses the half-quadratic
regularization method of [41], which was briefly mentioned in Chapter 3. Half-quadratic
regularization converts a non-quadratic optimization problem into a series of quadratic
problems. We skip the details, since for our purposes it suffices to view the algorithm
as a quasi-Newton’s method. However, the proof of local convergence from any starting
point that we refer to later is based on the half-quadratic roots of the algorithm.

We use the following iterative algorithm:
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H
(
x̂(n)

)
x̂(n+1) = 2AHy (4.44)

where n denotes the iteration number, and:

H(x) � 2AHA + λΛ(x) (4.45)

Λ(x) � diag
{

p

(|xi|2 + ε)1−p/2

}

where diag{·} is a diagonal matrix whose i-th diagonal element is given by the expression
inside the brackets. The important difference from methods such as ridge regression [42]
lies in the dependence of H on the iterates through Λ(x), which is a spatially varying
penalty.

The method can also be interpreted as a quasi-Newton method with Hessian ap-
proximation H. The full Hessian is given by

∇xxJε = H(x) + λdiag
{

p(p − 2)|xi|2
(|xi|2 + ε)2−p/2

}
(4.46)

For p < 2 the second term is always negative and may make the Hessian indefinite.
By keeping the first part only, we get a positive definite approximation to the Hessian.
Also, for p = 2, the approximation becomes exact.

The quasi-Newton iteration has the following form:

x̂(n+1) = x̂(n) − βH
(
x̂(n)

)−1 ∇xJε

(
x̂(n)

)
(4.47)

By choosing stepsize β to be equal to 1, a cancellation of the terms in the right hand
side reduces this iteration to (4.44). The gradient of Jε(x) is

∇xJε = 2AH(Ax − y) + λ vec
{

pxi

(|xi|2 + ε)1−p/2

}
= (4.48)

= (2AHAx + λdiag
{

p

(|xi|2 + ε)1−p/2

}
)x − 2AHy = H(x)x − 2AHy. (4.49)

Hence, we get

x̂(n+1) = x̂(n) − H
(
x̂(n)

)−1 ∇xJε

(
x̂(n)

)
= (4.50)

2H
(
x̂(n)

)−1
AHy. (4.51)

which leads to (4.44).

We run the iteration in (4.44) until ‖x̂(n+1)−x̂(n)‖2
2

‖x̂(n)‖2
2

< δ, where δ > 0 is a small
constant. Compared to standard optimization tools, the above scheme yields an efficient
method matched to the structure of our optimization problem. Convergence properties
of algorithms of this type have been analyzed, and convergence from any initialization
to a local minimum is guaranteed [43,44].
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� 4.2.1 Solution of positive definite linear systems

The solution of the linear equation (4.44) at each iteration has not been specified. It is of
course possible to solve the equation by plain Gaussian elimination, but we can do a little
bit better. The two components of H

(
x̂(n)

)
are both symmetric and the sum is positive

definite (p.d.): 2AHA is p.d. when A is invertible (or positive semidefinite when this is
not the case), and λΛ(x) is a diagonal matrix with positive elements, hence p.d. Thus
instead of Gaussian elimination, we can replace it with Cholesky decomposition followed
by the solution of two linear equations with upper and lower triangular matrices. The
Cholesky decomposition of a positive definite matrix is Q = GHG, where G is upper
triangular. Hence to solve Qx = y, we solve GHz = y, and Gx = z. This results in
some savings, but the procedure is still of order of N3.

More important savings come when we realize that the algorithm in (4.44) is iter-
ative, and so each iteration does not have to be solved exactly. This allows us to use
faster approximate methods for the solution of the linear system. We outline the idea
of one of the most prominent iterative methods, Preconditioned Conjugate Gradients in
Appendix D. In our implementation of �p optimization, we use the conjugate gradient
algorithm at each iteration.
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Chapter 5

Sparse-Regularization Framework
for Source Localization

Now comes the time to unveil the practical power of inverse problems with sparsity
regularization, by explaining how to apply them to the source localization problem. In
Chapter 4 we described a family of procedures for solving the ill-posed inverse problem
y = As + n, with A overcomplete, using the knowledge that s is sparse. The source
localization problem for array processing does not immediately come in this form. We
described the narrowband model in Chapter 2. The basic model is1

y(t) = A(θ)u(t) + n(t), t ∈ {1, .., T} (5.1)

where θ = [θ1, ..., θK ] is the vector of unknown source locations. It is clear that some
work has to be done to transform the problem into the sparse regularization framework,
since the dependence of y on θ is nonlinear, and the matrix A(θ) is unknown. We start
by describing how to mold the source localization problem for a single time sample (i.e.
T = 1) into our sparse regularization framework in Section 5.1.1.

When multiple samples are present (and usually T � 1), the problem becomes more
interesting. A naive approach is to treat each time sample independently, which is
discussed in Section 5.1.3. Using the time samples independently has many drawbacks,
and we investigate several possibilities for combining the time samples prior to solving
the inverse problem.

A simple solution comes for the practically important case where u(t) has a strong
non-zero temporal mean. These kinds of problems show up in localization of mov-
ing vehicles. In this case data for multiple time samples can be combined by taking
a temporal average. Section 5.1.4 furnishes the details. For other array processing
applications u(t) may be a zero-mean random process. A prime example is wireless
communications. If the signal u(t) has components which are not correlated or just
weakly correlated amongst themselves, there is an approximate way to combine the
time samples by looking at a beamspace representation of the data. We describe it in
full detail in Section 5.1.5.

1We may use an alternative time indexing where appropriate, {t1, .., tT }, when we wish to stress
time dependence. In that case, we mean that t1 = 1, t2 = 2, .., tT = T .
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If the sources are zero-mean and correlated, then neither of these two ways of com-
bining the data performs satisfactory. An approach to combine multiple time samples
that does not make any assumptions on the sources is to merge the subproblems for
different time samples into a single larger inverse problem. However, if the number
of time samples is large, then the amount of computation becomes significant. More
information is available in Section 5.1.6.

The most promising general approach which lowers dramatically the computational
effort of the previous approach is obtained through the use of the singular value decom-
position (SVD) of the matrix of the observed array outputs. Again, all the data are
combined into one inverse problem. The SVD version is reasonable computationally
and can handle all of the types of u(t) as well. Section 5.1.7 deals with this approach.

This summarizes all the different cases of narrowband farfield model that we have
considered. The narrowband model applies to both the farfield and the nearfield cases.
We mention the latter in Section 5.1.8.

The wideband model differs from that of narrowband due to the fact that time delays
can no longer be represented as simple phase shifts. Instead, the signal spectrum is
partitioned into several narrow frequency ranges, where the narrowband model applies.
There are several possibilities of what to do with the multiple frequency subproblems,
and we explore them in Section 5.2.

In Section 5.3 we describe how to get rid of the effects of the grid by using an
adaptive grid refinement procedure. And in Section 5.4 we propose a method for the
selection of the regularization parameter based on the well-known discrepancy principle
from inverse problems.

� 5.1 Narrowband problem

� 5.1.1 Representation for one time sample

For simplicity we first consider the case where we have a single time sample of data
at the sensors, or T = 1 in (5.1). Even for one time sample the problem is not in
the linear inverse form of (3.7), because the forward operator A(θ) depends on the
unknown source locations θ. In order to go around this difficulty, we introduce an
overcomplete representation A in terms of all possible source locations. Let {θ̃1, ..., θ̃Nθ

}
be a sampling grid of all source locations of interest. In the farfield case, θ̃n’s are
scalars representing the directions of arrival (DOA), whereas in the nearfield case, θ̃n’s
are vectors containing range and bearing information. The forward operator takes the
following form: A = [a(θ̃1),a(θ̃2), ...,a(θ̃Nθ

)].
We represent the signal field by an Nθ × 1 vector s(t), where the n-th element sn(t)

is nonzero and equal to uk(t) if source k comes from θ̃n, for some k. For a single time
sample the problem is reduced to

y = As + n, (5.2)

The M × Nθ matrix A is composed of steering vectors corresponding to each poten-
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tial source location as its columns. To emphasize, A differs from the steering matrix
representation A(θ) used in many array processing methods in the sense that it con-
tains steering vectors for all potential locations, rather than only the (unknown) source
locations. Hence, in our framework A is known and does not depend on the actual
source locations. The reason behind using such redundancy in the representation is our
desire to formulate the problem in a sparse signal reconstruction framework, which we
discussed in Section 3.2. Our matrix A in this terminology is an overcomplete basis,
where each basis vector corresponds to an array manifold vector for a sampling grid of
locations.

As in numerous non-parametric source localization techniques, our approach consists
of forming an estimate of the signal energy as a function of location, which ideally
contains dominant peaks at the source locations. We need to obtain an estimate of
the signal field s through the sensor observations y, by solving (5.2) which is an ill-
posed inverse problem, as we describe in Chapter 3. The central assumption in our
approach is that the sources can be viewed as point sources, and their number is small.
With this assumption the underlying spatial spectrum is sparse. Thus we can solve this
inverse problem via regularizing it by favoring sparse signal fields using the methodology
developed in Chapter 4. We can use any of the noisy �1 methods (ML1, ML2, MLJ,
MLJSQ), or the noisy �p method, (4.39), to solve the problem in (5.2). A discussion of
which of these procedures to choose appears in Section 6.1. Apart from the case where
ML1 is preferred for automatic regularization parameter selection (see Section 5.4.2) in
our experience the choice of a procedure is not a critical issue.
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Figure 5.1. Single sample source localization with �p: spatial spectra of two sources with DOAs of
60◦ and 70◦, (SNR = 20 dB).

We present an example of using �p regularization with p = 0.1 for single sample
source localization in Figure 5.1. We consider a uniform linear array of M = 8 sensors
separated by half a wavelength of the actual narrowband source signals. We consider
two narrowband signals in the far-field impinging upon this array from DOA’s 60◦
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and 70◦, which are closer together then the Rayleigh limit, and the SNR is 20 dB.
The regularization parameter in this example is chosen by subjective assessment, but
automatic alternatives can be used as discussed in Section 5.4. Using beamforming the
two peaks of the spectrum are merged, but using our sparse regularization approach
they are well resolved, and the sidelobes are suppressed almost to zero. Apart from the
asymptotic bias, which we discuss in Section 6.3, this spectrum estimate is an example
of what superresolution source localization methods aim to achieve.

� 5.1.2 Treating multiple time samples

Single snapshot processing may have its own applications, but source localization with
multiple snapshots is of greater practical importance. When we bring time into the
picture, our overcomplete representation is easily extended. The general narrowband
source localization problem with multiple snapshots reformulated using an overcomplete
representation has the following form:

y(t) = As(t) + n(t), t ∈ {1, ..T} (5.3)

Next few sections present how to deal with the availability of multiple time samples.

� 5.1.3 Treating each time index separately

The first thought that comes to mind when we switch from one time sample to several
time samples is to solve each problem indexed by t separately. Each problem can be
solved as if it was a single snapshot problem, in the exact same way as was done in
Section 5.1.1. We will have a set of T solutions, ŝ(t). There are several ways to get one
representative estimate of source locations from them. Two simple possibilities include
taking the mean and finding the peaks, or using one of the many schemes of clustering
analysis. The computing effort for the whole task is dominated by the solution of the T
inverse problems, and is linearly proportional to T . This approach is very simple, and
is especially useful in dynamic scenarios, where the locations of the sources are evolving
with time.

In Figure 5.2 we continue with our experimental setup from Section 5.1.1, increasing
the number of time samples to T = 40, and adding another source at 108◦. In plot
(a) little noise is added to the sensors, SNR = 20dB. We use �p regularization with
p = 0.1 for each time sample. The plot shows the solutions of the subproblems for all
of the T snapshots as an intensity map. The horizontal axis is time, and the vertical
one is the DOA. We clearly see three distinct lines around the correct DOAs, 60◦, 70◦

and 108◦. In plot (b) we conduct sample by sample processing using beamforming,
and the result is blurry; the first two sources are not resolved, and sidelobes appear
as spurious sources. Thus for high SNR sample by sample processing �p regularization
is superior to beamforming. However, when we decrease the SNR to 3 dB, and again
use �p processing, the variance of the estimates of source locations for each individual
problem is too high, and it is not possible to distinguish the sources anymore.
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Figure 5.2. Sample by sample processing: sources at 60◦, 70◦ and 108◦. (a)�p processing with p = 0.1,
SNR = 20 dB. (b) Sample by sample beamforming: SNR = 20 dB. (c) �p processing: SNR = 3 dB.

The method is appropriate at modest SNR for dynamic scenarios, but for stationary
cases, where the locations of the sources do not change noticeably for a period of several
time samples, it is not a good solution. The main drawback of treating each time
sample separately lies in the fact that there is no cooperation between the subproblems
for different time samples. For example changing the indices of support of s(t1) to
arbitrary values has no direct influence on the corresponding indices of support of s(t2).
The result is that the approach suffers from sensitivity to SNR. Small perturbations
in data lead to small perturbations in solutions to individual problems, and we can
expect to correct them when we combine solutions for different time samples. However,
moderate to strong perturbations may lead to completely useless solutions of individual
problems (only one time sample is available for each subproblem), and attempting to
combine them turns out to be futile. This motivates us to consider combining the data
for different time samples prior to solving inverse problems.

� 5.1.4 Non-zero mean processing

A simple way to combine different time samples exists for the case where u(t) has a
strong non-zero temporal mean, (the power spectrum at the 0-frequency dominates all
other frequencies). These kinds of signals appear in a number of passive sensor array
processing tasks, including the localization of moving vehicles with acoustic sensors.
For example, tracks of a tank in motion produce noise containing strong harmonics,
which upon demodulation take the required non-zero mean form. If u(t) has a strong
non-zero temporal mean, then so does s(t) on the indices which correspond to the
locations of the sources. This motivates combining the data by taking a temporal
average: ȳ = 1

T

∑T
t=1 y(t), and similarly for s̄ and n̄. This allows us to look at just one

problem:

ȳ = As̄ + n̄ (5.4)

instead of T problems as in (5.3). Taking the mean instead of just taking one particular
time instance (e.g. t = 1) reduces the variance of the noise by T . This is the simplest
way to translate multiple snapshot source localization into sparse regularization. Once
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we have (5.4), we are in the same situation as in the single time sample case, and we
use exactly the same methods to solve the problem.
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Figure 5.3. Non-zero mean signals: time sample combination by averaging followed by �p processing.
Sources are at 60◦, 70◦ and 108◦, and SNR = 3 dB.

In Figure 5.3 we continue our experimental setup from the previous section. The
sources are now non-zero mean, (they are modeled as ui(t) = 1 + νi(t), where νi(t) are
independent normal random variables with zero mean and standard deviation σ = 0.2).
We combine different time samples by averaging and use �p regularization with p = 0.1.
We compare our results against beamforming, Capon’s and MUSIC spectra. We take
T = 200 samples so that MUSIC and Capon’s methods have good estimates of the
sensor covariance matrix R. The correct DOAs are again 60◦, 70◦ and 108◦. When
we have a strong temporal mean our technique has an advantage over MUSIC and
Capon’s methods which are developed for zero-mean signals and are not able to take
full advantage of the non-zero mean. In the plot it is clear that �p provides a better
spectrum estimate than beamforming, MUSIC and Capon’s methods. We present more
simulations results for this scenario including bias and variance analysis in Chapter 6.

� 5.1.5 Zero-mean beamspace processing

The transformation into beamspace domain [13, 45, 46] is a commonly used tool in
array processing and in source localization in particular. It can be used to improve
the computational complexity of source localization by reducing the dimensionality of
the data, improve resolution, and reduce sensitivity to sensor position uncertainty [46].
The basic idea is to take the data at the sensors and to form beams (steer the array
by applying appropriate weights) in several directions by using beamforming. These
beams are the new data instead of the sensor outputs. There are many possibilities for
how many beams to use, which steering directions to select, and whether or not to use
the full array or subarrays for some of the beams. We do not go into these details.

We start by transforming the data into the beamspace domain. The steered beams
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are sampled on a grid of locations, and the corresponding collection of manifold vectors
is kept as columns in matrix B. Then the beamspace data is:

z(t) = BHy(t) = (BHA)s(t) + BHn(t) (5.5)

Next, we combine the squared amplitudes of the time samples of the beam outputs.
A similar idea has been proposed in [13]. Denote the (i, j)-th entry of BHA by vi,j ,
and BHn(t) by ñ(t). Then we have:

|zi(t)|2 = |
∑

j

sj(t)vi,j + ñi(t)|2

=
∑

j

|sj(t)|2|vi,j |2+2
∑

j1 �=j2

Re[sj1(t)
∗sj2(t)v

∗
i,j1vi,j2 ]+2

∑
j

Re[sj(t)∗v∗i,jñi(t)]+|ñi(t)|2

When the sources are uncorrelated and have a zero temporal mean, and the noise is
zero mean, the cross terms are all zero mean, and their temporal sums are negligible.
Hence the average squared beamspace data |zi|2 = 1

T

∑T
t=1 |zi(t)|2 can be represented

well by a linear transformation of the element-by-element square of BHA, denoted by
V, with average squared noise |ñi|2 = 1

T

∑T
t=1 |ñi(t)|2 added:

|z|2 = V|s|2 + |ñ|2 (5.6)

The unknown in the equation is not s but rather |s|2, since the peaks of the spectrum
of |s|2 appear for the same locations as for s. If we let ž = |z|2, and similar for š, and ň
then we can write the equation (5.6) as ž = Vš + ň. Now this equation is in the same
form as (5.2), and can be solved by the same methods. For now we ignore the fact that
the noise after our transformation is not Gaussian (it actually is one-sided), and use the
same �2 penalty ‖ž−Vš‖2

2 for the data-fidelity term. Also, despite the assumptions of
zero-mean and uncorrelatedness in the development, on simulated examples the spectra
exhibit peaks in the vicinity of the correct source locations even when these conditions
are not met exactly.

In Figure 5.4 we present simulation results for beamspace processing with �1 regu-
larized solution of the inverse problem (5.6). The three sources now have zero temporal
mean. The number of time samples is T = 200. In the figure we compare the spectra
of beamforming, Capon’s and MUSIC methods against the spectrum obtained using �1

regularization of the beamspace formulation. The correct DOAs are again 60◦, 70◦ and
108◦. The SNR is moderately high, 10 dB, so all the techniques except beamforming
are able to resolve the three sources.

� 5.1.6 Joint-time inverse problem

The methods of combining the samples in previous two sections (nonzero mean and
beamspace) make assumptions on the type of signals that they can handle, and they
work poorly when these assumptions are noticeably violated. We are interested in
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Figure 5.4. Beamspace processing of zero-mean uncorrelated sources with �1: spatial spectra of three
sources with DOAs of 60◦, 70◦ and 108◦, (SNR = 10 dB).

methods which on the one hand do not make any assumptions on the type of signals,
and on the other hand use different time samples in synergy, unlike sample by sample
processing. In this section we describe one method which meets both of these goals.
The starting point for the method is to combine the multiple time-problems in (5.3) by
stacking the data and signal vectors over time:

y̆ = [y(t1)′, y(t2)′, ...,y(tT )′]′,
s̆ = [s(t1)′, s(t2)′, ..., s(tT )′]′,
n̆ = [n(t1)′, n(t2)′, ...,n(tT )′]′

Then the matrix linking the data to the unknowns is block-diagonal, with copies of A
repeated T times:

Ă =

(A
A

. . .
A

)
(5.7)

The resulting inverse problem takes the exact same form as (5.2):

y̆ = Ăs̆ + n̆ (5.8)

Without any additional thinking one might try to solve it in the same fashion as the
previous problems, by imposing sparsity on s̆. This has the drawback that sparsity
is enforced in both the spatial dimension and in time (sparsity of all the entries is
penalized, and originally we have a 2-D grid of space and time). Enforcing sparsity in
time domain in our case is not appropriate, but it may be useful for some particular types
of signals, such as shot noise, which is itself sparse in time. Additionally, there is no
constructive cooperation between the different subproblems, similarly to the processing
in 5.1.3. Again, changing the indices of support of s(t1) to arbitrary values has no direct
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Figure 5.5. Joint-time processing with �1: spatial spectra of three sources with DOAs of 60◦, 70◦ and
108◦, (SNR = 10 dB) (a) Full spatio-temporal spectrum as a vector . (b) Full spectrum as an image
(horizontal axis is time, and vertical axis is space (DOA)). (c) Combined spectrum.

influence on the corresponding indices of support of s(t2) (indices of support correspond
to the estimates of the source locations).

A much better way to proceed is to impose a different prior, one that requires
sparsity in the spatial dimension, but does not require sparsity in time. This can
be done by first computing the �2-norm of all time-samples of a particular spatial
index of s, e.g. s

(�2)
i = ‖[si(t1), si(t2), ..., si(tT )]‖2, and penalizing the �1-norm of

s(�2) =
[
s
(�2)
1 , ..., s

(�2)
Nθ

]
. An �p norm can also be used instead of �1. The cost function

becomes

‖y̆ − Ăs̆‖2
2 + λ‖s(�2)‖1 (5.9)

This cost function is representable in SOC form. The optimization is performed over
s̆; s(�2) is a function of s̆. The time samples are combined using the 2-norm which has
no sparsifying effects. The spatial samples are combined using the �1 norm which does
enforce sparsity. This scheme will not prefer to have one time sample with most of
energy to many time samples with energy equally distributed among them. Also, the
different time-indices of s reinforce each other, since the penalty is much higher if the
supports of s(t) for different t do not line up exactly. Once s̆ is computed using the new
cost function, it can be used to get the source location estimates by splitting s̆ into the
corresponding s(ti), and taking the mean over time, and finding its peaks (similar to
sample by sample processing).

The main drawback of this technique is its computational cost. The size of the
inverse problem increases linearly with T and the computational effort required to
solve it increases superlinearly with T . Thus when T is large the approach is not viable
for the solution of the real-time source localization problem.

In Figure 5.5 we include the reconstructions of the full spatio-temporal spectra s̆ (as
a vector in plot (a) and as an image in plot (b)) as well as the agglomerated spectrum
which uses simple averaging. The sources are zero mean, and we take few samples
T = 20 to lessen the computational burden. The SNR is 10 dB. It can be seen that the
resulting spectrum is very sharp. In the full spatio-temporal spectrum displayed as an
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image clear advantages over the sample-by sample processing can be seen: this appears
to be a better reconstruction then the one in Figure 5.2, plot (a), obtained by sample
by sample processing for a higher SNR; peaks for all the time samples are aligned in the
joint-time version. We use the information available in all the time samples to produce
an estimate at each time point, so all the peaks are aligned. In addition, the spectrum
is not sparse in the temporal domain since we explicitly made an adjustment to the
cost function to avoid it.

� 5.1.7 SVD-lp processing

The technique that we present in this section is based on the singular value decompo-
sition (SVD) of the matrix of sensor output data, and it appears to be the overall best
adaptation of the regularization framework to the source localization problem. The
technique does not make any assumptions on the sources, and it is applicable to zero
and non-zero mean signals, correlated and uncorrelated. The computational complexity
is much lower than that involved in joint-time processing from last section; this is due
to the fact that the dimension of the new problem does not increase with the number
of time samples. Also, all time samples are combined together prior to solving the in-
verse problems unlike the sample by sample processing. We in fact present two versions
of using the SVD for combining time samples. The first method is described mainly
for historical purposes; it is simpler, but may have poor performance for a particular
realization of the signals. We discuss why this poor performance occurs, and motivate
the second version, which works very well and has consistent performance for all real-
izations. When we refer to �p-SVD and �1-SVD processing elsewhere in the thesis, we
have in mind the second version described in this section.

The basic idea is to find a few vectors which summarize all the information (or at
least as much as possible) about the cloud of points y(t), t ∈ {1, .., T}. In the first
version (the faulty one) we find just one vector which is a linear combination of the
singular vectors of the sensor output matrix. In the second version we keep several
singular vectors and combine them in the same fashion as was done for the joint-time
problem of the last section.

Linear combination of the singular vectors

An interesting possibility for summarizing the sensor outputs is a linear combination
of the left singular vectors of the sensor-data matrix Y = [y(t1), y(t1), ...,y(tT )]. If we
define N and S similar to Y, then we can write (5.3) as Y = AS + N. Consider the
singular value decomposition of Y:

Y = UΛV′ (5.10)

Note that at the moment we are not dealing with a decomposition of the data-covariance
matrix, which gets used in subspace-based source localization techniques. We will relate
our development with it later on in the section. When no noise is present, matrix Y
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has rank K, where K is the number of sources. The range space of Y is spanned by
the first K columns of U, corresponding to the non-zero singular values. When we
add noise, Y becomes full-rank (as long as T ≥ N), and the largest K singular vectors
will correspond to signal plus noise subspace, whereas the rest will be due to noise
alone. A meaningful linear combination that would summarize the cloud of points is a
combination of the signal subspace singular vectors multiplied by the signal subspace
singular values. Let 1K ∈ R

T be a vector with its first K entries being ones, and the
others zeros. Then the proposed linear combination can be written as:

ys = UΛ1K (5.11)

The motivation is that even with noise added, the signal subspace singular vectors
will be a reasonable representation of the range space of Y. We weigh the different
singular vectors according to the energy that they contain to get a single vector rep-
resenting the signal subspace. If noise is reasonably small, it is possible to determine
which singular values correspond to which subspace by looking at their magnitudes.
Noise singular values will be smaller.

The resulting vector ys belongs to the range space of Y; it is nothing but a linear
combination of y(t). In fact, ys = UΛ1K = YV1K . Let ss = SV1K , and ns = NV1K ,
then we get a linear model describing the transformed data:

ys = Ass + ns (5.12)

Any linear combination of s(t) will have the same sparsity profile (support) as the
underlying spatial spectrum, therefore the locations of the sources can be determined
from the indices of support of ss.

The method typically has very good performance, but it has a drawback of occa-
sional strong outliers, i.e. for some rare realizations of u it consistently converges to a
wrong solution for all noise realizations. At first the author thought that the outliers
are artifacts of poor convergence of the numerical algorithms. This is not the case.
Upon computing the bias plot for two sources versus their angular separation, the bias
was very well behaved except for sharp narrow rises (which looked continuously differ-
entiable after zooming by using a finer grid) at unpredictable locations. The reason
was later found to be the unequal distribution of power among the sources in the trans-
formed domain. For 2 signals, even if u1(t) and u2(t) 2 have the same the same power,
the transformed signals us

1(t) and us
2(t)

3 may turn out to have very different powers.
This inhibits the performance of sparsity regularization techniques, since the estimate
of the smaller of the elements has a larger variance and may even be judged as noise
and removed. When the difference in power is not very large (up to around 10 dB),
the effects are nearly transparent. The SVD transformation on rare occasions leads to

2Recall that in our notation s is the overcomplete representation of u, i.e. u(t) are the elements of
s(t) at the indices corresponding to the locations of the signals.

3us corresponds to non-zero elements of ss (we use a superscript to allow a second index).
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much larger discrepancies. The reason this happens is that the linear combination of
the singular vectors, ys, may get aligned much closer to one of the steering vectors than
to other ones, effectively falling into a smaller dimensional subspace. This alignment
depends on the particular realization of u(t), and is an important flaw in the processing.

Joint SVD processing

Trouble with the previous version arrives when we combine the left singular vectors,
by taking ys = UΛ1K . There is an alternative inspired by the joint-time processing of
Section 5.1.6. Instead of taking a linear combination of the singular vectors we consider
merging the singular vectors into a larger inverse problem.

Let YSV = UΛDK = YVDK , where DK = [IK 0]′. Here IK is a K × K identity
matrix, and 0 is a K × (T − K) matrix of zeros4. We multiply the singular vectors
by the singular values similar to the previous version, but now instead of adding the
vectors together, we keep them separate (YSV is a M ×K matrix). Let SSV = SVDK ,
and NSV = NVDK , to obtain YSV = ASSV + NSV . Now let us consider each
column (corresponding to each singular vector) of this equation separately: ySV (k) =
AsSV (k) + nSV (k), k = 1, .., K. If K > 1, then we have several subproblems and we
can combine them into a single one by stacking. Let y̆ = vec(YSV ) (i.e. stack all the

columns into a column vector y̆). Define s̆, and n̆ similarly. Also, let Ă =

(
A

. . .
A

)
,

i.e. Ă is block diagonal with K replicas of A. Finally we get y̆ = Ăs̆ + n̆ which is in
the form of (5.2).

Now we have a similar situation as in the joint-time processing case, but we have
reduced the number of subproblems dramatically from T to K. Most importantly, K is
fixed and is not a function of T . By using the SVD to reduce the dimensionality of our
observation space we got rid of the most important drawback of joint-time processing,
the dependence of the size of the problem on T while still summarizing the information
from all the T samples. We can use the remaining steps from joint-time processing
without change to solve the new SVD-domain set of problems.

The vector s̆ has been constructed by stacking sSV (k) for all the signal subspace
singular vectors, k = 1, .., K. Every spatial index i appears for each of the singular
vectors. We want to impose sparsity in s̆ only spatially (in terms of i), and not in
terms of the singular vector index k. We use an �2 norm to combine the samples in
terms of singular vector index, and a sparsifying �1 penalty for the spatial coordinate.

Let s̆
(�2)
i =

√∑K
k=1(s

SV
i (k))2, ∀i. Then sparsity of the resulting Nθ × 1 vector s̆(�2)

corresponds to the sparsity of the spatial spectrum. Hence we can find the spatial
spectrum of s̆ by minimizing

‖y̆ − Ăs̆‖2
2 + λ‖s̆(�2)‖1 (5.13)

4If T < K, or if the sources are coherent, we use the number of signal subspace singular values
instead of K in forming DK .
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The cost function is representable in SOC form. A similar development can be also
done using �p for p < 1 instead of �1.

The SVD of the matrix of sensor outputs has a very close relation with the eigen-
decomposition used in subspace methods. If we compute the correlation matrix of the
data, R = 1

T YY′, then the eigen-decomposition is given by

R =
1
T

UΛV′VΛ′U′ =
1
T

UΛ2U′ (5.14)

Hence the eigen-decomposition of the data-correlation matrix R has left singular
vectors of Y as the eigenvectors, and squares of the singular values of Y divided by T
as the eigenvalues. This justifies our discussion of splitting the range space of Y into
signal subspace and noise subspace, since subspace methods have been relying on it for
quite some time (in the zero mean case).

Instead of scaling the singular vectors by the singular values, while forming YSV ,
we may scale them by the squares of singular values, to parallel the singular value
decomposition of R. Let YSV = UΛ2DK = YVD̃K , where D̃K = Λ [IK 0]′. The rest
of the technique follows exactly what is done originally with D̃K replacing DK . This
modification was empirically observed to notably reduce bias, as we describe in Section
6.4. However, since we noticed this superiority of alternative scaling factors very late
in the process of thesis writing, most of the experiments elsewhere in the thesis use the
previous version scaled by non-squared Λ.

Similar to the subspace methods our formulation uses information about the num-
ber of sources K. However, we empirically observe that incorrect determination of the
number of sources in our framework has no catastrophic consequences (such as com-
plete disappearance of some of the sources as may happen with MUSIC), since we are
not relying on the structural assumptions of the orthogonality of the signal and noise
subspaces. Underestimating or overestimating K manifests itself mainly in the loss of
SNR5.

We present a simulation using our �1-SVD processing for zero-mean signals in Figure
5.6. The setup of the experiment is the same as in the last section, except we take
T = 200 time samples, and lower the SNR to −8 dB. MUSIC and Capon’s methods
have trouble with such amounts of noise, but the spectrum obtained using �1-SVD still
clearly shows all the three sources. We present more extensive experimental results
using this technique in Chapter 6.

5There are additional effects, such as a reduction in the number of resolvable sources. When the
number of signals is estimated correctly, the number of resolvable sources is around M − 1, where
M is the number of sensors. However if we severely underestimate the number of sources and take
only one singular vector, then the resulting spectrum will still be useful to find multiple sources, but
the maximum number of sources that can be resolved would be less than M − 1. This reduction is
milder than that of the MUSIC method, where any underestimates of the number of sources lead to
the disapperance of the peaks.
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Figure 5.6. SVD-�1: Spatial spectra of three sources with DOAs of 60◦, 70◦ and 108◦ (SNR = -8 dB).

� 5.1.8 Narrowband signals in the nearfield

In order to localize sources in the nearfield of the array the manifold is parameterized
by both range and bearing, as described in Section 2.1. By taking a grid over range and
bearing and stacking it into a vector we get the same form of the problem as for the
farfield case, (5.3). The spatial field is sparse in both range and bearing, thus sparsity
has to be enforced over all elements of the stacked data. This can be accomplished
simply by using an �1 or �p penalty. All the methods described in this chapter can
be extended in this fashion to handle the nearfield scenario. An important drawback
of these methods applied to the nearfield is the need to construct a two dimensional
sampling grid over both range and bearing. The dimension of the resulting inverse
problems grows quadratically with the fineness of the grid.
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Figure 5.7. Nearfield narrowband example: two non-zero mean signals. Source locations are param-
eterized by distances along and perpendicular to the array axis. Array element spacing is 0.6 meters.
(a) Conventional beamforming. (b) Time-sample averaging followed by �p processing.
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We present an example of localizing two nearfield sources in Figure 5.7. We look at
a non-zero mean case for simplicity, and use averaging to combine multiple snapshots.
The spatial locations are parameterized by distance along the array axis, and distance
perpendicular to the array axis, from the center of the array. This is equivalent to
parameterization by range and bearing. In plot (a) we show a result of using plain
beamforming, whereas in plot (b) we use �p processing with p = 0.1. The spectrum
obtained using �p method is much sparser than the one using beamforming, and peaks
due to both of the sources can be clearly seen.

� 5.2 Wideband scenario

The main difficulty which arises when wideband signals are considered is the impossi-
bility to represent the delays by simple phase shifts. A way to deal with this issue is to
separate the signal spectrum into several narrowband regions, each of which yields to
narrowband processing described in the last section. In general, when the sources have
wide frequency spectra, then we are interested not only in the source locations, but also
in the frequency composition of each source. We present two approaches for wideband
processing. The first one, described next in Section 5.2.1, treats each frequency band
independently, which leads to computational simplicity. The second approach in Sec-
tion 5.2.2 attempts to get a better source location estimate by joint processing of data
at different frequency bands.

� 5.2.1 Independent processing in each frequency band

To separate the spectrum into narrowband regions it is possible to use a filterbank,
h1(t), h2(t), ..., hW (t), in which each filter hk(t) has a small spectral support around the
central frequency wk, satisfying the narrowband assumption. After filtering the outputs
of each sensor with each filter the result is a set of W time-domain problems of the form
of (5.3):

yk(t) = A(ωk)sk(t) + nk(t) (5.15)

We can solve each one using one of the narrowband methods described in the Section
5.1. Once we solve each of the narrowband subproblems we get a spatio-frequency
spectrum of the sources.

A better alternative to the filter-bank approach is a frequency domain representation
(which can be thought of as a filter bank in its own right). We transform the sensor
data into the frequency domain resulting in the following set of linear models:

y(ω) = A(ω)s(ω) + n(ω), ω = 2πk/T, k ∈ {0, .., T − 1} (5.16)

The set of frequencies here includes every DFT-frequency corresponding to the sampling
period, and is much larger then the set of center frequencies used in the filter-bank
version of the algorithm, T � W . We can reduce the number of inverse problems
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by invoking the narrowband approximation. We split the frequency support of the
sensor outputs into several regions (w̌0, ŵ0), (w̌1, ŵ1), ..., (w̌W , ŵW ). Then we use the
steering matrix A(wk), where the center frequency of k-th narrowband region is wk =
(w̌k + ŵk)/2, as an approximation to the problems for every DFT-frequency falling in
the region. This way we again get a set of W problems, but the number of data points
in each subproblem is reduced by at least W in the process, compared to the plain
filterbank version. The k-th problem has the following form:

y(ω) = A(ωk)s(ω) + n(ω), ω ∈ (w̌k, ŵk) (5.17)

The main improvement over the original DFT model in (5.16) is that only one steering
matrix A(ωk) is used for all of the DFT-frequencies in the region (w̌k, ŵk). Now we can
either transform each region to the time domain (shifting first to center the region at 0-
frequency for demodulation purposes), or we can work directly in the frequency domain.
In both cases we are faced with the same issues of how to treat multiple time/frequency
snapshots6 and we can use one of the approaches for narrowband processing. The most
practical and versatile approach for this case is again the �p-SVD technique described in
Section 5.1.7. Solving all W problems leads to the desired spatio-frequency spectrum.
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Figure 5.8. Wideband example: 3 chirps, DOAs 70◦, 98◦, and 120◦. Frequencies are processed
independently. (a) Conventional beamforming. (b) �1-SVD processing.

In Figure 5.8 we present an example of using the same 8-element uniform linear
array as the one used throughout this chapter, but the signals are now wideband.
We consider three chirps with DOAs 70◦, 98◦, and 120◦ with frequency span from
250 Hz to 500 Hz, and T = 500 time samples. Using conventional beamforming the
spatio-frequency spectra of the chirps are merged and cannot be easily separated (plot
(a)) (especially in lower frequency ranges), whereas using �1-SVD (plot (b)) they can

6A frequency snapshot is a vector y(ω) where ω ∈ (w̌k, ŵk), so that the linear problem is ap-
proximated using A(ωk). This way all such y(ω) can be treated similar to time snapshots for the
corresponding time-domain problem.
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be easily distinguished throughout their support. The frequency spectrum of each
chirp in �1-SVD reconstruction has a jagged shape due to the fact that we treat each
frequency independently. Using joint-frequency processing (next section) we can use the
information that the spectrum of a chirp is smooth and impose an additional penalty
on smoothness in frequency domain to take care of this jagged appearance.

� 5.2.2 Joint-frequency processing

At this point we have several different inverse problems for each frequency band, and
we may want to attempt something which parallels the joint-time discussion, in Section
5.1.6. We stack all the frequency vectors, and stack the steering matrices in a similar
fashion:

y̆ = [ys(w1)′ ys(w2)′ ... ys(wW )′]′,
s̆ = [ss(w1)′ ss(w2)′ ... ss(wW )′]′,
n̆ = [ns(w1)′ ns(w2)′ ... ns(wW )′]′

The block-diagonal elements are now all different, with Ak = A(ωk):

Ă =
(A1

A2
...

AW

)
(5.18)

The form of the inverse problem is the same as for the joint-time case:

y̆ = Ăs̆ + n̆ (5.19)

Solving the joint-frequency model by imposing an �1 or a general �p penalty on s̆, i.e.
min ‖y̆ − Ăs̆‖2

2 + λ‖s̆‖p
p, enforces sparsity both spatially and in frequency. In general

it is not a good idea, but if the signals of interest are composed of superpositions of
harmonics, then it leads to a desirable sharpness of both the spatial and frequency
spectra.

In Figure 5.9 we look at two wideband signals consisting of two harmonics each. The
array is again an 8-element ULA. Harmonics have frequencies 200 and 500 Hz at DOA
80◦, and 200 and 400 Hz at 110◦. Plot (a) shows results using conventional beamforming,
and plot (b) uses a joint model with �p sparsity penalty on both DOA and on frequency.
The exponent in �p is set to p = 0.1. The results are displayed as an intensity map
on a 2-D grid of angle and frequency. Conventional beamforming is unable to separate
the two spatial peaks for frequency 200 Hz, whereas the joint-frequency �p processing
produces four sharp peaks corresponding to each spatio-frequency component.

When the situation is more general, and frequency spectra of the sources are not
sparse, penalizing sparsity in frequency is not useful. Instead we can parallel what was
done for the joint-time processing in Section 5.1.6. This translates into penalizing the
�1-norm of the �2-norm of all the frequency components for a particular spatial location.
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Figure 5.9. Wideband example: wideband harmonics, DOA 80◦: frequencies 200 and 500 Hz and
DOA 110◦: frequencies 200 and 400 Hz. (a) Conventional beamforming at each frequency. (b) Joint-
frequency �p processing.

We compute the �2-norm of all frequency-samples of a particular spatial index i of s, i.e.
s
(�2)
i = ‖[si(ω1), si(ω2), ..., si(ωT )]‖2. We penalize the �1-norm of s(�2) =

[
s
(�2)
1 , ..., s

(�2)
Nθ

]
.

The cost function becomes

‖y̆ − Ăs̆‖2
2 + λ‖s(�2)‖1 (5.20)

This leads to the synergy of the different frequency components for the purpose of
getting better spatial spectra. Alternatively, if we have additional knowledge about the
unknown spectra, such as smoothness, then it may be beneficial to impose a relevant
prior in the frequency domain (instead of an �2 prior) along with a sparsity prior in
the spatial domain. This is applicable for example to superpositions of several chirp
signals, which have smooth spectra.

� 5.2.3 Wideband focusing matrices

The number of narrowband regions depends on the allowable bandwidth which still
satisfies the narrowband assumption. The amount of work that has to be carried out is
linearly proportional (if the models are not joined into a single inverse problem) to the
number of narrowband regions. An interesting idea based on the so-called “focusing
matrices” has been developed in [47] which allows to extend the frequency ranges by
suitable orthogonal transformations of the data.

The main idea of the method is to find a matrix Q such that the range space of
QA(θ, ωk) is the same as, or is a good approximation to that of A(θ, ωj). The steering
matrices A(θ, ω) that we refer to correspond to the unknown locations θ, and they are
not the overcomplete versions. Denote ỹ(ωk) = Qy(ωk), and ñ(ωk) = Qn(ωk). Signals
at frequency j do not get changed, hence ỹ(ωj) = y(ωj), and ñ(ωj) = n(ωj). Then the
problems

ỹ(ωk) = Qy(ωk) = (QA(θ, ωk)) s(ωk) + Qn(ωk) ≈ A(θ, ωj)s(ωk) + ñ(ωk) (5.21)
and ỹ(ωj) = y(ωj) = A(θ, ωj)s(ωj) + ñ(ωj) (5.22)
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can be used coherently.
Given a method to generate such a matrix Q, we can proceed to solve the wideband

source localization problem. First we take the center frequency of the region of interest,
ωc, and fix the corresponding steering matrix A(θ, ωc). Next we compute the set of
focusing matrices Q(w) for each of the remaining frequencies in the region of interest,
and apply them to the sensor observations, ỹ(ωk) = Q(ωk)y(ωk). The tricky part is that
we need to know θ in order to compute Q(ω), and θ is the unknown that we are trying
to estimate in the first place. However, for the purpose of getting a good approximation,
we only need to know roughly the regions where there are signals (closely-spaced signals
do not have to be resolved, and their number needs not be determined). We can find
Q(ω) based on the estimates of θ’s using plain beamforming.

We are led to the following set of problems for all wk:

ỹ(ωk) = A(ωc)s(ωk) + n(ωk) (5.23)

The A(ωc) matrix is now overcomplete, and ỹ(ωc) = y(ωc). Now we have exactly the
same set of problems as in the narrowband region approximation (Section 5.2.1), and
we can solve them by using �p-SVD as well. In practice, if there is a large number of
frequencies, instead of computing Q(ω) for every one of them, it is more efficient to use
the same Q(ω) for several nearby frequencies. However, the quality of approximation
deteriorates if we consider signals with very wide spectra (selecting Q which produces
good approximations is not possible towards the outer limits of a wide spectrum). Thus,
the approach is not a panacea but can be thought of as an extension of the notion of
narrowband.

Multiple ideas exist for the selection of a suitable focusing matrix Q. The authors
of [47] argue that in order to preserve the information content of the data, Q has to be
orthogonal (for example, this leads to having the same covariance matrix for the noise
for the transformed data). With the requirement of orthogonality, they propose to use
the following cost function:

min ‖A(θ, ωc) − Q(ωk)A(θ, ωk)‖F , subject to Q(ωk)′Q(ωk) = I (5.24)

This problem is well-known under the name of orthogonal Procrustes, [48], and has an
efficient global solution using the singular value decomposition.

Our main point here is that the idea of wide-band focusing matrices could be used
in our framework to extend the notion of “narrowband” in the context of the techniques
of Sections 5.2.1 and 5.2.2.

� 5.3 Multi-resolution grid refinement and zooming

One of the limitations of the techniques as we presented them is their inherent limitation
to a grid of steering locations. In order to achieve greater accuracy than allowed by the
grid, but at the same time avoid the substantial increase in computation by considering
a dense fine grid, we explore the idea of adaptively refining the grid.
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Instead of having a universally fine grid, we make the grid fine only around the places
where the signals are present. This requires the knowledge of the source locations, which
can be obtained by using a coarse grid first. We can also refine the grid several times
to get very accurate estimates. The algorithm is the following:

1. Create a rough grid of potential source locations θ̃
(0)
i , for i = 1, .., Nθ. Set r = 0.

2. Form Ar = A(θ̃
(r)

), where θ̃
(r)

= [θ̃(r)
1 , θ̃

(r)
2 , ..., θ̃

(r)
Nθ

]. Use �1 regularization7 (any

applicable version, e.g. �1-SVD) to get the estimates of the source locations, θ̂
(r)
j ,

j = 1, .., K, and set r = r + 1.

3. Get a refined grid θ̃
(r)
i around the locations of the peaks, θ̂

(r−1)
j . We specify how

this is done below.

4. Return to step 2 until resolution of the grid is fine enough.

θ̂

θ̂

θ
~

θ
~

θ
~

0

1

2

θ̂

(0)

(1)

(2)

Figure 5.10. Illustration of adaptive grid refinement. Coarse grid source localization is followed by
refining the grid around the peak locations.

Now we clarify some of the details of the algorithm. In step 1 the rough grid of
potential source locations, θ

(0)
i has to be rather fine at the start, not to introduce notable

bias. A 1◦ or 2◦ uniform sampling, (or similar uniform sampling of the cosine of the
angle), usually suffices. The next comment is about grid refinement in step 3. Many
different ways to refine the grid can be imagined; we choose simple equi-spaced grid
refinement. Suppose we have a locally uniform grid (piecewise uniform), and at step r
the spacing of the grid is δr. We pick an interval around the j-th peak which includes
two grid spacings to either side, i.e. [θ̂(r)

j −2δr, θ̂
(r)
j +2δr], for j = 1, .., K. In the intervals

7In theory it is possible to use �p regularization with small p instead of �1. However, there appear
to be numerical difficulties with �p when we reach a fine grid size; they are still under investigation.
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around the peaks we select the new grid which has spacing a fraction of the old one,
δr+1 = δr

γ . In our simulations we choose γ = 3. It is possible to achieve fine grids either
by rapidly shrinking δr for few refinement levels, or by shrinking it slowly using more
refinement levels. We find that the latter approach is more numerically stable, that is
why we set γ = 3, a relatively small number. After a few (e.g. 5) iterations of refining
the grid, it becomes small enough that its effects are almost transparent. We illustrate
the idea of grid refinement in Figure 5.10. In our experience the procedure works very
well. We use it to get accurate bias-plots and CRB plots in Chapter 6.

This multiresolution method refines the grid around each of the peaks of the spectra
at previous resolution. However, situations may arise where we are only interested in
an accurate estimate of a particular peak, say θ̂1. This task may be called zooming.
Unfortunately, we cannot ignore the presence of other peaks and refine the grid only
around θ̂1, since in order to have ‖y−As‖2

2 small, we must account for all the compo-
nents of y which are created by the corresponding sources. Without taking them into
account the procedure will create multiple spurious peaks in the refined grid. What
may be done is either subtracting the irrelevant components of y corresponding to the
peaks near θ2, ..., θM , or projecting y onto the orthogonal complement of the matrix
A([θ2, ..., θK ]), getting rid of the spurious peaks.

� 5.4 Regularization parameter selection

A crucial part of our source localization framework is the choice of the regularization
parameter, λ, which balances the fit of the solution to the data versus the sparsity
prior. The same issue arises in all inverse problems where regularization is used, for
example in some machine learning tasks, where the fit to the data is balanced versus
the complexity of the model. If we define the complexity of the underlying spatial
spectrum as the number of nonzero elements in the discretized spatial spectrum, then
we are dealing with a very similar problem. Small regularization parameters correspond
to good fits to the data and high model complexity (for our case that corresponds to
having wide mainlobes or spurious peaks), with consequent overfitting, while too much
regularization makes the models over simplistic and fails to explain the data well. The
proper choice lives somewhere in between the two extremes.

Over the years many schemes for the selection of the regularization parameter have
been developed in the inverse problems, machine learning and statistics communities.
The discrepancy principle, an established paradigm for regularization parameter selec-
tion, appears to be a good match for our problem. In Section 5.4.2 we propose our
adaptation of the discrepancy principle which allows a very efficient implementation.
We have had less success or experience with some other approaches; we discuss the
issues related to their use for our problem in Appendix F.
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� 5.4.1 Discrepancy principle

A very natural idea is to select the regularization parameter (we will refer to it as λ
from now on, for simplicity) such that the residuals of the solution obtained using λ
match some known statistics of the noise. This comes under the name of discrepancy
principle [26,49]. For example, if the noise is white Gaussian (spatially and temporally)
with a known standard deviation, then we can select λ such that ‖y−As‖2

2 ≈ E[‖n‖2
2].

How well this works depends on the spread of the distribution of ‖n‖2
2 around its

mean, and the sensitivity of the inverse problem to the corresponding choice of λ. For
quadratic regularization problems, the calculation of λ to match the residual to the noise
can be efficiently carried out numerically. However, if the problem is non-quadratic,
(or even worse non-convex), then ferreting out this λ requires substantial work. The
only general procedure is an adaptive search, where we first guess a value of λ, solve
the corresponding inverse problem, compare the resulting residual to noise, adjust λ
accordingly, and repeat until a good candidate is found. If the possible range of λ is
not known, then this may require a large number of iterations (and inverse problem
solutions). Next we propose a considerably more efficient (avoiding iterations) approach
based on the constrained version of �1 regularization, ML1.

� 5.4.2 Discrepancy principle in �1 constrained form

We present a new practical method which avoids the need to search over different λ
altogether. So far we have developed it for non-zero mean case, and for low-noise �1-
SVD problems. An efficient procedure is available for the �1 version of the techniques
only.

The idea is quite simple. Recall that the set of solutions of the joint version of the
noisy �1 problem MLJ, min ‖y − As‖2

2 + λ‖s‖1, which we used in this chapter, and
the constrained versions, ML1 in particular, min ‖s‖1 subject to ‖y −As‖2

2 ≤ β2, are
equivalent in the sense that the sets of solutions ŝ(λ), and ŝ(β), over all λ and β are
the same. Going from one version to another is just a question of reparameterization.
The difficulty is that we cannot predict the value of λ for MLJ such that the MLJ cost
function function will have ŝ(β) as the optimal solution. Fortunately, there is no real
need to find this mapping, since we can solve ML1 problem with about the same effort
as solving MLJ using constrained quadratic programming for real data or Second Order
Cone (SOC) programming for complex data, as described in Chapter 4.

For the ML1 problem the task of choosing β such that we have the residual ‖y−As‖2
2

match the expected value of the norm of the noise is considerably easier. We just choose
β high enough so that the probability that ‖n‖2

2 ≥ β is small. We cannot simply set
β = E[‖n‖2

2], since it is quite likely that a particular realization will have ‖n‖2
2 ≥ β, and

this makes the true solution (the one that would have been obtained in the noiseless
case) fall outside the feasible region. In practice that manifests itself in spurious peaks
due to noise that are necessary to drive ‖y − As‖2 down to values smaller than β.

If the distribution of the noise is known, e.g. i.i.d. Gaussian, then computing an
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upper bound for ‖n‖2
2 is not very challenging. In the white i.i.d. Gaussian case with

variance σ2, if we have n ∈ R
n, then (1/σ2)‖n‖2

2 ∼ χ2
n, the χ2 distribution with n

degrees of freedom.
In practice we choose β so that the confidence interval [0, β] integrates to 0.999

probability. This rule for the selection of β appears to be a good choice down to very
low SNR. For very high SNR, β computed using the confidence interval may be a very
small number, and it is necessary to limit β from below to some moderately small fixed
value so that the errors due to finite precision of the constrained �1 optimization are
ignored.
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Figure 5.11. The use of the constrained version of the discrepancy principle. SNR = 20 dB, DOAs
of 43◦ and 73◦ (a) β selected at the top of a .999 confidence interval . (b) β � ‖n‖2

2 .

For illustrative purposes, we include two plots of using constrained �1 optimization.
In figure 5.11 (a) β is selected by the rule that we proposed, and it yields a good
reconstruction. The true source locations are at angles 43◦ and 73◦ with respect to the
array axis, and the �1 spectrum exhibits strong peaks at these locations. However, in
(b), β is chosen much smaller than the norm of the particular noise realization. As
we described, spurious peaks appear in order to drive down the residual to β. It is
still possible to determine the correct DOA’s, since the spurious peaks are about 30 dB
lower, but the first spectrum is visually much more pleasing.

Noise norm prediction for �1-SVD

A similar procedure can be applied to the �1-SVD version of our technique 8. The
objective function for �1-SVD is min ‖y̆ − Ăs̆‖2

2 + λ‖s̆(�2)‖1. We can instead solve
min ‖s̆(�2)‖1 subject to ‖y̆− Ăs̆‖2

2 ≤ β2. The two problems are related by an unknown
transformation from λ to β. Again, we do not need to find this transformation, since

8We have in fact proposed two different versions of the �1-SVD technique, one with scaling by Λ,
and another with scaling by Λ2. The latter version was conceived much later than the first one, so
current discussion of parameter choice applies to the first one only. Extensions are possible.
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the second problem (constrained form) can be solved with about the same complexity
as the unconstrained one. However, a proper choice of the regularization parameter for
the constrained version is easier to find. Recall that

‖y̆ − Ăs̆‖2
2 = ‖vec(YSV ) −

(
A

. . .
A

)
vec(SSV )‖2

2 (5.25)

=
∑

k

‖ySV (k) − AsSV (k)‖2
2 = ‖YSV − ASSV ‖2

fro = ‖YVDK − ASVDK‖2
fro (5.26)

= ‖(Y − AS)VDK‖2
fro = ‖NVDK‖2

fro (5.27)

The signal vector S and all the related quantities, s̆, SSV , and S, correspond to the
true signals, and not to the reconstructed ones. Denote VK = VDK , then VK is the
set of first K right singular vectors, i.e. an orthonormal set. Hence it is not difficult to
get a confidence interval for ‖NVDK‖2

fro = ‖NVK‖2
fro, which is a sum of MK squares

of normal random variables with mean zero and standard deviation σ, the same as the
original sensor noise. This is a χ2 distribution with MK degrees of freedom.

This statement in fact is only approximately correct. The singular value decomposi-
tion Y = AS+N = USV′ depends on the particular realization of noise, and hence VK

is a function of N. However, when noise is small, the term AS dominates the singular
value decomposition and the change due to the addition of N is small. In simulations
we observe that confidence intervals for the norm of the noise based on ignoring the
dependence of VK on N are very accurate up to moderate amounts of noise. In order
to use the same scheme for lower SNR, either the dependence has to be recorded based
on simulations, or by more intricate analysis it may be possible to predict the variance
of the norm of the noise taking into account its influence on VK .



Chapter 6

Practical Issues and Performance
Analysis

Having introduced the techniques, we have left out some important details concerning
their implementation and behavior for the reason of clarity. Looking at the figures
appearing in Chapter 5 and reading through the brief commentary which accompanies
them, many questions immediately come to mind. How is the regularization parameter
chosen? How do we initialize the techniques? Which method is better, �p or �1, and
if both work equally well then why do we need to consider them both? What is the
effect of the grid, and what happens if the true sources have locations in between the
grid points? How many sources can be resolved? We answer or at least discuss all of
the questions above in Section 6.1.

Another question of primary importance is that of performance. As we have seen, a
great number of practical source localization methods have already been developed and
investigated. Thus a new method has to justify its existence by having some favorable
properties. In the case of �1/�p regularized inverse problem source localization the ben-
efits are: resolving closely-spaced sources; the robustness to low SNR (lower threshold
region), 1 correlated sources, and low number of snapshots; as well as absence of the
need for accurate initialization (which is essential for Maximum Likelihood methods).
We explicate these benefits and compare the performance of our techniques to existing
source localization methods in Section 6.2.

Finally, we devote two sections to the study of bias (Section 6.3) and variance (Sec-
tion 6.4) of the estimates of source locations using our techniques. We look specifically
at the non-zero mean scenario with time-sample combination by averaging, and the
�1-SVD version in the zero-mean case. In the section discussing variance, a comparison
with the CRB is provided for parameter regions where our technique is unbiased.

There are quite a few different versions of our source localization scheme, and there
are many questions to be explored. Throughout this chapter, instead of considering
every possible combinations of versions and questions, we note that many of the char-

1Threshold region means the breakdown region of an estimator, where the performance suddenly
exhibits a sharp rise in variance, and departs from the CRB. This occurs commonly in nonlinear
estimation problems.

83
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acteristics are very similar for all the versions of the techniques. When important
differences arise we stop to point them out. Otherwise, we take the freedom to switch
freely between the different versions of �1 and �p. In all the experiments in this chapter
we consider only the farfield narrowband problem.

� 6.1 Details of the techniques and their implementation

We now discuss some of the details of the proposed sparse source localization framework.
The particular questions that we address in this section are the effects of the grid,
comparison of �p for general p and �1, initialization of the techniques and selection of
some parameters for the techniques, and the number of resolvable sources.

� 6.1.1 Effects of the grid

Recall that the spatial spectrum obtained using our source localization scheme is in-
herently limited to a grid of spatial locations. As we discuss in Section 5.3, this can be
mitigated with the use of a multi-resolution approach, but even there at each resolution
the true signal location is most likely to be between the grid points. Fortunately, it
turns out that both �p and �1 behave very reasonably under such circumstances. Figure
6.1 illustrates what typically happens. The true source is located at 40.7◦ with respect
to the array axis, whereas the two closest points on the sampling grid are 40◦ and 41◦.
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Figure 6.1. Source in between the grid points: DOA of 40.7◦. SNR = 20 dB. (a) �p . (b) �1 .

In the plots we zoom in on the region of interest, and it can be seen clearly that
the �p spectrum with p = 0.1 has a peak at 41◦, whereas the �1 spectrum has a wider
main lobe which includes both of the grid points. The explanation lies in the fact that
�p with p = 0.1 puts a much higher penalty on the lack of sparsity, and thus it strongly
prefers one non-zero index instead of two. For the �1 method sparsity penalty is milder,
and the cost of reduced sparsity is balanced by the improvement in the fit to the data.
Note the observed outcomes are not universal, and under particular realizations �1 may
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turn out to have just one peak, and similarly �p has wider peaks from time to time.
Nevertheless, both outcomes are favorable for the task of source localization, (it would
be much worse if instead spurious peaks appeared in unexpected places) and hence the
grid is not a major hindrance, as long as it is not very coarse.

� 6.1.2 �p vs. �1

An interesting question that we are faced with is the choice of which cost function to
use, �p with p < 1, or �1. From our theoretical analysis (Section 7), �p is expected to
have much better resolution capabilities as p → 0, provided we converge to a global
minimum of the cost function (4.39). However, we use local optimization methods,
and we are only guaranteed to converge to local minima. Penalization with �1, on the
other hand, involves a convex cost function, and is guaranteed to converge to a global
minimum. Hence, theory still leaves the question without an answer.

In practice, we observe that usually the solutions using the two cost functions (with
the Interior Point Method (IPM) implementation of �1 in one of three forms ML1,
ML2, or MLJ from Section 4.1.2, and our iterative procedure for �p with small p from
Section 4.2) are remarkably similar. Although occasionally, the �p method seems to
have a little better sparsity (as in the case of sources in between the grid points). One
possible explanation is that the �1 minimum is very close to a local minimum of the �p

cost function, and using our initialization scheme we consistently converge to it. An
investigation of the structure of the local minima of the �p cost function appears to be
very difficult, and has not been done. Also, the IPM implementation of �1 has much
better performance than the iterative procedure for �p optimization for problems with
high matrix condition numbers. These problems arise in our multiresolution approach,
where the condition number can increase dramatically for the refined grid, and for
problems with very closely-spaced sources. In these cases �p either converges to poor
solutions, or has numerical difficulties, and the use of �1 is preferred.

In terms of the computational complexity the two versions are similar (all the dif-
ferent versions of �1 have about the same running time). The number of iterations of
the Quasi-Newton method for �p is typically between 10 and 20 (unless the tolerances
are set very high), and the number of iterations of the interior point method is also
about the same. The time per iteration is in both cases dependent upon a solution of
a linear system of equations of similar dimensions, so it is also comparable2.

One clear benefit of �1 is that we do not have to worry about convergence to bad
local minima (due to the lack of bad local minima altogether). Yet, initializing the
�p technique with the beamforming spectrum seems to consistently converge to very
good local minima, which are as useful for the task of source localization as the global
minima of �1.

Using the �p iterative method we are not limited to small p, we can also set p = 1
2For reference, the time required to solve an instance of the source localization problem with an

8×180 matrix A using either �1 or �p with p = 0.1 with a Matlab implementation of the code on Linux
on a computer with an 800 MHz Pentium 3 processor is roughly 2 seconds.
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without any change in the algorithm. This way we achieve a smooth approximation
to the �1 cost function. One would expect that this has similar minima as those of
pure �1, but the resulting spectra have much wider main-lobes than those using pure
�1 via IPM, or �p with small p. A plot of a typical spectrum is included in Figure 6.2.
This phenomenon of widening the peaks can be eliminated by setting the smoothing
parameter ε in the �p approximation (4.42) to a very small value, and setting PCG
tolerance for convergence to a very small value. By using 10−10 for both3 we get about
the same level of sharpeness in the spectra as for �p with p = 0.1. However, the number
of iterations required for convergence, and the running time of each PCG iteration
increase substantially. From here on, whenever we speak of �1 source localization, we
refer to the IPM implementation with the exact �1 cost function.
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Figure 6.2. Iterative �p procedure with p = 1. The smoothing parameter ε and the PCG tolerance
are kept the same as for �p with p = 0.1. DOA: 70◦ (SNR = 20 dB).

And, last but not least, currently there is an important reason of preferring �1 over
�p with p < 1, since it may allow an efficient one-step choice of the regularization
parameter by turning to the constrained version (ML1). It is also possible to formulate
a constrained version of the �p cost function, i.e. min ‖s‖p

p subject to ‖y −As‖2 ≤ β,
and in fact we have implemented it using the log-barrier approach. However, the speed
of convergence is extremely slow. The reason quite likely lies in our poor choice of the
points along the central path of the problem, and a carefully implemented IPM is likely
to have the same speed of convergence as the corresponding �1 problem.

� 6.1.3 Initialization

One of the important benefits of our approach to source localization is that we do not
require an initialization by an already very accurate spectrum, unlike ML techniques. In

3For comparison, for �p with p = 0.1, we typically set both ε and the PCG tolerance somewhere in
between 10−3 and 10−5.
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fact any of the �1 techniques have global convergence independent of the initialization,
so they are completely insensitive. For the �p counterpart initialization does make a
difference, and we have found that starting from a beamforming solution we converge
to good local minima. Figure 6.3 shows how the iterative procedure improves with each
iteration and finally obtains a sharp spectrum resolving the two sources.
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Figure 6.3. �p: Progress with iterations staring from beamforming solution

We illustrate the effect of choosing a different initialization. Figure 6.4 (a) shows
what happens when we initialize the iterations by Gaussian noise. The method con-
verges to a poor solution. In plot (b) we initialize by the MUSIC spectrum. The
method converges to peaks which are unbiased. When a spectrum obtained using �p

exhibits a bias (see Section 6.3), it may be possible to correct it using an initialization
with another super-resolution technique, such as MUSIC (provided the signals are not
correlated, and the SNR is high enough). The practical applications of this are not
very clear, since sparse regularization framework is beneficial in the regions with low
SNR, where MUSIC fails. Hence if MUSIC can be used to achieve an accurate spec-
trum there is no reason whatsoever to run �p. The example does show that we may
achieve much better source localization through the investigation of other possibilities
for initialization, or by global optimization techniques.
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Figure 6.4. Progress of iterations for �p with different initializations: (a) Random initialization. (b)
Initialization by MUSIC spectrum.

� 6.1.4 Parameter selection

No specifications of an algorithm is complete without a discussion of how to select
various parameters. We are lucky to have only a few parameters, so the discussion is
not very long. In the �1 technique, the only parameter of interest is the regularization
parameter. We can also consider the choice of a particular version, ML1, ML2, or
MLJ as a ternary-valued parameter. In the �p processing case there are two additional
parameters, namely the power, p, and ε, the smoothing factor for the differentiable
approximation in (4.42).

We have discussed the constrained �1 version of the discrepancy principle for choos-
ing the regularization parameter in Section 5.4. There are some other possibilities for
automatic selection, which we discuss in Appendix F, but it is not yet clear whether
they can be successfully used in practice. So far, we have developed the constrained �1

approach for some limited scenarios only, so for other scenarios we have no fast methods.
In these cases we usually set the parameters by subjective assessment of the resulting
spectra through trial and error. Moderate changes of the SNR, and the positions of
the sources do not require reselection of the parameter, so this approach is feasible for
our purposes. In practice, manual choice would be useful only in very controlled source
localization problems, and we keep looking for a more general fast automatic rule.

Choosing an appropriate version of �1 is much easier. The ML2 version has no
practical significance, since the �1 norm of the incoming signal is typically unknown.
The MLJ is used whenever the estimation of the variance of the noise is difficult, or
when it is completely unknown (for example: beamspace, unknown noise fields, and
problems with array model errors). In cases where noise power is known or can be
predicted, ML1 is the best bet.

Selecting the parameters associated with the �p technique does not pose a major
difficulty. For p in the range from around 0.01 to 0.9, the results do not change no-
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ticeably. Shifting p within this region has very little effect on the solution. In the rest
of the manuscript, we set p = 0.1. When p is around 1, then as we described, with
loose tolerances we observe widening of the lobes, with the associated resolution loss,
whereas with tight tolerances the running time to convergence increases substantially.
When p is very close to zero, difficulties with convergence arise. The insensitivity of
solutions to the choice of p within a large region is contrary to what we expect from
our theoretical analysis, namely that lower values of p would lead to better solutions.

The smoothing parameter ε appears in the differentiable approximation to the �p

norm 4 :

‖s‖p
p ≈

N∑
i=1

(|si|2 + ε)p/2 (6.1)

where N is the dimension of the vector s. When ε is too large, the approximation is
not a good one, and the solutions are overly smooth, exhibiting wide mainlobes. When
ε is very small, the number of iterations required for convergence increases drastically.
If we stop the iterations prior to convergence, then the solutions we achieve are again
very smooth and with wide mainlobes 5. We have found empirically that a choice of ε
which does not require very many iterations, and yet converges to very sharp solutions
is around 10−3 to 10−5 for our data.

A parameter which has notable importance for �p with small p but which we have
not defined explicitly is the scaling of the variables. Using �p penalization it makes a
large difference to have y versus y/10. As p → 0, the norm of the gradient of �p-penalty
increases indefinitely, whereas as p → ∞ it approaches zero. Hence if we scale the data
so that s is very small, the �p penalty has a very strong preference for sparsity. When
s is large, the penalty is milder. Reasons for such behavior become apparent when we
take a close look at the �p cost function for scaled data. Suppose we have ỹ = 0.1 y,
and s̃ = 0.1 s. Also, suppose that s has a few large coefficients, and all the others zeros.
Then the original cost is ‖y−As‖2

2+λ‖s‖p
p. When p is very small, the cost of the scaled

data is approximately 0.12‖y −As‖2
2 + λ‖s‖p

p. The p-norm term is not scaled since for
small p it essentially counts the number of nonzero coefficients, which we do not change
by moderate scaling. In order to have the same solution for the scaled problem, we
need to adjust the regularization parameter by 0.12. Additional difficulties arise since
we may also need to change ε in the approximation of the �p norm. We find that we
avoid difficulties with overpenalization if the data is scaled so that the norm of y is of
the order of magnitude of the number of non-zero elements of s, or greater, and A has
columns normalized to unity.

4We use the term �p-norm, but in fact the cost function has �p-norm to the p-th power. We continue
with this practice to avoid obfuscation of the sentences.

5The number of iterations can serve as regularization on smoothness - the less iterations, the
smoother the solution. This is in fact the motivation for the Landweber regularization method [26].
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� 6.1.5 Number of resolvable sources

In order to characterize the number of resolvable sources we have several relevant theo-
retical results which will be described in Chapter 7. These results are developed for the
noiseless regularization, but they motivate what occurs in the noisy case as well. The
basic result in Theorem 1 translated to fit our array processing problem states that if
the array manifold a(θ) is unambiguous, then the noiseless �0 problem, min ‖s‖0

0 such
that y = As, has a solution ŝ which is unique if ‖ŝ‖0

0 < (M + 1)/2. In particular, that
means that if some signal s∗ satisfies ‖s∗‖0

0 < (M + 1)/2 and y = As∗, then s∗ is the
�0 solution.

Also, signals which are not sparse enough are not guaranteed to equal the �0 solution.
In fact, there exist vectors s̃ with ‖s̃‖0

0 = L ≥ (M + 1)/2 and y = As̃, such that the �0

solution ŝ may have a lower sparsity, or have the same sparsity but be nonunique. That
is to say, if the true spatial spectrum is not sparse enough, then we cannot guarantee
that the optimal solution to the �0 problem will get it right. Finally, for all s̃ such
that ‖s̃‖0

0 ≥ M there is ŝ satisfying y = Aŝ and ‖s̃‖0
0 ≥ ‖ŝ‖0

0. That means that when
the number of sources is greater than or equal to the number of sensors then we are
guaranteed that we will not get the spatial spectrum correct by solving the noiseless �0

problem.
How does it relate to �1 and �p regularization? Also in Chapter 7 we have a num-

ber of results relating the noiseless �0 problem with the noiseless �1 and noiseless �p

problems. Recall that originally we considered �p and �1 penalties as approximations to
the non-differentiable �0 penalty. Our theoretical results are very general; they apply
to any overcomplete basis. However, for the source localization application the basis
is a parameterized manifold, so array manifold vectors corresponding to nearby source
locations are also close in terms of the Euclidean distance. What often happens is that
even if the equivalence conditions are not met, and the �1 solution does not give the
correct answer to the noiseless problem, it gives a very close approximation. For an
overcomplete basis where basis elements are not related with their nearby neighbors
such behavior does not occur. Our theoretical results give some motivation for the
number of resolvable sources in the practical problem, but to get a reliable estimate we
have to measure it empirically.

For the single time sample problem (5.2) and for the non-zero mean processing with
averaging (5.4) we found by simulations that the number of resolvable sources 6 for an
unambiguous array with M sensors is M/2. That is to say that if we have more signals
than M/2, then the spectrum quality deteriorates dramatically, and some sources may
not yield peaks in the spectrum, and spurious peaks may appear7. We illustrate this in

6The arrays that we used in these simulations are uniform and linear, with half-wavelength sensor
spacing, so these estimates may not hold for very different array geometries. Also sources in these
experiments were uncorrelated, so potentially the number of resolvable sources may decrease with
correlated sources.

7If some sources are very close, then it may not be possible to resolve M/2 sources using �p with
small p at any SNR due to the asymptotic bias in the �p technique.



Sec. 6.1. Details of the techniques and their implementation 91

0 20 40 60 80 100 120 140 160 180
−150

−100

−50

0

DOA (degrees)

P
ow

er
 (

dB
)

BF
Capon
MUSIC
Lp−reg
L1

0 20 40 60 80 100 120 140 160 180
−150

−100

−50

0

DOA (degrees)

P
ow

er
 (

dB
)

BF
Capon
MUSIC
Lp−reg
L1

(a) (b)

Figure 6.5. Number of resolvable sources for the averaging technique. (a) 4 sources are resolved. (b) 5
sources are not resolved. �p and �1 spectrum are not useful indicators of source locations.

Figure 6.5. The array has 8 sensors, and the number of sources in plot (a) is 4. The �p

and �1 spectra have peaks at the source locations. We also included spectra of Capon’s
and MUSIC methods, and since the SNR is high (SNR=30 dB), these spectra also
exhibit peaks at the correct locations. In plot (b) the number of sources is increased
to 5, and the peaks of �1 and �p spectra no longer correspond to the source locations.
This can be seen since they are different from the peaks of MUSIC and Capon’s spectra
which allow higher number of resolvable sources, and show correct DOAs.
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Figure 6.6. Number of resolvable sources for the �1-SVD technique. (a) 7 sources are resolved. (b) 8
sources are not resolved. �1-SVD spectrum is not a useful indicator of source locations.

For the �1-SVD technique the number of resolvable sources is higher. Recall that
we merge the problems for different singular values into a single larger inverse problem.
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We have not analyzed theoretically what this will imply, but empirically the number
of sources that the joint �1-SVD technique with multiple time samples can resolve is
M − 1 for an unambiguous array with M sensors. This is illustrated in Figure 6.6. The
number of sensors in the array is again M = 8, but the number of sources in plot (a)
is 7. All three techniques (�1-SVD, MUSIC, and Capon’s method) exhibit peaks at the
source locations. When we increase the number of sources to 8 in plot (b) none of the
spectra have peaks at correct locations. When the number of time samples is much
less than the number of sources, then the number of resolvable sources may decrease.
We have not fully characterized this dependence, but even with 1 time sample multiple
sources can be resolved.

� 6.2 Benefits of using the sparse regularization framework

� 6.2.1 Superresolution and robustness to noise

A strong feature of our framework is its ability to resolve closely-spaced sources and
its good robustness to noise. In this discussion we join these two features together
because for superresolution methods resolution depends on the SNR. This is not true for
conventional beamforming where resolution has an upper bound, the Rayleigh resolution
limit, independent of the SNR. Other superresolution methods such as MUSIC and
Capon’s exhibit excellent resolution when SNR is high, but once the noise becomes
significant their resolution begins to decrease. This also happens to our method as
well, but according to our simulations our techniques can withstand higher levels of
noise. Maximum Likelihood methods work well with good initialization, but since the
initialization is typically performed by MUSIC, it has similar troubles with robustness
to low SNR.

First we take a look at non-zero mean signals and the averaging version of our
technique. We consider a uniform linear array of M = 8 sensors separated by half
a wavelength of the actual narrowband source signals. We consider two narrowband
signals in the far-field impinging upon this array. The total number of snapshots is
T = 200. The objective function that we use for the plots has �p penalization with
p = 0.1. We consider the case when the two sources lie within a Rayleigh resolution
cell. Figure 6.7 contains results for SNRs of 20 dB and 5 dB. Beamforming spectrum
merges the two peaks. At 20 dB, Capon’s, MUSIC and �p are all able to separate the
two sources. However, when the SNR is lowered to 5 dB, MUSIC and Capon produce
spectra where the peaks are merged, whereas the �p spectrum still exhibits two distinct
peaks. These plots demonstrate the relatively superior robustness of the �p method to
high levels of noise in the non-zero mean case.

This example was based on a single trial. Now we characterize the performance
of the �p method over 200 independent trials, as a function of SNR. We consider two
performance metrics. The first one is the probability of detecting the two sources with
1◦ accuracy. The second one is the root-mean-squared-error (in angles) in locating
the sources. The two measures convey very similar information, and the experimental
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Figure 6.7. Spatial spectra of two sources with DOAs of 50◦ and 60◦. (a) SNR = 20 dB. (b) SNR =
5 dB.

results are very similar, so we present only the probability of detection results here.
Figure 6.8 presents results for the case when the sources are separated by 15◦. This
plot confirms that the proposed method has a significantly better probability of correct
detection than Capon’s method and MUSIC at low SNR values.
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Figure 6.8. Probability of correct detection for two sources as a function of SNR. DOAs: 50◦ and 65◦

Robustness to noise and superresolution occurs not only for the non-zero mean
version of the technique, but for other versions as well. We take a look at the �1-
SVD version to justify this claim. In fact for zero-mean sources we lose an important
advantage of having a non-zero mean which is not fully exploited by either Capon’s or
MUSIC methods, according to our simulations. But even without this advantage the
�1-SVD technique still appears to have very good robustness properties to noise. We
illustrate this behavior in Figure 6.9. In plot (a) SNR = 10 dB, and all three techniques
are able to resolve the two closely-spaced sources, at 65◦ and 70◦. However, when we
lower the SNR to −3 dB, MUSIC and Capon’s methods are no longer able to resolve
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the two sources and the two peaks merge into a single one. Some additional analysis
of resolvability and robustness to noise appears in the bias and CRB sections, 6.3 and
6.4.
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Figure 6.9. Spatial spectra of two sources with DOAs of 65◦ and 70◦ using �1-SVD. (a) SNR = 10
dB. (b) SNR = -3 dB.

� 6.2.2 Robustness to limited number of samples

Robustness to limited number of samples is another important benefit of our approach.
Recall that the initial version of our technique from Section 5.1.1 is developed for a
single sample, the extreme case of limited number of samples. Other versions such
as averaging, beamspace, joint-time processing, and �1-SVD are based on the single-
sample version, and when only one time sample is available they in fact reduce to
the single-sample version. So all our techniques can resolve multiple sources despite
having just one time sample8. This is not possible for MUSIC and Capon’s methods.
For Maximum Likelihood methods it can be done, but as always, provided that a good
initialization is chosen. When multiple sources are present good initialization for single-
sample processing is not an easy task. Beamforming also is able to resolve multiple
sources using a single time sample, but the resolution is limited. For our methods the
resolution using a single time sample is comparable to that when multiple time samples
are available (if the SNR is not very low), and initialization is not an issue as in the
multiple time sample case. In Figure 6.10 we illustrate the behavior for a uniform linear
array with 8 sensors when only one time sample is available. The �p-technique is able
to resolve both sources, whereas Capon’s method and MUSIC miss the second source
entirely.

8Of course, in the single snapshot case, if one of the signals is very close to zero, then this source
cannot be localized. This is not particular to our method - if the source is silent, then we can regard it
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Figure 6.10. One time sample, SNR=20 dB. DOAs: 42.83◦ and 73.33◦

Ability to use one time sample to localize multiple sources is just one facet of
robustness to limited number of time samples. The other facet is that by reducing the
number of time samples the performance of all superresolution techniques decreases.
Using the probability of correct detection criterion from last section, our technique
appears to handle the decrease in the number of time samples better. We illustrate this
in Figure 6.11. Capon’s method seems to reach a limit on the probability of detection
which does not improve with the number of snapshots at about 40 snapshots. MUSIC
does improve to reach a unity correct detection probability, but that takes almost 200
time samples. The averaging version of �p regularization reaches a unity probability of
correct detection in about 50 to 60 samples, and it has a considerably better probability
of detection throughout the region.
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Figure 6.11. Probability of correct detection for two sources with DOAs of 50◦ and 65◦ as a function
of the number of snapshots (SNR = 10 dB).

as nonexistent.
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� 6.2.3 Robustness to correlated sources

Due to the nature of the averaging technique for the non-zero mean case it is insensitive
to correlated sources, since we are only dealing with the temporal mean, and we do not
take the spatial covariance matrix into account. Figure 6.12 shows that the coherence
of the signals poses a serious difficulty to the standard implementations of MUSIC and
Capon’s methods 9, but the resolution capabilities of �p-technique are affected very
little. Note that at this SNR and spacing, Capon’s method and MUSIC would resolve
the sources if they were uncorrelated (see Figure 6.7).
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Figure 6.12. Robustness to correlated signals. DOA’s: 65◦ and 75◦ (SNR = 20 dB).

The �1-SVD version also has better robustness to low SNR and better resolution
when the sources are correlated. This occurs for a different reason than in the non-zero
mean case with the averaging technique. As we explained in Section 5.1.7, when we
have correlated sources, source localization does not break down, since even a single
singular vector is sufficient to represent a multi-dimensional signal subspace. When we
have multiple singular vectors we gain robustness to noise. In the case of MUSIC, when
two sources are perfectly correlated, a signal subspace eigenvector moves to the noise
subspace, and the corresponding source location cannot be found. An example appears
in Figure 6.21, in Section 6.4.

� 6.2.4 Lack of need for accurate initialization

The need to initialize ML techniques by an already accurate estimate of the location of
the sources, or alternatively using global optimization techniques is their major draw-
back. When source signals are correlated, or when only one time sample is available
and there are multiple sources, accurate initialization is especially challenging. Our set
of techniques on the other hand does not suffer from problems with initialization. All �1

9There exist versions of MUSIC with better robustness properties to correlated sources, but robust-
ness comes at a price of reduced resolution.
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techniques are globally convergent from any initialization, and �p techniques converge to
very good solutions starting from beamforming solution (or even from a constant solu-
tion), with no need to resolve the sources at the starting point. We discuss initialization
of the techniques in more detail in Section 6.1.3.

� 6.3 Bias

An important downside in using the �1 / �p regularization techniques for array processing
is the bias. After discussing bias in general, we first characterize the bias for the
averaging version of our technique with nonzero mean signals, and next for �1-SVD
with zero-mean sources.

One source of bias which immediately comes to mind is due to the fact that our
estimates are limited to a grid. If the source location resides strictly in between two
consequent grid points, then the estimate will fall on one of these two points. At
least in the very low noise case (when the estimates fall consistently on the same grid
points), there will be a bias due to the grid. This bias can be efficiently eliminated
by our multiresolution approach (up to any required precision). Unfortunately there
is another source of bias inherent in the nature of our sparsity enforcing functionals
(�1, �p), which cannot be easily removed. The reason for the second type of bias is
not known fully, but the two ingredients which may explain it are regularization, and
the approximation of sparsity by �p/�1 functionals. The visual appearance of this bias
is illustrated in Figure 6.13 (a), and a close up view in (b). Note that we only show
a single trial, but since the SNR is very high (SNR=42dB), the same shift in peak
locations is observed for all realizations. Even if we remove noise altogether, peaks do
not align with the true values.

By looking at cost functionals of the form J(s) = J1(s) + λJ2(s), where J1 is the
data-fidelity term, and J2 is the regularizer, we allow solutions which have a higher
model-fit residual (lower data-fidelity) if they have a lower regularizing term. In general,
this may force the distribution of the estimates for repeated trials (with different noise
realizations) to be non-symmetric around the true values, and the mean values being
different from the true values. For example, consider a simple inverse problem y = kx+
n, where n is scalar 0-mean Gaussian, and x is treated as deterministic (non-random)
unknown quantity. The Tikhonov regularization cost function is (y−kx)2+λx2, and the
solution is x̂ = y

k+λ/k . Hence E[x̂] = E[ kx+n
k+λ/k ] = x k

k+λ/k . When x �= 0 and λ is strictly
positive, the regularized estimate is biased. Analytical expressions for cost functions
involving �1 or �p are much harder to obtain, thus we rely on computer simulations.

The other part of the explanation is that we are using an approximate measure of
sparsity. Recall that imposing a penalty on sparsity (the number of non-zero elements)
is not computationally tractable, thus we are forced to use approximations. The �1

approximation, while having many favorable properties for sparse source localization,
results in solutions which are in general different from those obtained using sparsity. In
our theoretical analysis (Section 7)) we show that under some assumptions on the num-
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Figure 6.13. Bias: two sources with DOAs of 70◦ and 76◦. SNR = 42 dB. (a) Full plot . (b) Detail
of a .

ber of sources and their separation and with no noise present, the �1 solution exactly
matches that of �0, which in turn exactly equals the true source locations (provided
source locations are on the grid). However, in array processing applications these con-
ditions are often not met, resulting in solutions which are biased even when no noise is
present and when the true positions of the sources fall exactly on the considered grid
of locations.

The �p approximation with p � 1 is a much better approximation than �1, but the
resulting cost function is not convex. We cannot develop a reasonable procedure for
finding the global minimum, but, as we mentioned already, it appears that the local
minima which are obtained with our iterative procedure starting from the beamforming
solution have peaks which fall very close to the true source locations. In Chapter 7 we
provide a result stating what conditions are necessary for the global optimum of the
�p cost function to be equal to the true source locations. The required conditions are
milder then those of �1, but the global optimality is lost, so the bias may now appear
due to the convergence to a local minimum.

Bias for non-zero mean signals with data combination by averaging

We include several plots to illustrate the discussion. We start with the non-zero mean
case and the averagig version of our technique. Figure 6.13 (a) shows the spectra of
�p, beamforming, and MUSIC and Capon’s methods. The SNR has been set very high
(SNR = 40 dB) so that both MUSIC and Capon are able to resolve the two sources.
The array is uniform and linear with M = 7 sensors. The separation between the
sources is 6◦, and the �1 technique converges to a biased answer, as is readily apparent
from the magnified portion of the plot.

A difficulty with investigating bias is that it depends on the regularization parame-
ter selection. If a particular regularization parameter leads to unbiased estimates of two
fairly closely-spaced sources, then by increasing the regularization parameter sooner or
later the two estimates become biased or merge into a single estimate. The question
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of the choice of the regularization parameter is very difficult, and we have an efficient
method for its automatic choice only for constrained version of �1 regularization. In
general, we have observed that all our techniques are biased for a fixed non-zero regu-
larization parameter (and zero regularization parameter is not useful since it leads to
no regularization and an ill-posed problem when A is overcomplete). However, for the
case of �1 we observed that if λ is decreased to zero as SNR approaches ∞ then the
technique is asymptotically unbiased, provided that the number of sources is resolvable
by the array10. When λ is selected automatically in the constrained �1 formulation by
the discrepancy principle, λ indeed decreases to zero as SNR increases. For low SNR,
λ is chosen quite large to suppress noise, and leads to more notable bias. With high
SNR λ is selected very low, and causes little bias. However, the issue of asymptotic
unbiasedness is also dependent on the numerical stability and convergence properties
of the optimization techniques involved, so tolerances have to be selected appropriately
to observe the lack of asymptotic bias. The �p counterpart on the other hand is asymp-
totically biased. This may happen either due to the nonconvexity of the cost function
and convergence to local minima, or due to numerical convergence properties of our
implementation of the iterative half-quadratic algorithm.
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Figure 6.14. Bias vs. separation for non-zero mean �1 with averaging. (a) SNR =20 dB
(b) SNR = 60 dB.

What we see in Figure 6.13 is the second type of bias only (i.e. the inherent bias,
and not the grid bias), since the sources have been conveniently placed on the grid
locations. Placing the sources in between the grid points usually produces estimates on
the nearmost grid points. In Figure 6.14 we get rid of the grid bias in a different way,
by using the multi-scale procedure described in Section 5.3, which refines the grid with
each scale. After several scales the grid becomes fine enough so that its bias effects
can be ignored. To produce the figure we used the constrained version of �1 processing
with an automatic selection of the regularization parameter. The number of sources

10See 6.1.5 for a discussion on the number of resolvable sources.
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in the plot is two. We plot the bias of the two sources versus the angular separation
between the two sources. One source is fixed, and the second one is placed at various
separations from the first one. For each separation the experiment is repeated 50 times
with different noise realizations. We plot the biases of the estimates for both sources.

The bias curves in Figure 6.14 appear to have a region where bias is most pro-
nounced for closely-spaced sources, and a region for well-separated sources where the
bias has an oscillatory pattern (zooming in is necessary to see it in plot (b)). As we
mentioned, we choose the regularization parameter by the discrepancy principle in the
�1 constrained form and λ decreases to zero as SNR increases; thus the technique is
asymptotically unbiased. The amplitude of the peaks in the oscillatory portion of the
bias appears to have a linear dependence on the standard deviation of noise. It is at first
surprising that in plot (a) at very low separations (under about 5◦) the bias increases
with separation. There is a simple explanation. Since the SNR is not very high, the
effect of the regularization parameter cannot be neglected, and the technique is biased.
Under 5◦, the two peaks are merged into a single one, in between the two true source
locations. Hence, at first, by increasing the separation we increase the distance from
the arithmetic mean to the true source locations which equals the bias. Beyond 5◦

separation, the two sources are resolved, and the estimates follow the source locations.
The problem at higher separations is easier then at lower ones, hence the bias becomes
smaller.
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Figure 6.15. Angles between steering vectors corresponding to DOAS θ1 and θ2. (a) ULA with 8
sensors. (b) Cross array with 8 sensors.

Some insight into the shape of the bias curve comes from considering the plot of
angles between the steering vectors associated with the true positions of the sources.
For two sources with DOA’s θ1 and θ2, with the associated steering vectors a(θ1) and
a(θ2), we are interested in the angle between them ∠(a(θ1),a(θ2)). Actually, the angle
between two complex vectors is not properly defined, since the definition in Euclidean
spaces does not carry over: if x,y ∈ C

N then x′y
‖x‖2‖y‖2

is a complex number. We are
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interested in the ratio of the norm of the projection of x on y to the norm of x. Thus
we attach the following meaning to the notation: ∠(x1,x2) = cos−1( |x′y|

‖x‖2‖y‖2
). By the

Schwartz inequality |x′y| ≤ ‖x‖2‖y‖2, hence the notation is well defined, and takes
values in [0, .., π/2]. For two sources, the angle φ = ∠(a(θ1),a(θ2)) can be thought of
as a measure of difficulty of the problem. If φ is close to π/2, then the two steering
vectors are nearly orthogonal, and do not interfere with each other (for example in
beamforming, the contribution of power from the source at θ1 to the steered beam at
θ2 is close to zero. On the other hand, if φ is small, then the power measured by the
array steered at either θ1 or θ2 depends on both of the signals, and in beamforming this
corresponds to sidelobe interaction.

Hence a plot of φ for all possible pairwise combinations of θ1 and θ2 is of great
interest, and we include it for a uniform linear array in Figure 6.15 (a). As we expect,
for closely-spaced sources (near the main diagonal of the image), the steering vectors
are nearly collinear, hence ∠(a(θ1),a(θ2)) is small. For well separated sources, the angle
exhibits an oscillatory pattern near the value of 90◦. This may have direct connection
to the observed structure of the bias as function of source separation. A similar analysis
can be done for more than two sources, but then we have to face defining a measure of
distance between higher dimensional subspaces. One possibility is through the use of
principal angles between subspaces. For nonuniform or nonlinear arrays plots of angles
between pairs of steering vectors sometime have very interesting visual appearance. In
plot (b) we make the plot for a cross array with 8 sensors. The cross array in the plot
is composed of two perpendicular uniform linear arrays intersecting in their centers.

Bias for �1-SVD with zero-mean signals

When we switch to zero-mean sources, we can no longer use the averaging formulation.
We now switch to the �1-SVD formulation described in Section 5.1.7. The zero-mean
version has several important differences from the non-zero mean version and deserves
a separate discussion.

The �1-SVD version is biased as well. However, the structure of the bias is not
the same as for the non-zero mean signals with averaging. Recall that the bias of our
techniques depends on the regularization parameter selection. For the experiments in
this section we selected the regularization parameter manually by subjective assessment
at high SNR and held it fixed for all SNR. This was done due to the fact that our
automatic selection method for �1-SVD has not been fully investigated, and theoretical
development applies to the low-noise case only. In the end of Section 5.1.7 we proposed
a different scaling for the singular vectors, Λ2 instead of Λ. We investigate the bias for
both possibilities, since they have notable differences.

First we take a look at our original version of �1-SVD with scaling by Λ in Figure
6.16. The two signals are zero-mean and the SNR=10 dB in plot (a), and SNR=40
dB in plot (b). We plot the bias of the estimates of source locations in degrees versus
the separation of the source locations, also in degrees. The setup of the experiment is
the same as for non-zero mean signals from the previous section, except for the source
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Figure 6.16. Bias vs. separation, �1-SVD, scaling by Λ. (a) SNR =10 dB (b) SNR = 40 dB.

signals, which now have a zero temporal mean. We see in the figure that there is
considerable bias for closely-spaced sources, which appears both at low and high SNRs.
The amplitude does not decrease dramatically for higher SNR, since we are not changing
the regularization parameter. For well separated sources there is a notable difference
from the non-zero mean version, the technique appears to be unbiased at all SNR. The
oscillatory pattern is absent.
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Figure 6.17. Bias vs. separation, �1-SVD, proposed scaling by Λ2. (a) SNR =10 dB (b) SNR = 40 dB.

Now we consider our proposed modification, where the scaling of the singular vectors
is by Λ2, and not by Λ. The results appear in Figure 6.17. To our great surprise, for
high SNR in plot(b) most of the bias disappears. There is a small biased region for very
closely-spaced sources, but the magnitude of this bias is smaller than the corresponding
one for scaling by Λ. In plot (a), SNR is 10 dB, and some bias appears for closely-spaced
sources. However, again the amplitude is smaller than the corresponding one for scaling
Λ. For well-separated sources the new scaling also appears to produce no bias in the
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estimates for all SNR. Further investigation of these issues will follow the completion
of the thesis.

� 6.4 Variance and the CRB

Nonzero mean signals

The comparison with the Cramer-Rao Bound (CRB) has become an important ingre-
dient of the analysis of any source localization method for array processing. The CRB
puts a lower limit on the variance of any unbiased estimator. When an estimator meets
the CRB, it is called efficient, but there may not exist any efficient estimators. Many
of the existing estimators of source location are biased, but they have the property of
asymptotic unbiasedness, as either the number of snapshots or the number of sensors or
both approach infinity. There exists an extension of the CRB which deals with biased
estimators, but it is generally agreed that it has limited practical value. In our case, it
is difficult to even compute it, since it requires the estimation of the derivative of the
bias. For a review of the CRB refer to Appendix A, and for a derivation of the CRB
for source localization refer to [21].
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Figure 6.18. CRB for non-zero mean sources, comparison with variances of ESPRIT, Root-MUSIC,
ML, and �1

We start our analysis of variance with nonzero mean signals using the averaging
version of our technique. Instead of trying to estimate the derivative of the bias needed
for the biased CRB analysis, we note that for particular values of the separation, our
estimates are in fact unbiased for all SNR based on our simulations. Instead of the global
CRB analysis we consider local properties of the variance for particular separations of
the sources. In Figure 6.14, the separations between the two sources for which our
estimator is unbiased correspond to the zero crossings of the two curves. The derivation
of the analytical expressions for the variance of the �1 technique is not an easy task,
and we instead conduct an empirical analysis using computer simulations.
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Figure 6.18 shows the variance of the �1 estimator in the constrained form with
automatic selection of the regularization parameter and multi-scale grid refinement (to
eliminate grid bias). The two sources are at 42.83◦ and 88.33◦, with the separation
being 45.5◦ (this corresponds to an unbiased estimate)11. We compare the variance
of �1 source localization to that of ESPRIT, Root-MUSIC, Maximum Likelihood, and
to the CRB. The number of trials for each value of SNR is 50, and the curve plotted
for each estimator corresponds to the variance of the first source; the variance of the
second source is very similar, and is removed to avoid obfuscation of the figure. There
are several important observations about the picture. First of all, the variance of the
�1 technique follows the CRB closely above -10 dB SNR, and the bias at the considered
source separation is zero for all SNR, hence locally the technique is efficient for non-zero
mean signals. The ESPRIT and Root-MUSIC methods have been developed for zero
mean signals, and they are not able to take advantage of the portion of signal power
which is contained in the mean 12, hence the variance falls above the CRB by about
15 dB. Finally, the breakdown zone for the �1 technique appears at much lower SNR
than the one for ML, ESPRIT, and Root-MUSIC. This supports the claim that sparse
regularization leads to higher robustness to noise in the non-zero mean case.

It is important to remember that the sparsity regularization framework is suitable
for sparse signal fields only, where the number of sources is considerably less then the
number of sensors in the array. When we consider number of sources comparable to the
number of sensors, the performance degrades, and there may not exist any unbiased
regions, or the technique may even produce completely unusable spectra.

�1-SVD processing in the zero-mean case

Similar to the non-zero mean case, in order to compute the CRB we choose a separation
of the two sources for which the estimation is unbiased. In the zero-mean case with
�1-SVD this choice is much easier to make, since for all large separations the technique
is unbiased at all SNR. In the experiment a single regularization parameter is chosen
by subjective assessment and is kept across all SNRs.

Figure 6.19 compares the variance of the �1-SVD technique 13 with the variances
of ESPRIT, Root-MUSIC, Deterministic Maximum Likelihood (DML), and the CRB.
It can be seen that for zero-mean sources the technique again meets the CRB at high
SNR. However, at low SNR the threshold region appears at the same SNR as that of
other techniques. The reason for the difference with the non-zero mean case is that now
we do not have the advantage of being able to use the information present in the mean

11The important parameter is not the difference of the DOA’s in degrees, but the difference of cosines
of the two angles, since for uniform linear arrays the beampattern is proportional to the spatial DFT
of sensor measurements parameterized by the cosines of DOA’s, and resolution depends on separation
of the sources in terms of differences of cosines of DOAs

12The signals are modeled as ui(t) = 1 + νi(t), where νi(t) are independent normal random variables
with zero mean and standard deviation σ = 0.2.

13We are using the version of �1-SVD which has scaling by Λ, and not by Λ2, but according to our
limited simulations the variances of the two are the same.
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(which ESPRIT, and Root-MUSIC cannot take advantage of even when the mean is
present).

In order to compare the variance with the CRB we have selected the two sources
to be well-separated. However, as we described previously, our technique is especially
useful at low SNR in its biased regions, when the separation between the sources is
small. We illustrated this advantage on single experiments in Section 5.1.7. Our CRB
analysis shows that additionally, in the unbiased regions, �1-SVD performs as well as
the other techniques.
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Figure 6.19. CRB for zero mean uncorrelated sources, comparison with variances of ESPRIT, Root-
MUSIC, ML, and �1, DOAs 42.83◦ and 73.33◦

There is however an advantage of using our framework in unbiased regions as well,
and it comes up when we consider correlated sources. It is well known that the perfor-
mance of MUSIC and ESPRIT suffers from the correlation of the sources. From our
discussion in Section 5.1.7 we expect that correlated sources will not lead to a major
loss in performance for our approach, since we are not affected as much by vectors in
the noise subspace being taken into the signal subspace.

For the experiment, everything is left as before, except that the sources are now
correlated with the mixing matrix [ 1 0.9

1 1 ] normalized so that the columns have unit
norm. Also, due to the fact that there is only one singular value remaining in the
signal subspace, we take YSV from Section 5.1.7 as the first singular vector only (or in
general as a matrix of all signal subspace singular vectors scaled by the corresponding
singular values). Figure 6.20 shows the outcome of the experiment. As expected, the
variance of MUSIC and ESPRIT are well above the CRB. Maximum Likelihood is not
affected by the correlated sources as long as the initialization by MUSIC is reasonably
close to the true source locations. However, the threshold drop of performance appears
much earlier for MUSIC when the sources are correlated, leading to a similar early
performance drop for ML. The variance of �1-SVD matches the CRB fairly closely at
high SNR, and at lower SNR it starts to deviate from the CRB, and finally exhibits a
sharp rise in variance.
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Figure 6.20. CRB for zero mean correlated sources, comparison with variances of ESPRIT, Root-
MUSIC, ML, and �1, DOAs: 42.83◦ and 73.33◦.
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Figure 6.21. Spectra for correlated sources, SNR = 20dB: (a) DOAs: 42.83◦ and 73.33◦. (b) DOAs:
62.83◦ and 73.33◦.

There is a noticeable gain over Maximum Likelihood with MUSIC initialization in
this case. However it is even greater for closely-spaced sources (although then our
technique is biased). This happens due to the widening of the mainlobe of the MUSIC
spectrum for correlated sources. We illustrate this for single trials in Figure 6.21. The
covariance matrix of the two sources is again [ 1 0.9

1 1 ], normalized to unity. The separation
in plot (a) is about 30◦, and the plot illustrates what we mean by the widening of the
mainlobes of the MUSIC spectrum (same happens for Capon’s method as well). No
such widening occurs for our technique. In plot (b) the sources are brought much closer,
to a separation of about 10◦, and we observe that neither Capon’s method nor MUSIC
are able to resolve the two peaks. The �1-SVD method, although it is biased, is able to
resolve them well.



Chapter 7

Theoretical Analysis: solving the �0
problem by �p and related topics

On numerous occasions we referred to the fact that the very hard problem of �0 regu-
larization can be solved exactly via �p and �1 regularization under certain conditions.
Readers interested in these conditions opened the manuscript on the right page, we
describe (and prove) them in this chapter.

We briefly review the problem that we set out to analyze. Recall that in the context
of signal representation using sparse bases we arrived at the following problem: min ‖x‖0

0

subject to y = Ax. 1 In plain English, the goal of the problem is to find the sparsest
representation of y in terms of an overcomplete basis A. We also have a related problem,
min ‖x‖p

p subject to y = Ax, for p ≤ 1. The claim is that the solution x̂ to the
former problem (�0) is also the solution to the latter problem (�p) if x̂ is sparse enough
with respect to A. For the case p = 1, this is very surprising since the �1 problem
is convex, and can be efficiently solved using linear programming or second order cone
programming (for real and complex data respectively) as described in Section 4.1.1. For
general p, finding the global minimum is considerably harder, but in return the sparsity
requirements for x̂ are lower, especially for p close to 0. The equivalence results are for
the case when there is no noise, but they serve as a strong supporting argument for the
use of the noisy �p penalization as well.

Before relating the �0 problem to �1 and �p problems, we first address the question
of uniqueness of the �0 problem, to make sure that �0 solutions are useful. We start the
chapter by introducing the notion of rank-K unambiguity, which leads to a necessary2

and sufficient condition for the uniqueness of solutions to the �0 problem. Then we
introduce a different measure, maximum absolute dot-product of pairs of columns of A,
M(A), and relate it to rank-K unambiguity. This leads to another sufficient uniqueness
condition for the �0 problem. The reason that we introduce a second measure, M(A),
is that we use it next to prove the equivalence between �1 and �0 problems if x̂ is sparse

1Recall that ‖x‖0
0 refers to the number of nonzero elements of x.

2We should be careful with the meaning of “necessary” that is used here. The condition is necessary
to guarantee that given an arbitrary signal y, if the solution x̂ to the �0 problem is sparse enough, then
it is the unique solution. However, for a fixed y (other y’s are not considered) this condition may be
too restrictive and not necessary.
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enough with respect to A. We finish the exposition of �1 penalization by exploring the
dependence of M(A) on the size of A using results from the theory of spherical codes.

Next, we switch to a general p ≤ 1. We bring forward two more measures of A
which in turn lead to the equivalence of �p and �0 problems. The second measure is
especially interesting, since it shows that as p → 0, the condition for the equivalence
approaches the condition for the uniqueness of solutions of the �0 problem.

Lastly, we discuss a preliminary analysis of the noisy version of �1 penalization. The
result that we prove is rather interesting, but its purpose is mainly to stimulate further
analysis of the noisy problem.

The analysis in this chapter was mainly incited by two papers, [8] and [9]. They
consider an important special case when A is composed of two orthogonal bases and
under this assumption prove the equivalence of �0 and �1 problems. The main contribu-
tion of our work is the extension of their result to any overcomplete basis A, as well as
connecting M(A) with the more direct measure of rank-K unambiguity. In addition we
consider conditions for the equivalence of �0 and �p, and look at noisy �1 penalization.
Also, all the results of this chapter are valid in general for complex-valued quantities,
except the spherical code discussion in Sections 7.2.2 and 7.2.3 which applies to the real
case only.

� 7.1 �0 conditions

Before starting to prove the equivalence conditions for the �p and �0 problems, first we
would like to find conditions such that the �0 cost function has a unique solution. The
general form of such conditions is that if the optimal solution x̂ is sparse enough with
respect to A then the solution is unique. We propose the use of rank-K unambiguity
(which we define in the next section) which leads to a condition on the sparsity of x̂ for
unique solutions (minima) of the �0 cost function. In order to eventually relate �0 and
�1 problems we describe another measure, M(A), which tells how well separated the
columns of A are. Then we prove a bound on M(A) relating it to rank-K unambiguity.
This leads to an alternative sufficient condition for the uniqueness of solutions to the
�0 cost function in terms of M(A).

� 7.1.1 Definition of rank-K unambiguity

Take A ∈ C
M×N with columns ai, A = [a1, ...,aN ]. We call A rank-K unambiguous3

if any set of K columns of A is linearly independent, but this is not true for K + 1 (i.e.
either K = N , and no additional columns exist, or there exists a set of K + 1 columns
which are linearly dependent). If columns of A are linearly dependent (i.e. A does
not have full column rank), then K can also be defined as the cardinality of a linearly
dependent set of columns of A with the smallest number of columns, minus 1. If A
has full column rank then K = N . Let R be the rank of A, then the following holds

3Our definition is motivated by rank-ambiguity of [50].
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(assuming A has at least one non-zero entry, and M , N ≥ 1):

1 ≤ K ≤ R ≤ min(M, N) (7.1)

When the set of columns is linearly dependent, K can take any value from 1 to R.
For example if a vector consisting of all zeros belongs to the set of columns of A, then
K = 1 independent of R, M , and N . On the other hand, for a random matrix with
each element being a standard Gaussian random variable, if N > M , then K = M = R
with4 probability 1. A matrix A having the value of K in between 1 and R can be
easily constructed by appending a column which is a linear combination of K other
linearly independent columns to the previously described random matrix.

What we have defined can be called a weak notion of rank-K unambiguity, but
it is also possible to define a strong notion of rank-K-unambiguity by requiring weak
rank-K unambiguity, and in addition the property that if the columns are linearly
dependent, then all sets of K + 1 columns are linearly dependent (as opposed to at
least one). Strong rank-K unambiguity implies that A has rank K. This can be easily
shown by considering sets Φi = {a1, ...aK ,aK+i : i ∈ {1, .., N −K}}. All Φi are linearly
dependent, thus each aK+i belongs to the K-dimensional span of {a1, ...,aK}, thus all
the columns of the matrix belong to it, and the rank is K. We are mainly concerned
with the weak notion of rank-K unambiguity, but situations with the strong notion are
common in source localization applications, and may provide some further insight into
the question of uniqueness that we consider.

� 7.1.2 Uniqueness of �0 regularization

Consider the �0 problem

min ‖x‖0
0 subject to y = Ax (7.2)

where, as before, ‖x‖0
0 is the count of nonzero entries of x. The matrix A is M × N ,

and throughout this chapter we consider the case where N > M , (in fact, for the array-
processing application in the rest of the thesis, typically N � M). Suppose that y is a
sparse combination of the columns of A with some coefficients x∗, i.e. y = Ax∗, and
‖x∗‖0

0 = L. We are interested in the conditions on the sparsity of x∗ (i.e. the number
of non-zero coefficients, L), such that the solution x̂ to (7.2) is unique, has L non-zero
elements, and is achieved at x∗. Alternatively, if we do not know the underlying signal
x∗, then if we have a solution x̂ to (7.2), we are interested in its uniqueness.

Theorem 1 (uniqueness of solutions to the �0 cost function). Assume that A is
rank-K unambiguous, and has N > M columns. Also suppose that for some x∗,
y = Ax∗, and ‖x∗‖0

0 = L. Then (7.2) has a unique solution x̂ = x∗ for all such y
if and only if L < (K + 1)/2.

4The set where this does not hold has measure zero.
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Proof. Since N > M , and A is rank-K unambiguous, there exists a linearly de-
pendent set of K + 1 columns of A. If 2L > K, then there exists a set of 2L column
vectors, a1, ..,a2L, which is linearly dependent. That means that there exists a set of
coefficients α1, .., α2L such that

∑2L
i=1 αiai = 0, or

∑L
i=1 αiai =

∑2L
i=L+1 −αiai. That

means that any signal y lying on the line γ
∑L

i=1 αiai, γ ∈ C, admits two possible rep-
resentations with sparsity L in terms of the overcomplete basis A. This proves that the
condition is necessary. The term necessary requires a clarification: it means necessary
for the uniqueness of all x∗ with sparsity less than or equal to L. That is to say, it is
necessary to prevent the existence of x∗ with sparsity L, such that a different vector x̂
with the same or lower sparsity also satisfies y = Ax̂. Yet, for a particular signal x∗

the condition may be overly restrictive and not necessary.
If L ≤ K/2, then

∑2L
i=1 αiai = 0 has αi = 0,∀i as its only solution, since the smallest

cardinality among linearly dependent sets is K + 1. This means that no two distinct
signals with sparsity less than or equal to K

2 can yield the same y. Thus L ≤ K/2, or
L < (K + 1)/2 is also a sufficient condition. �

We would like to say more about the necessary condition. We proved that if the
condition is not satisfied then there exist signals x∗ which have non-unique sparse rep-
resentations. However, for a particular signal x∗ the representation can be unique.
Yet, when N � M , the number of lines (one-dimensional subspaces) of the form
γ
∑L

i=1 αiai, γ ∈ C allowing ambiguous sparse representations explodes combinato-
rially (consider the number of ways to select 2L columns out of N possible ones).
Practically that may mean that when we allow deviations from y to account for noise,
then non-uniqueness becomes a likely outcome. Lines have measure zero, but if we
allow uncertainty, then the total measure of all lines may become significant.

Also, when K = M , then if L ≥ M then the sparse representation is not unique
for all y (all underlying x∗). This happens due to the fact that any M columns form a
basis. Hence any signal can be represented as a linear combination of any M columns
of A. When A has more columns than rows this translates to lack of uniqueness for
every signal y.

� 7.1.3 Connection of rank-K unambiguity with maximum dot-product of
columns of A

Using rank-K unambiguity we arrive at a condition for uniqueness of solutions to (7.2).
However, the measure of A that we use, K, (from rank-K unambiguity) depends discon-
tinuously on the entries of A. Linear dependence can be destroyed by an infinitesimal
change of just one entry of A. We now introduce a different measure of A, which
depends continuously on the entries of A, and which will be used in Section (7.2) to
connect the �0 and �1 problems. For the rest of the chapter, we assume that ‖ai‖2

2 = 1,
i.e. all columns of A are normalized to unity. Define

M(A) = max
i�=j

|a′
iaj |, where ‖ak‖2 = 1,∀k. (7.3)
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M(A) measures how spread-out the columns of A are, and whether or not any two
columns are almost collinear. Due to Schwartz inequality, 0 ≤ M(A) ≤ 1, and M(A) =
0 if and only if A has orthogonal columns. Small values of M(A) mean that the columns
are almost orthogonal, whereas values close to unity mean that there are at least two
columns separated by a very small angle.

Although M(A) takes into account only the relation between pairs of columns of
A, it has a strong tie with linear dependence structure of larger sets of columns, and
in particular with the cardinality of the minimum linearly dependent set of A, K + 1,
where K is as defined in Section 7.1.1. The following theorem relates the two.

Theorem 2 (Relation of rank-K unambiguity to M(A)). If the smallest cardi-
nality among linearly dependent sets of columns of A is K + 1, K > 0 (i.e. A is
rank-K unambiguous and not full column rank; the linearly independent case K = N is
excluded), then:

M(A) ≥ 1
K

(7.4)

Proof. First of all, A is rank-K unambiguous, and as we stated in Section 7.1.2, we
consider the case N > M , so there exists a set of K + 1 linearly dependent columns
of A, {ai1 , ...aiK+1}, which we collect into a new matrix Ã ∈ C

M×(K+1). Since we are
reducing the set of possible columns, then the maximum absolute dot-product can not
increase, hence M(Ã) ≤ M(A). The rank of Ã is K, thus by an appropriate orthogonal
transformation (which keeps all the pairwise dot-products invariant) we can rotate Ã
to a matrix which has rows K + 1 through M as zeros. These rows do not change the
dot products and can be ignored for our purposes. Let the singular value decomposition
be Ã = UΛV′, then the required orthogonal transformation is U′. The desired rotated
matrix with the rows of zeros is U′Ã. Let Ā denote U′Ã with the irrelevant rows of
zeros removed. Then the problem of bounding M(A) reduces to minimizing M(Ā) for a
matrix Ā which is constrained to lie in C

K×(K+1), and which has rank-K unambiguity.
That means that M(A) ≥ M(Ã) = M(Ā). What remains to be found is the following:

minM(Ā) = min
A

max
i�=j

|a′
iaj |, where‖ak‖2 = 1,∀k, and A ∈ C

K×(K+1). (7.5)

In Theorem 3 we prove that the optimal value of this problem is 1
K . This proves the

current theorem (Theorem 2), since M(A) ≥ M(Ā) ≥ 1
K . �

Let us return to the problem in (7.5). A well-known result in the geometry of
polytopes [51], communication theory, and sphere-packing on the Euclidean sphere is
that

min
A

max
i�=j

a′
iaj =

−1
K

(7.6)
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with the same conditions on A as in (7.5). The difference of this result from our problem
lies in the absence of the absolute value on the dot-products of the columns. The result
also states that the optimal polytope achieving this value is the regular simplex centered
at the origin. (Here, we represent a polytope by a matrix which has the coordinates
of its vertices as columns. We restrict the class of polytopes to have the vertices on
the unit sphere). The problem of minimizing the maximum dot-product of the columns
(7.6) is equivalent to maximizing the minimum angle between any of the two columns
of A. For the 2D case, the regular simplex is an equilateral triangle, having the central
angle 120◦, as shown in Figure 7.1.

a1

a2

a3

120

120

120

Figure 7.1. Regular simplex in R
2: it maximizes the minimum pairwise angle between the vectors ai,

i = 1, 2, 3.

Next we show that the regular simplex is also optimal in terms of minA maxi�=j |a′
iaj |

(with the absolute value), and the optimal value achieved is 1
K . The proof was described

to the author by Dr. Shor [52] and independently by R. Blume-Kohout [53]. The author
would also like to thank W. Sun [54] for helpful discussions on the subject5.

Returning to our discussion, first, to motivate the optimality of the regular simplex
it is easy to see first that if A is a regular simplex then M(A) = |−1

K | = 1
K , and that

all the pairwise dot-products are equal. Also, the same M(A) is achieved for several
polytopes related to the simplex: by multiplying any column ai by −1 (i.e. reflecting
any vertex with respect to the origin), we do not change M(A). Likewise, by rotating
the simplex with respect to the origin, M(A) is left unaltered. Now we formally prove
the theorem of simplex optimality for M(A).

5The author also became aware of very interesting work in the field of packing of Grassmanian
manifolds [55], which discusses not only minimizing M(A) (which is equivalent to line-packing), but
also packing planes, and higher-dimensional subspaces.
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Theorem 3 (Optimality of the simplex for line packing in C
K). Let A ∈ C

K×(K+1).
Then M(A) ≥ 1

K . The equality is achieved for the regular simplex (allowing rotations
and reflections of vertices around the origin).

Proof. The optimum solution A for the problem, minA maxi�=j |a′
iaj | is the same

as the one for minA maxi�=j |a′
iaj |2 (with the extra-square). The maximum of K(K+1)

numbers is always greater than their average, hence maxi�=j |a′
iaj |2 ≥ 1

K(K+1)

∑
i�=j |a′

iaj |2.
(There are K(K +1) dot-products a′

iaj , where i �= j). This quantity is easier to handle.
In particular,

max
i�=j

|a′
iaj |2 ≥ 1

K(K + 1)

K+1∑
i�=j,i=1

|a′
iaj |2 = (7.7)

=
1

K(K + 1)


K+1∑

i,j=1

|a′
iaj |2 −

K+1∑
i=1

|a′
iai|2


 =

1
K(K + 1)


K+1∑

i,j=1

|a′
iaj |2 − (K + 1)



(7.8)

The last equality comes from the fact that each ai has unit norm. Now what we
are left with is putting a lower bound on

∑K+1
i,j=1 |a′

iaj |2. The sum of all squared dot-
products is the Frobenius norm of A′A, which is equal to the Frobenius norm of AA′,
which in turn is equal to the sum of squares of eigenvalues λi of (AA′), i.e.

K+1∑
i,j=1

|a′
iaj |2 = ‖A′A‖2

fro = ‖AA′‖2
fro =

K+1∑
i=1

λ2
i (7.9)

The matrix AA′ is Hermitian positive semi-definite, (take any x ∈ C
K , then x′(AA′)x =

‖A′x‖2
2 ≥ 0), so all its eigenvalues are real and positive, λi ≥ 0.

Write AA′ as a sum of outer products of columns of A: AA′ =
∑K+1

i=1 aia′
i. Each

aia′
i is a projection matrix (recall that we assume throughout that ‖ai‖2

2 = 1), so
trace (aia′

i) = 1, for i = 1, .., K + 1. That means that

trace (AA′) = trace (
K+1∑
i=1

aia′
i) =

K+1∑
i=1

trace (aia′
i) = K + 1 (7.10)

The trace of a matrix is also the sum of its eigenvalues, so
∑K

i=1 λi = trace (AA′) =
K + 1. Now we want to minimize ‖AA′‖2

fro =
∑K

i=1 λ2
i , with the constraint that∑K

i=1 λi = K+1, and λi ≥ 0 for all i. The minimum is achieved when all the eigenvalues
are equal6, i.e. λi = K+1

K .
6We prove the claim that

∑N
i=1 λ2

i subject to
∑N

i=1 λi = 1 and λi ≥ 0 is minimized when λi = 1
N

for
all i. The fact that λi are eigenvalues is irrelevant, we treat them as plain good old reals for this proof.
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We have that the optimal value of
∑K

i=1 λ2
i is

∑K
i=1(

K+1
K )2 = (K+1)2

K , which implies

that
∑K+1

i,j=1 |a′
iaj |2 ≥ (K+1)2

K . Returning to our original quantities, that means that

max
i�=j

|a′
iaj |2 ≥ 1

K(K + 1)


K+1∑

i,j=1

|a′
iaj |2 − (K + 1)


 ≥ (7.11)

≥ 1
K(K + 1)

(
(K + 1)2

K
− (K + 1)

)
=

1
K2

(7.12)

This immediately leads to the desired result, M(A) = maxi�=j |a′
iaj | ≥ 1

K . �

An interesting observation is that for most of the proof the fact that we have K +1
vectors is inconsequential, so the following generalization is also true: suppose A ∈
C

M×N , then M(A) ≥
√

N−M
(N−1)M .

� 7.1.4 Another condition for the uniqueness of �0 regularization

The condition for the uniqueness of the �0 problem, Theorem 1, in conjunction with the
result relating rank-K unambiguity with M(A) gives rise to another sufficient condition:

Theorem 4 (Uniqueness of solutions for �0 optimization through M(A)). If
L < 1/M(A)+1

2 then if there exists a vector x̂ with ‖x̂‖0
0 = L satisfying y = Ax̂, then it

is the unique solution of the �0 problem (7.2).

Proof. This holds due to the fact that 1/M(A) ≤ K, thus (1/M(A) + 1)/2 ≤
(K + 1)/2, thus the new condition implies the previous sufficient condition in Theorem
1.

In effect we derive a sufficient condition which is less tight. The reason that we
derived it lies in the fact that we use it later on in Section 7.2 to connect the �0 and �1

problems. Also, the first condition depends discontinuously on the elements of A (since
it relies on rank-K unambiguity of A), but the new condition relies on M(A), which is
continuous with respect to the elements of A. �

Donoho and Huo in [8] have a similar result of uniqueness of solutions to the �0

problem (but a completely different proof) for a special case when A ∈ C
M×2M is

composed of two orthogonal bases: A = [Φ Ψ], where Φ′Φ = I, and Ψ′Ψ = I, and I is
an identity matrix.

We have an optimization problem, and we find the optimal value using Lagrange multipliers. We
ignore the positivity constraint for now, since even without it we show that the optimal values come
out strictly positive. Let λ = [λ1, ..., λN ]′. Also, let 1 be a column vector consisting of ones. Then the
Lagrangian for the problem is λ′λ + α(1′λ − 1), where α is the Lagrange multiplier. The gradient is
2λ+α1. The Lagrangian is convex, hence the minimum value is achieved at λ = − α

2
1. Putting it back

into the constraint, we have α
2
1′1 = α

2
N , hence α = − 2

N
. We get the optimal solution is λ = 1

N
1, i.e.

all λi = 1
N

. This proves the claim.
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They use a slightly different measure, M̃(A) = M̃(Φ, Ψ) = maxi,j |φ′
iψj |, where

Φ = [φ1, .., φM ], and Ψ = [ψ1, .., ψM ]. They arrive at the same result, stating that for �0

uniqueness of x with L non-zero elements, it is sufficient that L < 1/M̃(A)+1
2 . A better

result for such a class of A is derived by Elad and Bruckstein [9]. They found that a
tighter sufficient condition is:

L <
1

M̃(A)
(7.13)

Since our results apply to more general scenarios, and include the case of two orthogonal
bases, it is worthwhile to compare their results to ours. First of all, when A is indeed
composed of two orthogonal bases, then our measure M(A) is exactly the same as
M̃(A), since all dot products of two distinct vectors within an orthogonal basis are
zero. Thus our condition reduces to that of Donoho and Huo for the special case when
A = [Φ Ψ]. The fact that the sufficient condition of Elad and Bruckstein is tighter
can be explained by the additional structure that is imposed on A. Their result no
longer holds when A is relaxed to be any overcomplete basis7. Also, when restricted
to two merged orthogonal bases, their condition does not contradict our first condition
based on rank-K unambiguity: using a corollary of Theorem 3, M(A) ≥

√
N−M

(N−1)M . For

the case of A ∈ C
M×2M , (i.e. N = 2M), M(A) ≥

√
1

(2M−1) . However, the fact that

A = [Φ Ψ], where Φ and Ψ are orthonormal can be used to get a tighter bound. Donoho

and Huo [8] proved that for such case M(A) ≥
√

1
M . Then, using the condition of Elad

and Bruckstein, we obtain L < 1
M(A) ≤

√
M ≤ 1+M

2 . Also, K = M , since Φ and Ψ are
orthogonal. Thus satisfying Elad and Bruckstein’s sufficient condition implies satisfying
our necessary and sufficient condition with rank-K unambiguity, Theorem 1. (It is easy
to see that

√
M ≤ 1+M

2 , since 1 − 2
√

M + M = (1 −√
M)2 ≥ 0).

The paper of Donoho and Huo [8] suggests an extension of their measure M̃(A) to
a basis composed of two invertible bases. We argue in Section 7.2 that our definition
of M(A) is more natural, and much easier to apply to the problem of relating �1 and
�0 minimizations. In fact we use our M(A) to prove equivalence of �0 and �1 problems
not only for A composed of pairs of invertible bases, but for any overcomplete basis A.

The last comment about our new condition is that it does not directly take into
account N , the number of columns of A. The only property of the matrix used in
the derivation is rank-K unambiguity, which has to satisfy only one relation with N :
K ≤ min(M, N). Thus for matrices A which have considerably more columns than
rows, N � M , M(A) is quite large, and the bound only guarantees the uniqueness
of solutions with a very low number of non-zero coefficients (the requirements are too

7A simple counterexample is A representing a regular 5-simplex in C
4. M(A) in this case equals 1

4
,

and 1
M(A)

= 4. So L = 3 would be sparse enough to achieve unique solutions using Elad and Bruckstein’s

sufficient condition. This is impossible, since 3 ≥ 4+1
2

which violates our necessary condition (Theorem
1) based on rank-K unambiguity.
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high). However, rank-K unambiguity may be as large as M no matter how small M(A)
is (as long as M(A) > 0).

We are interested in bounds for M(A) for A ∈ C
M×N , as a function of M and N ,

to be able to characterize what information on the required sparsity can be extracted
based on the knowledge of M(A) for given M and N . That means that if N is much
larger than M , then we may know that M(A) will be too large without having to
calculate it. We describe the bounds in some detail (for the real case) in Sections 7.2.2
and 7.2.3.

� 7.2 Solving the �0 problem by �1

The two before-mentioned papers (by Donoho and Huo [8], and Elad and Bruckstein [9]),
consider the question of when the problem of minimizing the �0-norm of the represen-
tation coefficients of a signal in an overcomplete basis is equivalent8 to the problem
of minimizing their �1-norm. The question is of significant practical value since the
�1 problem can be solved with the help of linear optimization or second-order cone
programming, whereas the �0 problem can be tackled directly only by computation-
ally expensive combinatorial optimization. However, as mentioned before, their work
is concerned with the case when the overcomplete basis A is composed of two merged
orthogonal bases. We are considering the problem where no assumptions about the
structure of A are made. Dimensions are arbitrary (any N > M is allowed, not just
N = 2M as in the case of two merged minimal bases), and the only parameter de-
scribing A on which we are relying is M(A). Donoho’s paper suggested that in order
to extend their results to a merge of two non-orthogonal (but still invertible) bases,
A = [Φ Ψ], one should consider a measure

M̃(Φ, Ψ) = max [supi,j |Φ−1Ψ|i,j , supi,j |Ψ−1Φ|i,j ] (7.14)

We argue that this is not the best way to generalize, and provide a different alter-
native which works much better. A major difficulty is that M̃ depends on a particular
partition of A into Φ and Ψ, thus for a general M × 2M matrix A one would need
to take into account all possible partitions and find the minimum M̃ , to get the best
results. For a general M ×N matrix A the situation is even more complicated. Donoho
and Huo do not propose this, but we take the freedom to conjecture an extrapolation
of their definition. To extend the proposed measure M̃ it would be necessary to split
A into an invertible M × M matrix Φ, and the remainder M × (N − M) matrix Ψ,
and consider M̃(Φ, Ψ) = supi,j |Φ−1Ψ|i,j as the measure. To get a bound on sufficient
sparsity of x it is necessary to find the maximum M̃ over all partitions in a set of
partitions P which has the property that Φp cover A (i.e. the union of columns of Φp

over all partitions p ∈ P includes the set of columns of A). Then to find a tight bound
it is necessary to find the minimum over all such sets of partitions X of the maximum

8There is a recent paper on the same subject by Feuer and Nemirovski, [56], proving that Elad and
Bruckstein’s sufficient condition for equivalence in merged orthogonal bases is in fact also necessary.
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of M̃ for all partitions in each set. Computing such a bound numerically or simplifying
it analytically appears to be a nontrivial task.

We go in a different route and use the extension of M(A) from a merge of two
orthogonal bases to a general overcomplete basis as described in previous sections.

M(A) = max
i�=j

|a′
iaj |, such that ‖ak‖2 = 1,∀k. (7.15)

This definition is much simpler than the generalization suggested by Donoho and Huo
in [8], and it is equivalent to their definition for the case of two merged orthogonal
bases. The similarity allows us to follow some of the steps taken by Donoho and Huo
in their proof of the equivalence of �0 and �1 for A composed of two orthogonal bases
in the beginning stages of our proof for the more general overcomplete A. The proof is
the subject of the next section.

� 7.2.1 Sufficient condition for equivalence of �0 and �1 problems

First, we restate the problems that we wish to relate. The problem which we refer to
as the �0-problem has the following form:

min ‖x‖0
0 subject to y = Ax. (7.16)

The �1 problem has the same form but with �1 norm instead of the �0 norm:

min ‖x‖1 subject to y = Ax. (7.17)

In both of these problems we assume that N > M in order for the problem to be of
interest. Next, we prove the following sufficient condition:

Theorem 5 (Equivalence of �0 and �1 problems for general overcomplete A).
Suppose that the �0 problem (7.16) has a unique solution x̂ with sparsity equal to L,
e.g. ‖x̂‖0

0 = L. If L < 1+1/(M(A))
2 , then the solution of the �1 problem in (7.17) is x̂.

In other words we can get the solution to the �0 problem by solving the �1 problem.

Proof. In the beginning stages, the structure of the proof follows that of [8] and
[9], generalizing some of the notions so that a general overcomplete basis A could be
handled. A novel aspect of the proof is a derivation of a bound on Q(A) for a general
basis, in Theorem 6, see below.

Suppose that x̂ is the optimal solution to (7.16). To satisfy y = Ax̃, any other
candidate must have the form x̃ = x̂ + δ, where δ ∈ Null(A), nullspace of A. In order
for x̂ to be the optimal �1 solution as well, we need:

‖x̂ + δ‖1 > ‖x̂‖1 for any δ ∈ Null(A), δ �= 0 (7.18)

Alternatively, ‖x̂ + δ‖1 − ‖x̂‖1 > 0 for all δ ∈ Null(A), δ �= 0.
Let Ix denote the set of indices where the optimal �0 solution x̂ has non-zero values

(the support of x̂). Also its complement, the set of zero-valued indices of x̂, is denoted



118 CHAPTER 7. THEORETICAL ANALYSIS: SOLVING THE �0 PROBLEM BY �P AND RELATED TOPICS

by IC
x . We can divide the �1 norm into the components on and off the support of x̂

and then use the triangle inequality to manipulate (7.18) as follows:

‖x̂ + δ‖1 − ‖x̂‖1 =


∑

i∈Ix

|x̂i + δi| +
∑
i∈IC

x

|δi|

−

∑
i∈Ix

|x̂i| = (7.19)

=
∑
i∈Ix

(|x̂i + δi| − |x̂i|) +
∑
i∈IC

x

|δi| ≥
∑
i∈IC

x

|δi| −
∑
i∈Ix

|δi| (7.20)

The first equality uses the fact that x̂i = 0 for i ∈ IC
x , and the triangle inequality

is used in the form |a + b| − |a| ≥ −|b|. Note that the bound in (7.20) does not
depend on x̂, only on ‖x̂‖0

0 and the structure of the nullspace of A. Starting from∑
i∈IC

x
|δi| −

∑
i∈Ix

|δi| > 0, adding 2
∑

i∈Ix
|δi| on both sides, and using the fact that∑

i∈Ix
|δi|+

∑
i∈IC

x
|δi| =

∑
i |δi| = ‖δ‖1 we get the following condition for equivalence:

∑
i∈Ix

|δi|
‖δ‖1

<
1
2
, where δ ∈ Null(A), δ �= 0 (7.21)

This is a great start, but unfortunately, hard to test numerically. In order to move
further from (7.21), we consider the following family of problems indexed by i:

min ‖δ‖1 subject to δ ∈ Null(A) and δi = 1 (7.22)

What we are trying to do here is to find the minimum possible �1-norm of δ ∈ Null(A),
when we fix δi = 1. Suppose the minimum value is Qi, when index i is fixed. Define
Q(A) = mini Qi. Next, we use Theorem 6, which we prove right after this one, which
states that Q(A) ≥ (1 + 1

M(A)),
Consider the condition that we are trying to prove, (7.21):∑

i∈Ix
|δi|

‖δ‖1
=
∑
i∈Ix

|δi|
‖δ‖1

≤
∑
i∈Ix

1
Qi

≤
∑
i∈Ix

1
Q(A)

= ‖x̂‖0
0

1
Q(A)

≤ ‖x̂‖0
0(1 +

1
M(A)

)−1

(7.23)

We need to have
∑

i∈Ix
|δi|

‖δ‖1 < 1
2 . In order for that to happen, it is sufficient that

‖x̂‖0
0 < 1

2(1 + 1
M(A)). This proves the theorem. �

In the proof we used Theorem 6, which we prove next.

Theorem 6 (Bound on Q(A) for a general overcomplete A). Q(A), the mini-
mum optimum value of problems (7.22) over all i, can be bounded by Q(A) ≥ (1+ 1

M(A)).
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Proof. Without loss of generality we assume that Qi is minimized at i = 1, so we
have δ1 = 1. (This does not impose any restrictions since we can always rearrange the
columns of A and the indices of δ such that this is true). Also, recall that the columns
of A are normalized to have unit Euclidean distance.

Split A into two parts: A = [b C], where b ∈ C
M×1, and C ∈ C

M×(N−1). Then
Aδ = [b C]δ = bδb + CδC = 0. Thus bδb = −CδC . Here δb is the 1st index of δ, i.e.
δb = δ1, and δC is the rest of the vector δ. By assumption (or reindexing) δb = 1.

Apply b′ to both sides: b′bδb = 1 = −b′CδC . But by the definition of M(A),
vector b′C has every component less than M(A) in absolute value, thus 1 = |b′CδC | ≤
|b′C||δC | ≤ M(A)1′|δC | = M(A) ‖δC‖1. Consequently9

‖δ‖1 = |δb| + ‖δC‖1 = 1 + ‖δC‖1 ≥ 1 +
1

M(A)
(7.24)

This proves the theorem. �

Next we describe how to get a feel for M(A) as a function of the dimensions of A,
M and N , for the case when A is real-valued.

� 7.2.2 The insight into M(A) from the theory of spherical codes

The problem of finding A ∈ R
M×N to minimize M(A) is very similar to the problem

of designing spherical codes10. We use results from the theory of spherical codes to
relate M(A) to the dimensions of A, e.g. M and N . We borrow the information about
spherical codes from the book “Codes on Euclidean Spheres” [57]. A code on a Euclidean
sphere is a finite set of unit norm vectors: X = {x1,x2, ....,xN : xi ∈ R

M , ‖xi‖2 = 1}.
N is the number of codewords. Alternatively, we can represent a code by matrix
X = [x1, ..,xN ], keeping in mind that the order of the columns is inconsequential. An
important measure associated with a spherical code is the squared minimum distance:
ρ = min{‖x − y‖2

2 : x, y ∈ X , x �= y}. The goals of code design are maximizing
ρ, minimizing M and maximizing N . These goals are contradictory, and the main
problem is of characterizing the regions of achievable (ρ, M, N), and developing codes
as close as possible to the boundaries of this region.

Two functions associated with a code are used to describe the achievable region.
NM (ρ), is the largest possible size of a spherical code with dimension M , and a minimum
squared distance of at least ρ. The other one is ρM (N), the minimum possible squared
distance for a code with dimension M , and N codewords. Formally,

NM (ρ) = max{|X | : ρ(X ) ≥ ρ, dim(X ) = M}, (7.25)

where ρ(X ) is the minimum Euclidean distance for any two distinct codewords in X , and
the |X | notation for sets denotes the cardinality of the set, or the number of elements

9We use 1 to represent a vector of ones.
10We have not extended these results to C

M×N , so everything related to spherical codes deals with
real quantities.
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in the code. Similarly,

ρM (N) = max{ρ(X ) : |X | ≥ N, dim(X ) = M}. (7.26)

These two functions NM (ρ), and ρM (N) are not fully known for dimension M higher
than 3, but several bounds have been constructed. In Section 7.2.3 we describe one of
these bounds and also present an easy extension which allows to put a bound on M(A).

Relation of ρM (N) to M(A)

Before describing the sphere packing bound which partially characterizes achievable
ρM (N), we need to relate ρM (N) to M(A), the quantity that we are ultimately inter-
ested in. The problem of maximizing ρ(X ), the minimum square distance between any
two codewords, is identical to that of maximizing the minimum angle between the two
codewords, or equivalently minimizing the maximum11 pairwise dot-product:

‖xi − xj‖2
2 = x′

ixi + x′
jxj − 2x′

ixj = 2 − 2x′
ixj (7.27)

The second equality is obtained since all x ∈ X have ‖x‖2
2 = 1. This relates ρ to the

angle θ between xi and xj since for xi ∈ R
M , x′

ixj = cos(θ), which is a monotoni-
cally decreasing function on [0, π], which leads to another switch of maximization to
minimization.

For a spherical code maximizing the minimum ρ(X ) is equivalent to min maxx′
ixj ,

i �= j, i, j = 1, .., N . However, our measure M(X) (now we have X instead of A, so we
use M(X)), is somewhat different: max |x′

ixj |, i �= j, i, j = 1, .., N . An extra absolute
value of the dot product is taken. The absolute value appears in our problem making our
problem equivalent to packing lines on a Euclidean sphere, whereas the spherical code
problem is equivalent to packing rays. In our case, each column of A (or X) represents
a subspace, and each ai can be represented as a dipole centered at the origin, ai and
−ai. We are looking for the minimum angle between lines (i.e. 1-subspaces),12 and not
between vectors. We illustrate this difference in Figure 7.2. Next we prove a bound for
NM (ρ), and in a similar fashion a bound for M(A).

� 7.2.3 Sphere-packing bound

The sphere packing bound puts an upper limit on N as a function of ρ and M , i.e. it
bounds NM (ρ). The idea is quite simple. If X has minimum pairwise distance ρ, or
equivalently minimum pairwise angle θ, then the conic region with angle θ around each
codeword xi has to be empty of other codewords. Alternatively, conic regions with
angle θ

2 around each codeword have to be disjoint. In order for that to happen the
surface areas of the spherical caps of the cones (intersection of the cones with the unit
sphere) for all N codewords have to sum to a value which is less than the surface area of

11Note the switch of the order of min and max!
12The angle between two lines is the smaller of the 2 angles at the intersection. The lines that we are

concerned with are linear subspaces so they intersect at the origin.
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Figure 7.2. Comparison of ray packing and line packing on the 2-sphere. (a) Ray packing of xi.
(b) Line packing of ai.

the unit sphere of dimension M . Otherwise the surface caps would overlap. The sphere
packing bound is the largest possible N which allows the sum of the areas of these
spherical caps to be less than the surface area of the unit sphere. The condition on the
sum of the areas is not sufficient for the existence of the code; in fact spherical caps
for a sphere of dimension M > 2 cannot cover the sphere and be disjoint. Fortunately,
we are not interested in the problem of code design, only in characterizing the feasible
region. The problem of code design is very hard and optimal solutions have been found
only for a small set of pairs M and N . We are content with just having a bound.
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caps for ai and aj .
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Now we put the preceding informal discussion into formulas. For notational con-
venience, define the unit sphere ΩM = {x ∈ R

M : ‖x‖2
2 = 1}, and the spherical cap

around x with angle θ, Cap(x, θ) = {y ∈ ΩM : x′y ≥ cos(θ)}. An illustration appears
in Figure 7.3. Denote the surface area of Cap(x, θ) by CM (θ) (it does not depend on
x). Define YM (r) to be the surface area of an M -dimensional sphere with radius r.

We summarize some of the expressions for the quantities defined above (without
proofs). For a more detailed explanation refer to [57].

YM (r) = kMrM−1, where (7.28)

kM =




(2π)M/2

(M−2)!! , for M = 2, 4, ...

2 (2π)(M−1)/2

(M−2)!! , for M = 3, 5, ...
(7.29)

The double-factorial notation stands for

m!! =




m(m − 2)(m − 4)...(3)(1), for odd m,

m(m − 2)(m − 4)...(4)(2), for even m

1, for m = 0, and m = 1.

(7.30)

CM (θ) =

θ∫
0

YM−1(sin(β))dβ = kM−1

θ∫
0

sinM−2(α)dα. (7.31)

With these definitions we are now in a position to state the upper and lower bounds
for NM (ρ) for spherical codes (i.e. for ray-packing).

Theorem 7 (Sphere packing bound). Let X be any spherical code with parameters
(ρ, M , N). Then the following inequality holds:

N ≤ NM (ρ) ≤
⌊

CM (π)
CM (θ/2)

⌋
(7.32)

where ρ = 2 − 2cos(θ), and �•� denotes the largest integer below •.
We are ultimately interested in characterizing M(A). Luckily, most of the work has

already been done. It remains to note that since we have lines instead of rays, then each
column ai of A corresponds to two conical regions, one around ai, and another around
−ai, (see Figure 7.3). Again in order for the 2N conical regions to be non-overlapping,
the sum of their surface areas has to be below the surface area of the unit sphere. This
leads to the following
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Theorem 8 (Bound on N as a function of M(A)). Let A ∈ R
M×N . Then

N ≤
⌊

CM (π)
2CM (θ/2)

⌋
(7.33)

where M(A) = cos(θ), 0 ≤ θ ≤ π/2, and �•� denotes the largest integer below •.
This bound can be used to test whether it is possible at all to achieve a desired

value of M(A) for given M and N . This concludes our discussion of the �1 problem.
Next we move on to the case of general p ≤ 1.

� 7.3 Conditions for the equivalence of �p and �0 problems

In this section we present two sufficient conditions for the equivalence of �0 (7.16) and
�p (7.34) problems for p ≤ 1. The first condition can be easily tested numerically,
but it does not give preference to lower p. The second condition is harder to test
numerically, but it gives a strong preference for smaller p, and in particular it shows
that as p → 0, then the sufficient condition for equivalence of �p and �0 problems
approaches the necessary and sufficient condition for the uniqueness of solutions of the
�0 problem.

Practically, for p < 1 these results are not as important as the results for �1 equiv-
alence from Section 7.2, since finding the global optimum of the non-convex �p cost
function is a much harder task. In particular, the iterative method for �p minimization
that we presented only finds a local minimum. However, these results may stimulate
further work in global �p optimization, for example by homotopy continuation methods.

Generic conditions

We consider the �p problem

min ‖x‖p
p subject to y = Ax (7.34)

Matrix A is M by N , with N > M , and p ≤ 1. Suppose that the �0 problem min ‖x‖0
0

subject to y = Ax has a unique solution x̂, and ‖x̂‖0
0 = L. �0 uniqueness means that

there exists a single vector x̂ satisfying the constraints, which has at most L non-zero
elements, where L < K+1

2 , and matrix A is rank-K unambiguous. The purpose of the
following analysis is to find out under what conditions on A, L, and p, the solution of
(7.34) is also the solution of the �0 problem, x̂.

We start in a similar fashion to what was done for the �1 case in Section 7.2. In
order for x̂ to be the unique solution of (7.34), it must be true that ‖x̂‖p

p < ‖x̂+δ‖p
p for

any δ ∈ Null(A), δ �= 0. Let Ix denote the set of indices where the optimal solution
x̂ has non-zero values (the support of x̂). Let its complement, the set of zero-valued
indices of x̂, be denoted by IC

x . Then

‖x̂ + δ‖p
p − ‖x̂‖p

p =
∑
i∈Ix

(|x̂i + δi|p − |x̂i|p) +
∑
i∈IC

x

|δi|p (7.35)
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This can be simplified using the fact that the ‖ • ‖p
p functional satisfies the triangle

inequality for p ≤ 1 13:

‖z‖p
p − ‖y‖p

p ≤ ‖z + y‖p
p ≤ ‖z‖p

p + ‖y‖p
p (7.36)

The triangle inequality leads to the following (we use it in the form |a+b|p−|a|p ≥ −|b|p):
∑
i∈Ix

(|x̂i + δi|p − |x̂i|p) +
∑
i∈IC

x

|δi|p ≥ −
∑
i∈Ix

|δi|p +
∑
i∈IC

x

|δi|p (7.37)

Thus the condition for getting the �0 solution at the global optimum of the �p cost
function is to have the sum of |δi|p on the support of the optimal solution to be less
than the sum of |δi|p on its complement for every element δ ∈ Null(A), δ �= 0:

∑
i∈IC

x

|δi|p −
∑
i∈Ix

|δi|p > 0 (7.38)

Similarly to the �1 case, this condition is not easy to use. Next we present two
related conditions. The first of them can be readily computed numerically. The second
condition does not have this benefit, but it is tighter for small p, and in particular
explicitly shows that the sparsity requirements are reduced as p → 0.

� 7.3.1 First condition for equivalence of �0 and �p for p ≤ 1

In order to be able to simplify the condition further, we examine A more closely. We
introduce a new measure of A, L1(A), and use it to get an equivalence relation between
�p and �0 problems. Define

L1(A) = min ‖δ‖1 subject to ‖δ‖∞ = 1, and δ ∈ Null(A) (7.39)

For the real-data case, this functional of A can be readily found by N linear problems,
as we describe in Appendix E.

Now consider the condition from the previous section:

∑
i∈IC

x

|δi|p −
∑
i∈Ix

|δi|p = ‖δ‖∞

∑

i∈IC
x

|δi|p
‖δ‖∞ −

∑
i∈Ix

|δi|p
‖δ‖∞


 > 0 (7.40)

Now all the indices of δ
‖δ‖∞ are normalized such that ‖ δ

‖δ‖∞ ‖∞ = 1. It suffices to
show that

∑
i∈IC

x
|δi|p −

∑
i∈Ix

|δi|p > 0 when ‖δ‖∞ = 1, and δ ∈ Null(A). Now comes
the time to use our new measure, L1(A). Since δ is normalized to 1 in ∞-norm, that

13Note the presence of the p-th power. The triangle inequality fails for the �p-quasi-norm, ‖ • ‖p for
p < 1 (without raising to p-th power). This is why �p is not a norm for p < 1, and just a quasi-norm.



Sec. 7.3. Conditions for the equivalence of �p and �0 problems 125

means that
∑

i∈Ix
|δi|p ≤ L, the number of nonzero elements of x̂. For p ≤ 1, and

|δi| ≤ 1, |δi|p ≥ |δi|. Hence,∑
i∈IC

x

|δi|p = ‖δ‖p
p −

∑
i∈Ix

|δi|p ≥ ‖δ‖1 −
∑
i∈Ix

|δi|p ≥ (7.41)

≥ L1(A) −
∑
i∈Ix

|δi|p ≥ L1(A) − L (7.42)

Putting it all together, we have that:∑
i∈IC

x

|δi|p −
∑
i∈Ix

(|δi|p) ≥ L1(A) − 2L (7.43)

So a sufficient condition for the equivalence of the �0 problem and �p problem with p ≤ 1
is the following:

Theorem 9 (Equivalence of �0 and �p with p ≤ 1, first sufficient condition). Suppose
that the �0 problem (7.16) has a unique solution x̂ with sparsity equal to L, e.g. ‖x̂‖0

0 =
L. If L < L1(A)

2 , then the solution of the �p problem in (7.34) is x̂.

The sufficient condition that we presented does not depend on p except for the fact
that p ≤ 1. In particular it does not favor smaller p. The reason that this is the case
is that we use an �1-based measure on A. We can change this by considering Lp(A) as
the minimum �p norm for all δ ∈ Null(A) subject to ‖δ‖∞ = 1. This however does not
have the benefit of a tractable numerical solution. Without further analysis it is not
immediately clear that smaller p would be preferred. Instead of following up on Lp(A)
we choose to follow a different path and introduce another measure of A next.

� 7.3.2 Another equivalence condition for �p and �0 problems, p ≤ 1

A very interesting equivalence condition comes up when we consider order statistics
of the elements of the nullspace of A. Define δ̃ to be a permutation of δ in which
the absolute values of the coordinates δi appear sorted in decreasing order. Thus,
δ̃1 = maxi |δi|, δ̃N = mini |δi|. If several indices of δ have the same value then their
ordering is immaterial for our purposes. Suppose matrix A is rank-K unambiguous,
i.e. the minimum linearly dependent set of columns of A contains K + 1 elements. We
define S(A) as follows:

S(A) = min δ̃K+1 over all δ ∈ Null(A), with ‖δ‖∞ = 1 (7.44)

Since A is rank-K unambiguous, S(A) is greater than zero (otherwise there would exist a
set of K linearly dependent column-vectors of A). Also S(A) ≤ 1, since ‖δ‖∞ = δ̃1 = 1.
Having defined S(A) we now use it to simplify the condition in (7.38). To do that we
look for a lower bound on

∑
i∈IC

x
|δi|p and an upper bound on

∑
i∈Ix

|δi|p. Same as in
the last section,

∑
i∈Ix

|δi|p ≤ L, where L is the number of nonzero elements of x̂, (x̂
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is the solution to the �0 problem (7.16)). At least K + 1 elements in δ ∈ Null(A) have
absolute values greater than or equal to S(A). We have assigned at most L of them
already to the support of x̂, Ix , so at least K + 1 − L remain off the support. Hence,∑

i∈IC
x
|δi|p ≥ S(A)p(K + 1 − L). Using these two inequalities together we get:∑

i∈IC
x

|δi|p −
∑
i∈Ix

|δi|p ≥ S(A)p(K + 1 − L) − L (7.45)

In order for (7.38) to be satisfied, a sufficient condition is: S(A)p(K + 1 − L) − L > 0.
For this condition to hold, L must satisfy: L < S(A)p(K+1)

1+S(A)p .

Theorem 10 (Equivalence of �0 and �p with p ≤ 1, second sufficient condition).
Suppose that the �0 problem (7.16) has a unique solution x̂ with sparsity equal to L,
e.g. ‖x̂‖0

0 = L. Also, A is rank-K unambiguous. If L < S(A)p(K+1)
1+S(A)p , then the solution

of the �p problem in (7.34) is x̂.

Now let us take a look at the new condition. Since S(A) is below unity except for
degenerate cases, (and typically significantly below unity), so when p < 1 the bound is
less restrictive than when p = 1. As p goes to zero, the condition approaches (K +1)/2,
as long as S(A) is non-zero. But this is the necessary and sufficient condition for
uniqueness of solutions to the �0 problem which we have derived in Theorem 1! When p
is sufficiently close to 0, the equivalence of �p and �0 problems requires the same sparsity
of x as it is necessary for �0 problem to have a unique solution. This is very interesting
theoretically.

However, practically this has limited value due to the fact that the global minimum
of the �p problem cannot be easily found using current optimization techniques. Also, as
p → 0, the �p problem becomes “increasingly” non-convex, also increasing the difficulty
of finding the global optimum. One direction of research that may lead to efficient
methods to find the global optimum of the �p problem is homotopy continuation. The
idea is that we start from the solution to the �1 problem, and decrease p slowly, finding
the solution of the �p problem for each p.

� 7.4 Sparsity regularization: a sensitivity result for the noisy version.

So far in this chapter we have considered the noiseless problem, y = Ax. In practice
there is always some noise, so it is worthwhile to analyze the noisy problem as well
(also recall that the noisy problem is the focus of the rest of the thesis): y = Ax + n.
Assume that A is rank-M unambiguous and there is an underlying true signal x1, such
that y = Ax1+n, and ‖x1‖0

0 = L < (M +1)/2. Since noise is present, we are interested
in what kinds of sparse representations of y are possible when we allow some deviation
from y to account for noise. That is to say we are looking for sparse signals x2, such
that ‖x2‖0

0 = L < (M + 1)/2, and Ax2 is not too far from Ax1. The question of what
method to use to find such x2 is immaterial; we are just interested in the existence and
properties of such x2.
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An important question is the sensitivity of sparse representations to noise, or to
the amount of deviation from y that we can tolerate. One way to quantify that is by
trying to answer whether it is possible to have x1 very different from x2 while Ax1 is
almost the same as Ax2

14. The definition of “x1 very far from x2” that we use for
our analysis is the following. Let the support of xi be denoted by Ii, i = 1, 2. Denote
the matrices composed of columns of A which correspond to the non-zero indices of
xi by Ai. For example, if x1 is non-zero on indices {1, 4, 5}, then A1 = [a1 a4 a5],
where ak is the k-th column of A. We call x1 very different from x2 if the columns
corresponding to x1 and x2 are well-separated15: that means that the matrix composed
of the columns corresponding to the support of both x1 and x2, AI = [A1 A2], is full
rank and M(AI) ≤ J , for some small J . Recall that M(A) = maxi�=j |a′

iaj |, which was
defined in (7.3). This definition of well-separatedness using M(AI) is not exactly what
we are looking for, since it also requires elements within x1 and x2 to be well-separated.
However, it is appropriate as a starting point.

Let x = x1 − x2, then we are in effect trying to solve the following problem:

min ‖Ax‖2
2, subject to ‖x‖0

0 = 2L and ‖x‖2
2 = 1 (7.46)

The �2 norm of x is set to 1 for normalization, to prevent trivial solutions. If we can
find x such that ‖Ax‖2

2 is very small, then any method of sparse solutions of the noisy
problem may be overly sensitive to small noise. We would like to put a lower bound on
‖Ax‖2

2 as a function of J and L.
Since the columns of A corresponding to zero-valued indices of x do not affect the

minimization, we can discard them. Denote the vector of nonzero elements of x by x̃,
then x̃ ∈ C

2L. We get the following equivalent problem:

min ‖AI x̃‖2
2, subject to ‖x̃‖2

2 = 1 (7.47)

By the Rayleigh quotient theorem [58] ‖AI x̃‖2
2 ≥ λmin‖x̃‖2

2, where λmin is the
minimum eigenvalue of A′

IAI . Matrix A′
IAI is positive definite, since all the columns

are assumed linearly independent (we have L < (M+1)/2, so 2L ≤ M , and A is rank-M
unambiguous). Hence all its eigenvalues λi > 0. We would like to say more than that.
In particular we would like to bound λmin using J . We know that M(AI) ≤ J , hence
all the off-diagonal elements of A′

IAI are smaller than or equal to J in magnitude.
All the diagonal elements are 1 because columns of A are normalized to unity. Let
B = A′

IAI ; then Bi,i = 1, and |Bi,j | ≤ J , when i �= j. When J is notably smaller than
unity, we can use the Gersgorian eigenvalue perturbation theory [58] to put a bound on
λmin. We use the famous Gersgorian discs theorem [58]:

14This question only makes sense since we imposed the sparsity requirement on both x1 and x2.
Otherwise x1 and x2 can be arbitrarily far apart while Ax1 = Ax2, if the difference x1 − x2 belongs
to the nullspace of A.

15This definition is useful for the array processing application since we are ultimately interested not
in the values of x1, but in the indices of support of x1, which correspond to the estimates of the source
locations.
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Theorem 11 (Gersgorian). Let B = [bi,j ] ∈ C
N×N , and let Ri(B) denote the deleted

absolute row sums of B:

Ri(B) =
N∑

j=1,j �=i

|bi,j |, 1 ≤ i ≤ N (7.48)

Then all the eigenvalues of B are located in the union of N disks:

N⋃
i=1

{z ∈ C : |z − bi,i| ≤ Ri(B)} (7.49)

We have a very special structure for our B = A′
IAI , which allows to simplify

the statement of the theorem considerably. First, all bi,i = 1. Second, all Ri(B) can
be bounded by the same number, (2L − 1)J . (Recall that our B ∈ C

2L×2L). Hence⋃2L
i=1{z ∈ C : |z − bii| ≤ Ri(B)} ⊂ {z ∈ C : |z − 1| ≤ (2L − 1)J}. Finally, recall that

B is hermitian, so all its eigenvalues are real. Looking at the minimum eigenvalue of
B, λmin, (the one that is of interest to us), we get |λi − 1| ≤ (2L − 1)J , which leads to
λmin ≥ 1 − (2L − 1)J . This translates right away into a bound on ‖Ax‖2

2:

Theorem 12 (Sensitivity to noise for sparse representation). For A, x, L and
J as defined above, ‖Ax‖2

2 ≥ (1 − (2L − 1)J)‖x‖2
2.

Practically the meaning of this result is the following. We are interested in the
question of existence of dramatically wrong solutions, where the nonzero indices of x2

are far apart from the nonzero indices of x1 in terms of M(AI). This corresponds to
having a small J . But if J is small enough, then we get a strictly positive bound on
the distance between the two vectors, x1 and x2. What the bound says, is that if we
get a very wrong x2, (i.e. J is small, and x = x1 − x2 has a large �2-norm) then the
corresponding deviation (Ax = Ax1 − Ax2) must also be large. In particular, it is
impossible to get a very bad sparse solution x2 where Ax = A(x1 − x2) is small.

The result is interesting, but too many conditions are imposed. In particular, we
assumed that the columns of A corresponding to non-zero elements of x to be well-
separated. It is of interest to have milder requirements. For example require that the
columns corresponding to x1 and x2 of A1 and A2 are well separated mutually, but the
joint matrix AI = [A1 A2] does not necessarily have all the columns well-separated.
That is to say, it is possible to have large M(A1), and large M(A2), but all we need
is a small A′

1A2. Then the bound on the error depends only on the mutual separation
of the two sets of columns. This turns out to be more difficult and has not been done
yet. Many other important questions also remain for the noisy �1 regularization. They
can be vaguely stated as “when can we expect to be able to find good approximations
of the true underlying sparse signal in noisy scenarios”. They are the subject of further
research.



Chapter 8

Model Errors and Self-Calibration

The formulation of our source localization methodology as well as the formulations
of all other source localization methods described in Chapter 2 depend heavily on
the assumption that all the relevant model parameters are known exactly. Source
localization model parameters include the positions, gains, and mutual coupling of the
sensors, speed of wave propagation, directivity pattern of the sensors, classification of
the sources as farfield/nearfield, and many others1. In practice, these parameters are
known only approximately through measurement. More importantly, even when these
model parameters are measured very accurately, they may evolve with time due to aging
of the equipment, or change in the environment, and the array becomes uncalibrated.

Model errors deteriorate the performance of source localization methods. The effect
of model errors is felt the most in those methods that rely the most on model struc-
ture, in particular in super-resolution methods for source localization. In fact, model
errors and the high cost of array calibration are the main reasons for limited practical
applications of modern source localization methods such as MUSIC and ESPRIT. The
performance of many methods in scenarios with model errors has been analyzed theo-
retically [59–61], and the results show that even moderate errors can sometimes lead to
dramatic deterioration of source localization performance.

Accurate calibration of sensor arrays is typically a very costly procedure, and it is
of great interest to develop methods which allow to extend the period of time when the
array can be used successfully without recalibration. Two directions of research that
try to accomplish this goal are robust source localization and self-calibration. Robust
source localization methods make the performance of the array less sensitive to model
errors. This is achieved by including the possibility of model errors in the formula-
tion of the method, and guaranteeing that the method performs satisfactorily when
model parameters are perturbed from their nominal values. Good examples of robust
methods are [62], [63], and [64]. Self-calibration refers to simultaneous localization of
the unknown sources and the use of these sources to calibrate the array (estimate per-
turbed model parameters). We restrict our attention to self-calibration methods only.
This chapter first presents the self-calibration problem, then discusses several existing

1For simplicity in our work we have assumed that all the sensors are omnidirectional, that all the
gains are unity, and that there is no crosstalk between the sensors. In practical applications these
assumptions may not be justifiable, and have to be dealt with.
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self-calibration methods based on block-coordinate descent, and in the end we follow
a similar strategy to extend our source localization method to achieve self-calibration.
We present preliminary experimental results.

� 8.1 Self-calibration problem formulation

In general the set of possible model errors is very large, and we limit ourselves to the
problem of sensor position uncertainties. Self-calibration for other model errors has the
same flavor. In addition, we only look at planar arrays, with sources in the farfield and
confined to the same plane. Source locations in this case are the directions of arrival
(DOA’s) of plane waves from the different sources. Suppose that the nominal positions
of the sensors are p0, but the actual positions have migrated to p = p0 + ∆p, where
p = [p1, .., pM ]. Then the self-calibration problem that we are trying to solve is the
following:

y(t) = A(θ,p)u(t) + n(t), t ∈ {1, .., T} (8.1)

Quantities of interest include θ and p. The signals u(t), and the noise n(t) are unknown,
except for the assumption that both are stationary random processes, and the covariance
of the noise is E[n(t)n(t)′] = σ2I.

The first question that comes to mind is that of observability. Is it at all possible to
determine the unknowns given the data? It is fairly obvious that if all sensor positions
pm, m ∈ {1, .., M}, are unknown, and all the source DOA’s θk, k ∈ {1, .., K}, are also
unknown, then any translation and rotation of the array are unobservable. Shifting
the array by a fixed vector with respect to the origin will not change the delays (phase
shifts), since relative delays between the sensors are unaffected. Similarly, if the array
is rotated by angle θ0 with respect to the phase center, all the DOA’s are also changed
by θ0, making this change unobservable.

Rockah and Schultheiss [65] showed that when the location of one sensor and the
direction to another are known, and at least three spectrally (or temporally) disjoint
sources are present in unknown locations, then a non-linear array can be calibrated as
SNR approaches infinity, or as the number of time samples goes to infinity. They also
assume that the displacements of the sensors with respect to their nominal positions
are small. Weiss and Friedlander [66] claim that spectral or temporal disjointness is
not necessary, and that spatial separation is sufficient. The analysis in [65] is based on
the Cramer-Rao-Bound (CRB), and that means that only local observability is taken
into account. This is the reason that sensor position errors are required to be small
relative to the nominal positions. Describing global observability conditions is a very
challenging task.

Even when sensor positions are known, the question of array ambiguity, is still
unsolved. Lack of array ambiguity is a necessary assumption before attempting self-
calibration. Suppose that the array manifold a(θ) is known as a function of θ. The array
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is called ambiguous if a(θ̃) ∈ span{a(θ1), ...,a(θk)}, where k < M , and θ̃ /∈ {θ1, ..., θk},
for some set θ1, ..., θk, and some θ̃. That means that there exists a linearly dependent
set of distinct steering vectors with cardinality less than the number of sensors. It is
known that a uniform linear array is unambiguous if sensor spacing is below half of the
wavelength. There are some results using differential geometry for general linear and
nonlinear arrays [67, 68], but in general whether a given array is ambiguous or not is
difficult to answer. Global observability conditions for self-calibration are even more
difficult since another set of parameters pm is added.

Instead of attempting to tackle global observability conditions we also assume that
perturbed sensor positions are close to their nominal values, and that the geometry of
the array is nondegenerate. Under these assumptions results in [65] apply.

� 8.2 Prior work in self-calibration

An attractive idea for self-calibration can be loosely described as block-coordinate de-
scent. Starting from a source localization method (which requires the knowledge of
sensor positions), we first estimate source locations from nominal guesses of sensor po-
sitions, and then in turn use these estimates of source locations to give better estimates
of the positions of the sensors. The procedure is repeated until convergence. These
ideas have been used to extend the maximum likelihood and MUSIC source localiza-
tion methods in [66,69]. We discuss them briefly.

Leaving out the details, the basic ML source localization method attempts to min-
imize the following cost function (also see Section 2.2.4):

JML(θ) =
T∑

t=1

‖y(t) − A(θ)u(t)‖2
2 (8.2)

Both θ and u(t) for all t are unknown. A(θ) is unknown since it depends on θ, which
we are trying to estimate (see Section 2.1). This is not the overcomplete matrix A.
Model parameters (the positions of the sensors) are assumed known and are hidden
inside A(θ). In order to extend this technique to also do self-calibration we explicitly
take sensor positions into account:

JML(θ,p) =
T∑

t=1

‖y(t) − A(θ,p)u(t)‖2
2 (8.3)

We have the maximum likelihood method to solve a part of the problem (minimizing
JML(θ,p) with respect to θ when p is fixed), so it is natural to take advantage of it,
splitting the optimization into two parts. This leads to the following “block-coordinate
descent” procedure for self-calibration:

1. Let p̂(0) = p, and let i = 0.

2. Find θ̂
(i)

= argminθ JML(θ, p̂(i))
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3. Find p̂(i+1) = argminp JML(θ̂
(i)

,p)

4. Set i = i + 1 and return to step 2.

The procedure is run until the change in JML(θ,p) becomes negligible as the iteration
progresses. Step 2 uses a standard maximum likelihood source localization procedure,
as described in Chapter 2. Step 3 can be solved using various non-linear optimiza-
tion methods, or alternatively, the method in [66] uses a first-order approximation to
JML(θ,p) as a function of p, which admits a closed-form solution.

A similar extension is made in [69] for the MUSIC algorithm. Without accounting
for model errors MUSIC finds the estimates of the locations of the sources by minimizing
the following cost function (see Section 2.2.3):

JMUS(θ) =
1

‖UH
n a(θ)‖2

2

(8.4)

Here, the matrix Un contains the noise subspace singular vectors (it comes from the
singular value decomposition of the covariance matrix R of sensor observations, y(t)).
To get the estimates of the locations of the sources one finds K (K is the number of
sources) largest peaks of JMUS(θ). Again, to extend MUSIC to do self-calibration, we
make the dependence on p explicit, add one more step to the procedure, and repeat
the steps inside a loop until convergence:

1. Let p̂(0) = p, and let i = 0.

2. Find K largest peaks of JMUS(θ, p̂(i)), and store them in θ̂
(i)

= [θ1, ..., θK ].

3. Find p̂(i+1) = argminp
1∑K

k=1 ‖UH
n a(θ̂

(i)
k ,p)‖2

2

4. Set i = i + 1 and return to step 2.

In the next section we present how block-coordinate descent can be used to extend
our �1/�p source localization methods to do self-calibration in a similar way as was done
for MUSIC and ML.

� 8.3 Extension of our �1/�p methods to self-calibration

We have multiple ways of solving the set of overcomplete linear equations

y(t) = As(t) + n(t), t ∈ {1, ..T} (8.5)

They are described in Chapter 5. Any one of them can be used within a block-coordinate
descent2 approach for self-calibration. We explicitly parameterize the steering matrix

2We use the term block-coordinate descent loosely. In fact the procedures do not correspond exactly
to the block-coordinate descent method from nonlinear optimization.
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by the unknown positions of the sensors, p. During the source localization step positions
are kept constant. During the calibration step a submatrix of A corresponding to the
estimated DOA’s, θ̂ is used. That means that we try to find p to minimize

∑T
t=1 ‖y(t)−

A(θ̂,p)u(t)‖2
2.

In order to make this procedure work we have to remember that our source local-
ization procedures described in Chapter 5 have estimates of DOA’s limited to the grid.
When one tries to use them within a self-calibration application, the limitation to a
grid poses a difficulty. We observe that after a few iterations the solution gets stuck at
a local minimum unable to change the estimates of the DOA’s since a large jump equal
to the grid stepsize is required for improvement.

There are two possibilities of combating this difficulty. The first one uses a spectrum
obtained by one of our source localization procedures as an initialization for Maximum
Likelihood source localization, which is not limited to a grid. The second possibility
uses the multi-scale grid refinement idea outlined in Section 5.3. This way the grid
stepsize is made small enough to make its effects negligible. We investigate both possi-
bilities. The algorithms for these two procedures are the following:

Using �1/�p as an initialization to ML:

1. Let p̂(0) = p, and let i = 0.

2. Use one of our source localization methods to solve

y(t) = A(p̂(i))s(t) + n(t), t ∈ {1, ..T} (8.6)

and find the locations of the K largest peaks of the resulting spectrum. Store them
in θ̂

(i)
= [θ1, ..., θK ]. These peaks appear on the grid. A(p̂(i)) is the overcomplete

matrix.

3. Initialize ML with these estimates and obtain ML-estimates of source locations,
θ̂

(i)

ML.

4. Find p̂(i+1) = argminp
∑T

t=1 ‖y(t) − A(θ̂
(i)

ML,p)u(t)‖2
2 using ML-estimates of

the source locations. The matrix A(θ̂
(i)

ML,p) is not the overcomplete version,
since we use only the DOA’s of the estimates, and not the whole grid. Also,
there is no need to find u(t), since we are not interested in it. An equivalent cost
function which does not involve u(t) is argminp

∑
t ‖Π⊥

A(p)x(t)‖2
2, where Π⊥

A(p) is
the projection matrix onto the orthogonal complement of the range space of the
matrix A(θ̂

(i)

ML,p).

5. Set i = i + 1 and return to step 2.

Self-calibration with multi-resolution grid refinement.
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1. Let p̂(0) = p, and let i = 0.

2. Use the multi-resolution grid refinement procedure with one of our source local-
ization methods to solve

y(t) = A(p̂(i))s(t) + n(t), t ∈ {1, ..T} (8.7)

and find the locations of the K largest peaks of the resulting spectrum. Store
them in θ̂

(i)
= [θ1, ..., θK ].

3. Find p̂(i+1) = argminp
∑T

t=1 ‖y(t)−A(θ̂
(i)

,p)u(t)‖2
2 using the estimates of the

source locations. Similarly to the last algorithm, there is no need to find u(t).

4. Set i = i + 1 and return to step 2.

� 8.4 Examples

Now we present numerical experiments for both of these procedures. We choose the
�1-SVD version for the source localization method for both experiments. The step of
minimization with respect to the positions of the sensors is carried out using simple
gradient descent. We use a 1-D uniform linear array with sensor positions known
imprecisely. The analysis in [65] tells that a linear array cannot be calibrated, however
when a number of sensor locations are known, this ceases to be the case. For that
purpose we fix the positions of two of the sensors. Also, since our array is forced to
lie on a known 1-dimensional subspace, it appears that having two sources is sufficient
for the sensor positions and the source locations to be observable3. (If we treat the
array as lying in 2-dimensions, then in our case the second coordinate of every sensor is
known exactly). The SNR at the outputs of the sensors is set high (to 40 dB) to make
accurate self-calibration possible.

The results of the first procedure (using �1-SVD as an initialization to Maximum
Likelihood) appear in Figure 8.1. Plot (a) shows original sensor position errors (top)
and also errors after running 150 iterations of the self-calibration procedure (bottom).
It can be seen that after these iterations the errors are noticeably reduced. Plot (b)
additionally shows that as a result of calibration the residual ‖y − As‖2 and the error
in DOA estimates4 is reduced as well.

We repeat the same experiment with the second self-calibration procedure (�1-SVD
with iterative grid refinement), and the results appear to be similar, as we can see
in Figure 8.2. Again sensor position errors as well as the residual and the DOA er-
rors decrease substantially as a result of applying 150 iterations of the self-calibration
procedure.

3We make this statement because with such constraints our self-calibration procedures with small
amounts of noise converge to the true values of the unknowns.

4For the DOA error we use the norm of the vector of differences between the estimates and the
corresponding true source locations.
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Figure 8.1. Self-calibration by ML with �1-SVD initialization (a) Original (top) and final (bottom)
sensor position errors vs. sensor number. (b) Norm of sensor errors (top), residual ‖y − A(p̂(i))s‖2

(middle), and DOA estimation error (bottom) as a function of iteration number.
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Figure 8.2. Self-calibration by �1-SVD with multi-level grid refinement. (a) Original (top) and
final (bottom) sensor position errors vs. sensor number. (b) Norm of sensor errors (top), residual
‖y − A(p̂(i))s‖2 (middle), and DOA estimation error (bottom) as a function of iteration number.

One additional comment that we need to make is on the usage of the knowledge
of the positions of some of the sensors. What we have done in both experiments is to
optimize only over the positions of the unknown sensors, and leave the known sensor
positions intact. Another approach is to optimize over the positions of all the sensors
until convergence, and use the positions of the known sensors at the end to remove
the unobservable shift and rotation of the array. We illustrate this procedure in Figure
8.3. Note that in this case the number of iterations necessary to converge can be very
small; in fact in the plot most of the change is done during the first iteration. Upon
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convergence a shift and a tilt in the array are unobservable, so we use the known sensor
positions to remove this ambiguity. For a linear array which has errors limited to the
axis of the array, as we have considered in our experiments, this can be done by fitting
a straight line to the plot of estimated sensor positions and finding the necessary linear
transformation that will make that line go through the known sensor positions (which
are themselves on a line). The distribution of errors for estimated sensor positions
may have occasional outliers, so a robust line-fitting procedure is preferred. A similar
removal of ambiguity can be easily done when sensor errors are not constrained to the
array axis, and when the array is non-linear.

In another self-calibration method [70] a similar issue arises and the authors ad-
vocate the use of the same approach (optimization over all sensor positions first, and
then removing ambiguities). In our experiments we also observe that fixing the posi-
tion of some of the sensors (the way we have done initially) makes the optimization
harder and the sensor position errors at the end have a broken-line pattern (the un-
known sensors errors are on a line having a different slope from the line through the
fixed sensors)5. The approach that first optimizes over the positions of all the sensors
and removes unobservabilities later does not seem to lead to such artifacts. Our work
with self-calibration is by no means complete, and suggestions for further research are
outlined in Chapter 9.

1 2 3 4 5 6 7 8
−0.05

0

0.05

0.1

Initial error vs. sensor number

1 2 3 4 5 6 7 8
−0.1

−0.05

0

0.05

0.1 Final error vs. sensor number

1 2 3 4 5 6 7 8
−0.1

−0.05

0

0.05

0.1 Final error with linear trend removed vs. sensor number

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.06

0.08

0.1

0.12
Position error norm vs. iteration

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3 Residual norm vs. iteration

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
7.1

7.15

7.2

7.25
x 10

−3
DOA error vs. iteration

(a) (b)

Figure 8.3. Alternative way to incorporate the known sensor positions: optimize over all sensor
positions during the iterative procedure, and upon convergence remove the unobservabilities using the
known sensor positions. (a) Original (top), after the iterative procedure (middle), and final, after
removing unobservabilities (bottom) sensor position errors vs. sensor number. (b) Norm of sensor
errors (top), residual ‖y − A(p̂(i))s‖2 (middle), and DOA estimation error (bottom) as a function of
iteration number.

5In Figures 8.2 (a) and 8.1 (a) we only show the sensors which are perturbed, thus the effect is not
seen.



Chapter 9

Conclusion

In this chapter we summarize the work done in the thesis, and suggest directions for
further research.

� 9.1 Brief summary of the work in the thesis

In this thesis we have considered the problem of sensor array localization of point sources
by transforming it into the problem of sparse signal representation using overcomplete
bases. This is a very attractive way of looking at source localization because when
the sources can be well-modeled as point sources, and their number is small, then
the true underlying spatial spectrum is sparse. The problem of signal representation
in overcomplete bases is an ill-posed linear inverse problem, and as such, it requires
regularization to have unique well-behaved solutions. We are interested in sparse signal
representations, so the regularization has to enforce sparsity.

To enforce sparsity we utilized �p penalties with p ≤ 1. There is an important dis-
tinction between �1 penalties (p = 1), and �p penalties with p < 1. For the �1 case,
the penalty leads to convex optimization problems, whereas for p < 1, the associated
optimization is nonconvex. For optimization involving �1 penalties we used a second or-
der cone programming framework, which has the important benefit of allowing efficient
global solutions by interior point methods. When the �p penalty is used, the prob-
lem is nonconvex, and we relied on local optimization methods based on half-quadratic
regularization.

The sparse signal representation framework is immediately applicable to the single
time-sample narrowband source localization problem only. The multiple time-sample
narrowband and wideband source localization problems are of greater interest, so we
proposed several possibilities to transform the data and to modify the objective func-
tions to be able to handle these problems. In addition, we have considered the questions
of removing the limitation of the estimates of source locations to a grid by using adap-
tive grid refinement, and of automatic choice of regularization parameters inherent in
the regularization framework.

We conducted extensive numerical experiments analyzing the behavior of our ap-
proach and comparing it to existing source localization methods. We showed that our
approach has important advantages such as superresolution, robustness to noise and
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limited data, robustness to correlation of the sources, and lack of need for accurate
initialization. To address robustness to model errors, we also proposed an extension
of the approach to allow self-calibration of sensor position errors by using a procedure
similar in spirit to block-coordinate descent.

The second direction of the work done in the thesis is theoretical analysis of the
noiseless signal representation problem using overcomplete bases, which is closely re-
lated to the noisy signal representation problem that forms the base for our source
localization framework. Questions considered in this analysis include the uniqueness of
solutions to the noiseless �0 problem, and the equivalence of solutions of the �0, �1 and
�p problems. Our results state that if the underlying signal if sprase enough with re-
spect to an ovecomplete basis, then such uniqueness and equivalence of solutions holds.
Our results were developed for the case of a general overcomplete basis, where we do
not impose any structure, such as being composed of a pair of orthogonal or invertible
bases.

A detailed overview of the thesis and a summary of our contributions appears in
Chapter 1.

� 9.2 Suggestions for further research

Choice of the regularization parameter

A very important issue in the framework is the choice of the regularization parameters,
λ in the joint �1 and �p formulations and β and δ in constrained �1 formulations from
Chapter 4. We have developed an automatic method for the choice of the regularization
parameter for the �1 constrained form when the distribution of the norm of sensor
noise (or the transformed sensor noise) can be well-characterized. It is based on the
discrepancy principle from the inverse problems field. An important extension that one
could pursue is to the �1-SVD case. We have described how to predict the norm of the
transformed noise only for scenarios with little noise, whereas moderate and strong levels
of noise are of more interest. Additionally, it is of interest to extend the constrained
discrepancy principle to the beamspace version of our source localization procedure
and to cases with model errors (for self-calibration). Also, recall that although we have
developed a procedure for constrained �p optimization paralleling the ML1 version, its
performance is very slow. In order to use it successfully a much faster algorithm has to
be developed.

It is also worthwhile to continue the investigation of methods for regularization
parameter selection from other fields. We briefly discuss the “L-curve” method, the
cross-validation method, and universal and min-max regularization parameter selection
rules in Appendix F. Some discussion of the viability of these methods for our problem
is included, but much more work has to be done to get insights into how to select the
regularization parameter for our problem, or to dismiss these methods as inappropriate
for our problem.

Another direction is characterizing the dependence of the regularization parameters
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for the constrained and unconstrained versions of �1 optimization (and also of �p). If a
good choice of λ for the MLJ version can be easily found given a good choice of β for
ML1 version, then the MLJ cost function has a benefit of lower sensitivity to changes
in λ. Alternatively, if the optimal choice of λ can be predicted given the number of
sources, then we can use one of the many detectors of the number of sources developed
for array processing.

Choice of sparsifying regularization functionals

In the thesis we used exclusively �1/�p regularization for enforcing sparsity. However,
regularization that favors sparsity is not limited to �p-quasi-norms. Many other forms
exist, such as Huber regularization, and entropy-based regularization [26]. In particular,
the choice of entropy as a regularizing term can be useful for the beamspace formulation
in (5.6), since entropy implicitly forces the solutions to be positive. Also, an analysis of
the specific features that are necessary for the regularizing term to favor sparsity would
provide much insight into the selection of a particular functional. Such analysis has
been previously done on some level [28, 43], but deeper understanding can be gained
by putting the analysis on firm theoretical grounds and considering much wider sets of
regularizing functionals.

Additionally there are issues with �p regularization that remain to be understood.
We conjectured that the practical performance of �p with small p is similar to that of
�1 due to convergence to local minima which are similar in some sense to the global
optima of the �1 cost function. This phenomenon has to be verified or refuted using
more careful analysis. Alternatively, it is worthwhile to develop methods which converge
to the global minimum of the �p cost function, as we discuss next.

Global solutions to �p or �0 problems

The reason that we put more emphasis on �1 methods instead of general �p is the convex-
ity of the cost functions associated with the former. However, our theoretical analysis
shows that �p has the benefit of requiring lower sparsity to have the global solution of
�p cost function match the global solution of �0. This motivates the development of
global optimization procedures for �p problems.

One idea is based on homotopy continuation. A homotopy is a continuous path in
the function space from one continuous function to another. That is to say, we have
a parameterized family of functions f(x, t), where t ∈ [0, 1], such that f(x, 0) = f0(x),
and f(x, 1) = f1(x), where f0(x) and f1(x) are continuous functions of interest. In our
case we have a homotopy of �p cost functions parameterized by p from [p0, 1], where
0 < p0 < 1 1. This can be used as follows. Given a global solution x̂1 to the convex �1

problem, we decrease p slightly and try to find the global optimum of the �p problem
starting with x̂1 as initialization. We continue decreasing p and using the optimal value
from the previous p as initialization until we reach the desired p0. One hopes that the

1We have to limit p from below, say by p0 = 0.1, since �0 is not continuous.
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solution obtained this way is a global optimum of the �p problem for p = p0. There are
many difficulties involved in this approach, such as tracking bifurcations, and properly
controlling the speed of decrease of p. However, even if the global optimum for p = p0

is not found, the procedure may still lead to better local optima than the ones that we
obtain using local optimization methods.

Another idea is to try to develop relaxations for the �0 problem. Much work has
been done in the field of approximations to combinatorial optimization problems, and
solutions to many important NP-hard problems can be accurately approximated in
an efficient manner using relaxations [71]. An attractive framework for relaxations of
combinatorial optimization problems is semidefinite programming.

Theoretical analysis

We conducted an analysis of the use of �1/�p penalties to get solutions to the noiseless
problem. However, in practice we have to use the noisy formulations instead. So far we
have no guarantees that the noisy �1 procedure will attain a reasonable solution except
for a peculiar result in Section 7.4, which has rather limited applicability. More extensive
theory has to be developed for noisy �1 and �0 optimization. Questions of interest
include sensitivity to noise, sensitivity to the choice of the regularization parameter,
existence of sparse solutions, and many others. Also one could pursue further an analysis
of bias that appears when we use the noisy sparse regularization framework, and a
better understanding of the role of structured overcomplete bases (such as our basis A
composed of a grid of samples of the array manifold a(θ)).

Analysis of self-calibration and model errors

We presented our initial work on array self-calibration in Chapter 8. More detailed per-
formance analysis of the two proposed methods remains to be carried out. In particular,
we would like to compare the performance to that of other self-calibration methods, and
to the Cramer-Rao Bound computed for self-calibration in [65]. We considered only the
errors in sensor positions; in general, errors in gain, errors in phase, spatial coherence
loss, crosstalk between the sensors, and other model errors are also of interest. Another
issue worth investigating is the sensitivity of our source localization framework (without
self-calibration) to various model errors.

We also would like to consider some alternative self-calibration methods. One pos-
sibility inspired from the world of optics is auto-focusing. The idea is that when a
photo-camera is out of focus, then the objects in the picture appear blurred, and less
sharp. By changing the focus of the camera we change the sharpness of the objects in
the picture. Thus in order to focus the camera we can optimize a cost function which
measures sharpness of the picture. A similar approach is conceivable for sensor array
self-calibration. If the array is uncalibrated, then the spectrum estimate obtained us-
ing a particular source localization method may get distorted. By changing the model
parameters to minimize this distortion we may be able to calibrate the array. One
possibility for a distortion measure is sharpness of the beamforming spectrum. When
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the positions of the sensors have parabolic errors, mainlobes of the beamforming spec-
trum widen. Hence sharpness-enforcing self-calibration is possible. Unfortunately, the
distortions do not appear to be limited to simple widening of the mainlobes in the case
of general perturbations of sensor positions. In order to use auto-focusing one needs to
find practically important families of sensor perturbations and a corresponding measure
of distortion of the spectrum of one of the source localization techniques.

Miscellaneous

We presented nearfield and wideband extensions of the basic farfield narrowband source
localization problem in Chapter 5. However, work remains to be done to analyze their
performance and make them computationally more efficient. In particular, we would like
to compare the performance of our extensions to conventional wideband and nearfield
source localization methods. In addition, for the wideband case we would like to in-
vestigate the use of other priors (apart from sparsity) in the frequency domain, for
example smoothness. For nearfield, we have to experiment with the multi-resolution
grid refinement idea, since sampling in range and in bearing are very different, and a
linear 2-D grid is not the optimal strategy.

Many other generalizations are possible which we have not yet addressed. Allowing
for more general noise models gives the benefit of applicability to a wider range of
practical problems. Some possibilities include non-white (temporally or spatially), non-
stationary, and non-Gaussian noise fields. Imposing some structure on the unknown
signals, such as cyclostationarity, constant modulus, independence, non-Gaussianity,
and temporal structure may allow us to fuse our source localization techniques with
other signal processing paradigms, e.g. cyclostationary analysis, blind source separation
(BSS) and independent component analysis (ICA).

Another practically significant generalization is the use of non-ideal media exhibiting
reverberations and non-ideal sources, e.g. spread sources. This may allow us to tackle
problems such as localization of human speakers in small rooms. The topic of distributed
sources is a particularly interesting generalization, since a possible solution can be
obtained by enforcing sparsity in bases corresponding to the spatial signatures of the
sources (our work in the thesis assumes that the spatial signatures are spikes, and we
use the corresponding spike basis, i.e. the basis corresponding to the identity matrix).
Allowing for non-stationary source positions would extend the scope of applicability
of our framework to include multiple-target tracking problems. The robustness of the
proposed method to limited number of snapshots could be especially helpful in the
tracking context.
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Appendix A

Estimation Theory Concepts and
the Cramer Rao Bound

The Cramer Rao inequality puts a lower bound on the variance of any unbiased esti-
mators in the nonrandom unknown parameter estimation problem. Before discussing
the CRB, we briefly review some important concepts from estimation theory [72,73].

A basic estimation problem consists of the following parts: we have a parameter
θ ∈ Θ, and we have a family of densities parameterized by θ, px(x; θ). We observe a
random sample x from one of the densities, and the goal is to determine θ based on
the observed x. This means constructing a deterministic function θ̂(x) which furnishes
an estimate of θ for any possible x. There are two important distinctions: if θ itself
has an associated density function pθ(θ), then this problem is called random parameter
estimation, or Bayesian estimation. If on the other hand there is no meaningful prior
density that can be assigned to θ, then the problem is that of estimation of a nonrandom
but unknown parameter. We focus mainly on the latter case.

We also constrain ourselves by taking into consideration only regular estimation
problems. Regularity in this context means satisfying the following set of properties [74]:

• for any θ1 �= θ2 there is some set B in the sample space, such that Pr(x ∈ B; θ1) �=
Pr(x ∈ B; θ2)

• All the px(x; θ) have the same support for all θ.

• The parameter space, Θ is an open interval in R
k.

• First and second order derivatives of px(x; θ) with respect to θ can be interchanged
with integrals over x.

The first requirement is identifiability of the model. If the condition is not met,
then it is not possible to distinguish between the two models corresponding to θ1 and
θ2. The second condition is necessary because we shall be dealing with log-likelihoods,
which have to be defined for any x and θ. The open interval condition avoids the need
to deal with differentiability issues on the boundary of the parameter space. The last
condition is satisfied for all of the probability densities that we consider in this work.
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Constructing an estimator is not a difficult task, the difficulty comes when we try
to construct a good estimator. Part of the difficulty lies in choosing an appropriate
notion of goodness. Two such notions that are extensively used in the field are the bias,
bias(θ) = E[θ̂(x)] − θ, and the variance, V ar(θ) = E[(θ̂(x) − θ)2] − E[(θ̂(x) − θ)]2 =
E[(θ̂(x) − θ)2] − bias2(θ). In general one wants to minimize both the bias and the
variance, which in general is not possible simultaneously. A common approach is to
find the estimator having the minimum variance among the unbiased ones (MVU), but
an MVU estimator may not even exist for some problems. Nevertheless, in a large
number of cases, the maximum likelihood approach for estimation does yield MVU
estimators. The Maximum Likelihood Estimator (MLE) is defined as

θ̂ML(x) = arg maxθ py(x; θ) (A.1)

We shall mention a connection of MLE and the CRB shortly.
The Cramer Rao Bound is used to evaluate potential estimators. If an unbiased

estimator meets the CRB with an equality, that means that the task of search for a
good estimator is over, we cannot get the variance any lower (of course there is always
a possibility of considering other metrics of merit).

Theorem 13 (Cramer-Rao Inequality). If an estimator θ̂(x) is unbiased (E[θ̂(x)] =
θ), then

V ar[θ̂(x)] ≥
(

E

[[
∂ ln px(x|θ)

∂θ

]T [∂ ln px(x|θ)
∂θ

]])−1

=
(
−E

[
∂2 ln px(x|θ)

∂ θ2

])−1

(A.2)

where the probability px(x|θ) is assumed to be strictly positive and twice continuously
differentiable.

The matrix Ix(θ) = −E
[

∂2 ln px(x|θ)

∂ θ2

]
is called the expected Fisher information

matrix. It is independent of x, but varies with θ, so the bound is a function of the
unknown parameter. The notation ∂2 ln px(x|θ)

∂ θ2 stands for the Jacobian row vector. One
corollary of the CRB [72] is that if an efficient estimator exists then it has the form

θ̂(x) = θ + Ix(θ)−1

[
∂ ln py(x; θ)

∂ x

]′
(A.3)

where the dependence on θ cancels out (otherwise we are left with using the unknown
parameter in its own estimation). In fact if (A.3) does not depend on θ, then θ̂(x)
meets the CRB with equality. An estimator meeting the CRB for every value of θ is
labeled an efficient estimator. If an estimator is efficient then it is also the minimum
variance unbiased estimator.

Another important ingredient in the theory is the connection between the CRB and
the Maximum Likelihood estimation. If an efficient estimator exists then it is the ML
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estimator. Unfortunately, if there exists no efficient estimator then ML may be biased,
and even if unbiased it may not achieve the minimum variance.

Another property of the CRB which is relevant for array processing is the local and
global behavior of estimates for the nonlinear estimation case, for example x = h(θ)+n,
where h is non-linear and smooth and n is jointly Gaussian. In this case no efficient
estimators exist 1.

However, if the value of θ is known to be confined in a sufficiently small region around
θ0 such that h(θ) can be well-approximated by linearization h(θ0) + ∇h(θ0)(θ − θ0),
then as long as the noise is small, the ML estimate for the linearized problem will follow
the CRB very closely. However, once the SNR goes below a certain threshold, CRB
becomes a very poor over-optimistic lower bound. This phenomenon is usually termed
the threshold behavior.

There is an extension of the CRB to the case when the estimators are biased. Due to
the presence of bias, the variance of the estimator is not a proper measure of its quality,
and a better one is the mean-squared error, E[(θ̂(x) − θ)2] = V ar[θ̂(x)] + bias(θ)2. It
can be shown [73] that the following is true for any estimator:

V ar[(θ̂(x) − θ)] ≥
(

E

[[
∂ ln px(x|θ)

∂θ

]T [∂ ln px(x|θ)
∂θ

]])−1

(A.4)

The Cramer-Rao bound is not the only bound on estimator variance, and in fact
several tighter bounds on variance and the mean-squared error have been developed,
such as the Barankin bound [75], Bhattacharyya bound [76], Weiss-Weinstein [77], and
several others [78]. However, their computation is very complex, and the CRB remains
most popular.

1Also more generally, if θ̂(x) is an efficient estimator of θ, then φ̂(x) = φ(θ̂(x)) is an efficient
estimator of φ(θ) if and only if φ is a linear function.
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Appendix B

Interior Point Methods

We attempt to briefly motivate the use of interior point methods, and in particular to
explain why and how they are applicable to our work. Ideas related to interior point
(IP) methods existed for a long time (penalty and barrier methods were investigated in
the 60’s, and then interest faded due to some difficulties), but in the past two decades
they experienced a dramatic resurgence of attention which has lead to major changes in
the field of optimization, both in theory and in complexity of optimization tasks which
can be readily handled. A great number of methods which can be labeled as interior
point have been developed, and successfully used in applications. We limit our discus-
sion to central-path IP methods, which are the most used in practice, and enjoy the
most developed theoretical background. IP methods can be applied to various linear
and nonlinear programs, but their use is most attractive for special classes of convex
programming, namely semidefinite programming (SDP), second order cone (SOC) pro-
gramming, and linear programming (LP) 1, due to the existence of extensive theoretical
results on convergence and complexity. We give a very brief account of central-path
following IP methods summarizing the main ideas, and theoretical results relevant to
the rest of the manuscript. For a more thorough understanding the reader is referred
to [10, 35, 38, 79], from which most of the following (as well as preceding) presentation
was borrowed.

A general convex problem has the following form:

min c′x (B.1)
such that x ∈ X (B.2)

where X is a convex region. A nonlinear convex objective function f(x) can be repre-
sented in the above form as follows: min t such that f(x) ≤ t.

The basic idea of central-path IP methods is to introduce a parameterized family of
problems augmented with a barrier function for the convex region. The barrier function
has to be well-defined in the feasible region, smooth, strongly convex 2 in the interior

1These classes of optimization problems form a nested sequence, (LP ⊂ SOC ⊂ SDP) but theoretical
results are richer with more restrictions. Thus it is useful to view them separately

2f(x) is strongly convex if it is convex, and additionally, (∇f(x)−∇f(y))′(x−y) ≥ α‖x−y‖2
2, for

some α > 0, and ∀x,y ∈ R
n
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of X , and increase to infinity as the boundary of X is approached. For example, for
linear programming, with constraint x ≥ 0, (x ∈ R

n) a valid barrier function is

F (x) =

{
−∑n

i=1 log(xi), x > 0
∞, otherwise.

(B.3)

By applying a barrier function we transform a convex constrained problem into
a family of convex unconstrained problems, (which are infinite outside the feasible
region of the original problem). Denote the barrier function for the convex region X by
F : X → R. We consider the following family of optimization problems:

min Ft(x), Ft(x) = tc′x + F (x) (B.4)

When t is very large the effect of the barrier is negligible except in a very narrow
region around the boundary of X . Also, provided the set X is bounded, for every t > 0
the function Ft(x) attains a minimum x∗(t) in the interior of X . The curve x∗(t) is
called the central path, and as t → ∞, it approaches the set of optimal solutions of the
original constrained problem.

Given this family of functions there are two ways to proceed: the most obvious one
is to set t to a very large value, so that the region where the effect of the barrier is felt is
very narrow, and we get a very good approximation to the optimal solution x∗ of (B.2)
by minimizing Ft(x). Another approach is to start with a small t0, find the optimal
solution x∗(t0), then increase t to t1, and use x∗(t0) as initialization for finding x∗(t1),
and proceed similarly until t reaches a large value. We stop when t is very large, where
as before x∗

t is close to x∗.
The second approach seems rather strange at first sight, since it requires solving

many optimization problems, whereas the first problem requires the solution of just
one, of exactly the same form. The reason that the second approach receives a vast
amount of attention, and no reasonable practical optimization routine uses the first one,
lies in the convergence properties of Newton’s method.

Newton’s method has the fastest local convergence rate among all smooth uncon-
strained optimization techniques. As long as we start close enough to the optimal
solution the rate of convergence of Newton’s method is quadratic. However, far from
the optimal point its convergence rate can be very slow. Using other unconstrained
optimization techniques, such as gradient descent or conjugate gradients, the rate of
convergence may also be very slow. Hence, when attempting to minimize Ft(x) for a
large t right away, we will have a slow convergence rate. The idea of the second method
is to change t slowly, such that if ti is sufficiently close to the optimal solution of Fi, then
going to ti+1 we will still be in the region of superlinear convergence for Fi+1. Also, for
very small t the optimal solution is either known (can be easily found analytically from
the properties of the convex set and the barrier function), or its numerical computation
is very simple and also has superlinear convergence rate, thus initialization does not
pose a problem. Thus by turning to the method with incremental t-values we get a
much faster convergence rate than by solving once with a large t.
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The only requirements for the next t-step to fall into quadratic regions of convergence
for Newton’s method are that we increase the values of t at a rate that is slow enough,
and also to let Newton’s method run until the current solution is sufficiently close to the
central path. Much research has been directed at quantifying these two requirements,
and many step-size rules have been suggested. For the class of convex problems a deep
theory of self-concordant barriers has been developed [10], which can be used to prove
polynomial-time convergence for all convex problems when self-concordant barriers are
used.

The theory of self-concordant barriers is well beyond the scope of this work, and
we summarize only the main ideas. If there exists a self-concordant3 barrier F (x) for
the convex constraint region X , with the so-called self-concordance parameter θ(F ),
then the proximity of the point to the central path can be meaningfully measured (can
be used to quantify the necessary proximity for superlinear convergence of Newton’s
method) by the local norm induced by the Hessian H(x) of the barrier function, and
the progression of t-values can be selected as ti+1 = ti(1 + 0.1√

θ(F )
). For more details

refer to [38], and references therein.
Self-concordant barriers are known for only a subset of convex problems, but luckily

this subset includes semidefinite programming, second order cone programming, and
linear programming. For LP with constraint set Ax ≤ b, the self-concordant barrier is
F (x) = −∑i log(bi − a′

ix), and for SOC with constraint set xk ≥ ‖(x1, ..., xk−1)‖2, the
self-concordant barrier is F (x) = −log(x2

k−x2
1−...−x2

k−1). When the convex constraint
region X is a direct product of multiple convex regions X = X1 × X2.... × XK , which
possess self-concordant barriers Fk(xk), with self-concordance parameters θk, then X
has a self-concordant barrier F (x) =

∑
k F (xk), with parameter θ =

∑
k θk. Thus,

all of the convex problems which are of interest in this work (LP, SOC) possess self-
concordant barriers, and hence can be efficiently solved by path-following interior point
methods.

There are many practical details associated with implementing path-following IP
methods. Two very important details are the trade-offs associated with short step versus
long step schemes for path-following, and using the dual problem. The theory of self-
concordant barriers provides us with a step-size rule for t which is guaranteed to achieve
polynomial time complexity. However, the worst-case results are not representative of
the average-case performance which is seen in practice. It has been observed that using
a faster step-size rule (t’s are increased more rapidly), and using a greater number of
Newton’s steps leads to much better practical performance. The worst case complexity
results for long-step path-following methods however have less guarantees than their
short-step counteparts.

Another important implementation issue is the use of the problem dual to (B.2).
The dual problem can be analytically computed for LP, SOC, and SDP. Our discussion
so far involves a primal interior point scheme, where we are augmenting the primal

3Self-concordance means satisfying several properties with respect to the local variability of the
Hessian of the barrier function.
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problem with the barrier function. The same can be done to the dual problem, and
depending on the dimension of the primal set, and the number of constraints, the dual
problem can be more efficient. However, the main benefit comes from considering both
the primal and the dual problems at the same time, which leads to the so-called primal-
dual IP methods. One of the benefits of considering both problems at the same time is
that we can find out how close we are to the optimal solution by looking at the duality
gap. The theory of IP methods is very rich, but since they are not the focus of our
work, we put an end to the exposition here.



Appendix C

Convex Analysis and
Subdifferentials

We review several basic concepts necessary to understand convex non-smooth uncon-
strained optimality conditions. Consult [35,80] for an in-depth exposition. First of all,
a function f : R

N → R is convex if it satisfies

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),x,y ∈ R
N , λ ∈ [0, .., 1] (C.1)

A directional derivative of a function f in direction u is defined by:

f ′(x;u) = lim
t→0+

f(x + tu) − f(x)
t

(C.2)

if the limit exists. A basic result of convex analysis is that if f is a convex function
then the limit exists for any u, i.e. f is directionally differentiable in any direction. The
subdifferential of a convex f : R

N → R at x ∈ R
N is defined as the following set:

∂f(x) = {ξ ∈ R
N |f(y) ≥ f(x) + ξT (y − x) ∀ y ∈ R

N} (C.3)

Each element of ∂f(x) is called a subgradient of f at x. An alternative definition of
the subdifferential of a convex function f is:

∂f(x) = {ξ ∈ R
N |f ′(x;u) ≥ ξTu ∀ u ∈ R

N} (C.4)

The subdifferential is a generalization of the gradient of f . In fact, if f is convex and is
also differentiable at a point x (the directional derivative of f in direction u is a linear
function of u: f ′(x;u) = ∇f(x)Tu, ∇f(x) ∈ R

N ), then

∂f(x) = {∇f(x)} (C.5)

i.e. the subdifferential consists of a single vector, the gradient of f at x. The only
subgradient in this case is the gradient. Lastly, we present the unconstrained non-
smooth convex optimality conditions:

If f : R
N → R is convex, then f attains a global minimum at x if and only if

0 ∈ ∂f(x).
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Appendix D

Conjugate Gradients (CG) and
Preconditioning

The method of conjugate gradients [35, 48] in its pure form applies to the equations of
the form y = Qx, where Q is symmetric and positive definite, which we assume from
here on. Extensions are possible for other cases, but we have no need for them, since
we have Q = H

(
ŝ(n)
)

symmetric and p.d., see (4.44). The problem of finding x in
the linear system y = Qx is equivalent to minimizing the convex quadratic function
f(x) = 1

2x
′Qx − x′y. Solving one also solves the other. Many methods exist for the

unconstrained minimization of functions. The simplest one is gradient descent, where
we choose an initial point x0, and then advance in the direction of negative gradient:
xk+1 = xk − α∇f(xk). The stepsize, α, is chosen to minimize f over the half-line
{xk − α∇f(xk)|α > 0}. The method is very simple, but if the condition number of Q
is very high, the level sets of f are strongly elongated ellipsoids, and the convergence
rate of the algorithm is extremely slow.

The method of conjugate gradients has similarities with gradient descent, but it
performs considerably better. It is in fact guaranteed to converge to the optimal solution
in at most N steps, where Q ∈ R

N×N . For large N , if Q is well-conditioned, or if the
number of distinct eigenvalues of Q is small, the method may converge considerably
faster than in N steps.

The main constituent of the method is the concept of Q-conjugacy. A set of vectors
d1, ...dN is said to be Q-conjugate if d′

iQdj = 0, whenever i �= j. To find a set of Q-
conjugate vectors starting from N arbitrary linearly independent vectors ci, a Gramm-
Schmidt-like procedure is used. First set d1 = c1. Then, dk+1 = ck+1−

∑k
m=0 γk+1

m dm.
The coefficients γk+1

m are chosen such that dk+1 is Q-conjugate to all the d1, .., dk.

This condition leads to γk+1
m =

c′k+1Qdk

dkQdk
.

The method of conjugate gradients applies this Gramm-Schmidt process to the set
of gradients of f at points xk, where x0 is arbitrary, and xk+1 = xk + αdk. Similarly
to the gradient descent, α is chosen to minimize f over the half line with α > 0. In
the process of iterations, the method optimizes f over an expanding linear manifold.
After step 1, f is minimized over the span{d1}, whereas after step k, f is minimized
over span{d1, ...,dk}. The set of vectors d1, ..., dk are Q-conjugate, hence linearly
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independent. After N iterations the span of di’s is the same as the whole space, hence
the global optimum is found.

Preconditioning

As we mentioned, the actual number of iterations that is required for the conjugate
gradient algorithm to converge can be considerably smaller than N if Q has a few
distinct eigenvalues, or if it is well-conditioned. Even when Q does not have these
properties it may be possible to find a related linear system, Q̃x̃ = ỹ, which does. The
second property of the approximation is that we have to be able to get the optimal
solution to the original problem, x̂, easily from the solution of the related problem. We
consider the following transformation [48]: Q̃ = C−1QC−1, x̃ = Cx, and ỹ = C−1y,
with C symmetric positive definite. It is possible to use the optimal solution ˆ̃x to this
problem to get x̂ = C−1 ˆ̃x, but in practice the algorithm is rewritten in terms of x.
In order for this transformation to enhance performance, the matrix Q̃ has to be well
conditioned, and the solution of linear systems involving the matrix M = CC has to
be very fast (compared to inverting Q). The second condition is satisfied for example
if M is diagonal or block-diagonal.

In practice proper preconditioning can considerably reduce running time of the
conjugate gradient method. We have used a diagonal preconditioner, and have not
observed noticeable savings. Partially this may be explained by the observation that
for our application Q has a very rapidly decreasing singular value spectrum, and except
for a few very large singular values, the rest are very small. Thus, conjugate gradients
converges fairly fast to a reasonably accurate solution even without preconditioning.



Appendix E

Minimizing �1 Norm subject to �∞
Constraint

Here we describe how to compute L1(A) used in Section 7.3.1 with real-valued data.
The problem itself is non-linear, but it can be solved by solving a set of linear problems.
To restate the definition, we need to find

min ‖δ‖1 such that ‖δ‖∞ = 1, and δ ∈ Null(A) (E.1)

Recall that δ ∈ RN . We can partition the feasible set into N regions where in the i-
th region we have δi = 1, and δj ≤ 1 for all j. For each of these regions, �1 minimization
can be recast into a linear problem by introducing x+ and x−, where x+

i = max{xi, 0},
x−

i = max{−xi, 0}, from which x can be simply recovered as x = x+ − x−. The i-th
subproblem looks as follows:

min 1′x+ + 1′x− (E.2)
subject to [A − A][x+;x−] = 0, (E.3)

c′ix = 1, (E.4)
and x+ > 0,x− > 0,x+ ≤ 1,x− ≤ 1 (E.5)

(E.6)

1 is a vector of ones so that 1′x =
∑

i xi. The vector ci is zero everywhere except at
the i-th coordinate, where it equals 1, so that the �∞ condition is enforced.

Then L1(A) is found as the minimum value among the solutions for all the subprob-
lems. Some of the subproblems may turn out infeasible due to the fact that Null(A)
does not contain a vector with a particular dominant coordinate. These subproblems
can be ignored, since they do not affect L1(A).
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Appendix F

Analysis of the Applicability of
Alternative Methods for Automatic

Selection of the Regularization
Parameter

In Section 5.4 we described an automatic method to choose the regularization param-
eter based on the the discrepancy principle. In the literature on inverse problems,
machine learning, and signal representation, other methods have been proposed for
related problems. In this appendix we consider several prominent methods: the “L-
curve”, cross-validation, and min-max and universal rules. We address the question
whether it is possible to use any of these rules for our problem of source localization
using the sparse representation framework.

� F.1 L-curve

When the statistics of the noise are not known, the discrepancy principle from Section
5.4.1 can no longer be used. However, several methods have been developed which do
not rely on this information. A very popular method in the inverse problem community,
especially in applications to image and signal restoration, is the so-called “L-curve”
method [24,26]. We discuss the method first, and then give reasons why it does not suit
our needs. The name of the method comes from the shape of the curve of the residual
versus the regularizer for a family of solutions parameterized by the regularization
parameter, λ. For each λ over the possible range we compute the minimizing value ŝ(λ)
of the cost function J(s) = J1(s) + λJ2(s), and compute the associated residual, J1(s),
and the regularizer, J2(s). The L-curve is the plot of J2(s) vs. J1(s) on the log-log
scale. Each point on the curve corresponds to a particular λ. It has been observed
that the shape of the curve bears some resemblance to letter ’L’, with the corner of
the curve a good choice for the regularization parameter. The authors of the method
explain that the reason for the shape of the curve lies in the fact that for low values of
λ (under-regularized), the solution is dominated by the amplified noise, and the term

157



158
APPENDIX F. ANALYSIS OF THE APPLICABILITY OF ALTERNATIVE METHODS FOR AUTOMATIC

SELECTION OF THE REGULARIZATION PARAMETER

J2 is affected much greater by small changes of λ than J1. For high values of λ the
opposite effect occurs, the solution is already over-regularized, so small changes in λ
lead to small changes in J2, whereas the fit to the data, J1, is affected dramatically.

We observe that one of the necessary constituents for the L-curve to justify its name
(have the corresponding shape) is the distribution of singular values of the forward
operator, A, in the linear inverse problem y = As. In the problems tackled by the
image processing community, the operators usually correspond to smoothing, and the
distribution of the singular values is very spread out, leading to high condition numbers.
The existence of many small singular values as well as a few large ones leads to the
noise amplification effect observed in practical inverse problems. However, in array
processing, the resulting overcomplete matrix A is a Fourier-type operator and typically
has a well-behaved singular value distribution (unless there are accumulation points in
the grid of θ, which occur in the multi-scale implementation of Section 5.3).

The main reason for using regularization in our approach is not to eliminate dis-
continuous behavior of the dependence of the solution of the data, but to handle the
non-uniqueness of solutions, the other ingredient of ill-posedness. Due to this behavior,
the shape of the J1 vs. J2 curve no longer has the same shape as the one observed
by researchers in inverse problems such as image processing dealing with widely dis-
tributed singular value spectra. In order to demonstrate this claim, we conduct several
experiments comparing a typical inverse problem in image processing to that of array
processing using the regularization framework.
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Figure F.1. Singular values of A, and the plot of ‖s(λ)‖2
2 versus ‖y − As(λ)‖2

2, for a range of λ
(a) Array processing A . (b) Image processing A .

In Figure F.1 (b), the top plot shows the distribution of singular values for A
representing a convolution operator for a 2-D Gaussian smoothing filter of size 5 × 5,
with standard deviation 1. Such filters are commonly used as image blurring kernels.
The image size is taken very small, 15×15, the convolution matrix A has size 361×225,
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so there are only 225 singular values. Note that there are numerous very small singular
values, as well as large ones, and the transition from large to small is very smooth. Since
the problem has a small size, the L-curve (lower plot) is not very pronounced (for larger
images the condition number is several orders of magnitude higher), but the corner can
be defined. However, for the array processing operator A, where the array is a 30-
element ULA separated by half-wavelength, and the steering grid is uniform from 0◦ to
180◦, in increments of 1 degree, all the non-zero singular values fall in the interval from
2 to 3 as shown in Figure F.1 (a), top plot, leading to a very good condition number.
The resulting curve for the Tikhonov-regularized inverse problem ‖y − As‖2

2 + λ‖s‖2
2

does not have any resemblance to letter ’L’, and choosing the regularization by L-curve
methods is meaningless. There is no point on the curve which has a small data-fidelity
residual as well as a small regularizing term at the same time.
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Figure F.2. The plot of ‖s(λ)‖p
p versus ‖y − As(λ)‖2

2, for a range of λ (a) p = 1 . (b) p = 0.1 .

This experiment with Tikhonov regularization foretells that the L-curve method
will not be applicable to either of the �1 or �p methods (the operator is not changed,
so the singular values distribution is the same, just the regularizer is different). As we
see from Figure F.2, the shape of the curves for �p and �1 is similar to the Tikhonov
case (�2), with a notable difference. Due to the nature of the �1 and �p cost functions
some of the transitions do not occur smoothly as in the �2 case. This manifests itself
in the presence of regions of little change (where the point on the curve are bunched
up), and sudden jumps. In the �p case with p = 0.1, the cost function is not convex, so
occasionally we get stuck at bad local optima (which manifests itself as an outlier on
the curve as shown in Figure F.2 (b)). 1

1Note that the iterative algorithm does not reach exact �p solutions, e.g. the indices of s off the
support of s, which have to be zero, are very small but non-zero. Due to the presence of 0.1 power, their
effect is quite notable, so in order to get the corresponding L-curve, we need to do hard-thresholding
of the solutions at some small value. (Otherwise the L-curve is dominated by rounding error, and has
a jagged erratic shape).
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� F.2 Ordinary and Generalized Cross Validation

In the past few decades a very rich theory has been developed in the statistical learning
and machine learning communities dealing with inference from data. A fundamental
question is that of tradeoff between model complexity and fit to the data. By tak-
ing models with enough degrees of freedom any data set can be explained perfectly
(provided there are no inconsistencies). However, this model only works well for the
given data set, and when it is applied to a different one, it performs very poorly. This
phenomenon is called overfitting. The ability of a model to explain previously unseen
data is called generalization, which has a very close connection to the complexity of the
model. The task is to create models which explain the data accurately and at the same
time generalize well. These two goals are contradictory, hence we must seek a com-
promise, and a natural framework for seeking a compromise is by constructing a cost
function which is a weighted combination of the two. Looking at machine learning in
this way, we get problems which are similar to our interpretation of source localization.

A typical problem in statistical learning is fitting functions to sets of noisy obser-
vations. A very well-known instance of this problem is when we limit ourselves to
polynomials. The complexity in this case refers to the degree of the polynomial. The
problem has the form:

yi = f(si) + ni, i ∈ 1, .., T (F.1)

The free variable is s, y is the dependent variable, and n is noise. The unknowns are the
coefficients of the polynomial, and if we upper bound the degree by D, then we have a
set of D + 1 coefficients βd. So, f(si, β) =

∑
βds

d
i . (In the process of regularization we

would like to reduce the degree further, so many of the coefficients will become zero).

yi =
∑

d

βdx
d
i + ni, i ∈ 1, .., T (F.2)

which immediately can be rewritten in the inverse problem form if we take y =
[y1, y2, ...yT ]′, β = [β1, ..., βD]′, [X]i,d = xd

i , and n = [n1, n2, ...nT ]′:

y = Xβ + n, (F.3)

For our purposes, it is better to look at each observation separately, yi = Xiβ + ni, i ∈
{1, .., T}.

A very old idea to get some handle on the generalization properties of the data is
to split the data set into two parts, the training set and the test set. Then the problem
is solved using the points in the training set only, and the test set is used to verify that
our solution does not overfit to the training data. There are many methods following
this philosophy, with the two notable ones being ordinary cross validation (OCV) 2,
and generalized cross validation (GCV) [81]. In general when we remove some of the

2OCV is also called leave-one-out cross-validation.
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points from the training data, the estimate becomes worse, so ordinary cross validation
mitigates this by removing only one data point, and averaging over all T possible ways
to remove it.

Suppose we are trying to find a suitable parameter for the cost function J(β) =
J1(β) + λJ2(β). In the context of polynomial fitting we can take J1(β) =

∑
i(yi −

f(xi; β))2, and J2(β) can take various forms, for example the integral of the polynomial
over some range, which is linear in the coefficients βi. Let us consider the data set with
point k removed, i.e. i ∈ {1, .., T} \ {k}. Denote the corresponding cost function
Jk(β, λ), and the optimal solution by βk

λ. Then the ordinary cross validation function
is

Vo(λ) =
1
T

T∑
k=1

(
yk − f(xk; βk

λ)
)2

(F.4)

If we define βλ as the solution to the problem for the full data set (with no points

removed), and ak = f(xk;βλ)−f(xk;βk
λ)

yk−f(xk;βk
λ)

, then we can express the ordinary cross validation

function as [81]:

Vo(λ) =
1
T

T∑
k=1

(yk − f(xk; βλ))2

(1 − ak(λ))2
(F.5)

Generalized Cross Validation (GCV) is obtained by replacing each ak(λ) with its
average µ(λ) = 1

T

∑
k ak(λ), and

Vg(λ) =
1
T

T∑
k=1

(yk − f(xk; βλ))2

(1 − µ(λ))2
(F.6)

The equation in (F.3) has the same form as our one time sample source localization
problem (5.2), and many of our multiple time sample versions where we combine the
time samples prior to solving inverse problems3. Let us take y = As+n as the general
form of the problem that we are solving. Denote the data with entry k removed by yk,
and matrix A with row k removed by Ak. The cost function for the reduced problem
is Jk(λ, s) = ‖yk − Aks‖2

2 + λJ2(s). Denote the optimum value of the cost function by
sk
λ. Then the ordinary cross validation function for our problem is:

Vo(λ) =
1
M

M∑
k=1

(
yk − [A]ksk

λ)
)2

(F.7)

Here yk is the k-th entry of the vector y (the one that was removed), and [A]k is
the k-th row of matrix A, (also the one that was removed to get the solution sk

λ to
3When multiple time-samples (or frequency snapshots, or singular-value subproblems) are present,

exactly the same approach can be used, but the data for the k-th sensor is removed for all time samples
simultaneously.
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the reduced problem). In order to find an appropriate λ automatically we evaluate
the OCV function over a grid of λ’s and find the minimum value (optimization over λ
may be very hard to do since Vo(λ) may be a non-convex function with multiple local
minima). The corresponding GCV value for λ is obtained similarly.

The cross-validation approach is very demanding computationally, since we need
to solve M inverse problem to evaluate Vo(λ) at each point on the grid. When the
statistics of the noise are not known, this remains as the only feasible automatic method
of regularization parameter selection applicable to every scenario. It has been observed
[82] that OCV tends to produce models which are too complex, which in our case
means allowing spurious peaks due to noise in s. There are related cross-validation
approaches such as n-fold cross validation where the observations are split into larger
groups, and instead of removing one observation we remove the whole group. However,
for our application, if the number of sensors is small it may not be possible to remove
observations at several sensors since it would notably reduce the number of sources
that can be resolved. Partially due to its computational complexity, we do not have
extensive experience of using cross-validation for our problem, so its viability remains
a topic for further work.

� F.3 Universal and min-max rules

The last set of ideas that we will discuss for automatic selection of the regularization
parameters come from the field of function approximation. The universal [27, 83] and
min-max [84] parameter selection rules were originally developed for denoising appli-
cations with minimum spanning orthogonal bases (not overcomplete). The problem is
finding x (or Φx) from

y = Φx + n, where Φ′Φ = I (F.8)

This has the same form as our problem, but with an important restriction of the basis
being orthogonal. Extensions are possible for the invertible case, and Chen [29, 85]
claims that the general overcomplete bases can be also tackled using these rules4. The
rules have been developed originally for thresholding estimators, but an exact link
exists between soft thresholding and �1 penalization, as shown in [85]. We describe the
connection further down.

For simplicity, we start with the easiest possible basis, the standard basis (trans-
parent in the equations). A signal x(m) is corrupted by additive white Gaussian noise
n(m) ∼ N(0, σ2) to give observations y(m), i.e. y(m) = x(m)+n(m), m ∈ {0, .., M−1},
or using vector notation y = x + n. We are interested in getting good estimates x̂ in
terms of the mean-squared error (MSE), E[(x̂ − x)2]. The signal is sparse but values
are unknown, and the noise is uncorrelated. Thus, it is natural to limit the attention
to estimators of the form:

x̂(m) = θ(m)y(m) (F.9)
4However, we have not been able to find any references to such work.
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since different indices of y(m) have no interaction, and there is no use in considering
joint statistics of pairs or higher numbers of indices. Next we discuss why it is possible to
limit the set of estimators even further, and only look at soft and hard thresholding [27].
The choice of the threshold (which is directly related to the choice of regularization
parameter) is motivated during the discussion.

The mean-squared error is minimized when θ(m) = x(m)2

x(m)2+σ2 , but, this estimator is
not valid since it depends on x(m), the quantity that we wish to find in the first place.
However, it is useful in providing an upper bound on the estimation error. If we restrict
the estimator to be a hard threshold (i.e. θ(m) is 0 or 1, depending on whether we wish
to keep or discard y(m)), then the optimal threshold is achieved at σ2, and the MSE
is
∑M−1

m=0 min(x(m)2, σ2). This estimator is likewise unrealizable for the same reasons.
The optimal error of the threshold estimator, εt, is of the same order as that for the
general estimator (F.9), εg, in fact they satisfy εt/2 ≤ εg ≤ εt.

A valid estimator which comes to mind is a threshold estimator where instead of
comparing the threshold to x(m), we compare it to y(m). (This estimator is related
to the penalized �1-norm estimator, as we shall soon describe). For regions where
x(m) � σ, or σ � x(m), the two estimators will behave similarly. The difference is
for those regions where x(m) are of the same order of magnitude as σ. Donoho and
Johnstone [83] showed that this valid estimator has MSE within 1+ln(M) of the optimal
unrealizable threshold estimator, when the threshold is selected as T = σ

√
2 ln(M).

However, if the unknown signal x is sparse, and has its non-zero values well above the
noise floor, then the two errors are much closer together. The reason for the threshold
selection is the following: suppose that the signal is sparse (has a few large coefficients
and others as zeros). We would like to select the threshold high enough to eliminate all
the noise samples with high probability, but no larger, so that we do not also remove
the components of the signal. It can be shown that when T = σ

√
2 ln M ,

lim
M→∞

Pr

(
T − σ ln lnM

ln M
≤ max

0≤m≤M−1
|n(m)| ≤ T

)
= 1. (F.10)

This means that asymptotically, as M → ∞, the maximum of M i.i.d. Gaussian samples
will fall within the interval [T − σ ln ln M

ln M , T ]. The choice T = σ
√

2 ln M is called the
universal rule.

The min-max rule for the selection of the threshold [84] is closely related to the uni-
versal rule. Asymptotically, as M → ∞, the two give the same values of the thresholds.
The min-max rule chooses the threshold which minimizes the worst ratio of the error
of the valid threshold estimator to that of the ideal threshold estimator:

T ∗ = inf
T

sup
x

E[(y1y≥T − x)2]
σ2/M + min(σ2, x2)

, (F.11)

where 1y≥T is equal to 1 if y ≥ T , and 0 otherwise. Asymptotically, the optimal
ratio approaches 2 lnM . However, for small values of M , the threshold selected by the
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min-max rule is considerably smaller then the one which comes out of the universal
rule.

If instead of looking at the standard basis, we look at an orthonormal basis Φ,
Φ′Φ = I, then the problem becomes:

y = Φx + n, or Φ′y = x + Φ′n (F.12)

By renaming ỹ = Φ′y, and ñ = Φ′n, we get a problem of the previous form. The
second-order statistics of ñ are the same as those of n, since n is zero-mean, and Φ is
orthonormal.

So far we have looked only at the hard-threshold estimator, x̂(m) = θ(m)y(m),
where θ(m) = 1y(m)≥T , but it is shown in [83] that the same result applies to the soft
threshold estimator, x̂(m) = η(y(m)), where

η(y(m)) =




0, |y(m)| ≤ T

y(m) − T, y(m) ≥ T,

y(m) + T, y(m) ≤ −T

(F.13)

The soft threshold estimator has a very close connection with the �1-norm penalized
estimator, x̂ = argminx‖y − x‖2

2 + λ‖x‖1. In fact, for 1-dimensional problems, the
solution of 1/2 argminx (y − x)2 + λ|x| yields exactly the soft-thresholding estimator
with T = λ, [85]. For orthogonal bases in (F.8) this also holds, since ‖ỹ−x‖2

2+λ‖x‖1 =∑
m(ỹ(m) − x(m))2 + λ|x(m)|, which can be solved one coordinate at a time.
It is possible to extend the rules to the scenario where the basis A is invertible, but

not necessarily orthogonal:

y = Ax + n, or A−1y = x + A−1n (F.14)

Again, by renaming ỹ = A−1y, and ñ = A−1n, we get a problem of the original form
(with the standard basis). However, contrary to the orthogonal case, with basis Φ, the
statistics of ñ are no longer the same as those of n. In fact, ñ ∼ M(0, (A−1)(A−1)′).
By constraining the estimator to the form x̂(m) = θ(m)y(m), we cannot easily address
(benefit from) the knowledge of correlation of different indices of the noise. Donoho
and Johnstone [83] show that the optimal threshold will depend on the variances of
ñ(m), i.e. we have an index-dependent threshold T (m) = σ̃(m)

√
2 ln M , where σ̃(m) =

V ar(ñ(m)). This contradicts the suggestions made in [85], that one should still use
λ = σ

√
2 lnM . Now instead of λ‖x‖1, we have to consider a weighted �1 norm, where

the indices are weighted by the variances of ñ, i.e.
∑

m σ̃(n)|x(m)|.
Our extended discussion of min-max and universal rules serves several purposes.

First of all, it appears that neither of the two rules are directly applicable to our
problem of regularization parameter selection. This happens due to the fact that for
both orthogonal and invertible bases there exists a direct relationship between the noise
in observations y, and noise in coefficients. In the overcomplete case this relationship
is lost, since many possible coefficients can account for the noise. It is conceivable that
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an extension to the overcomplete case is possible, but it is unlikely to be of the same
simple form as for orthogonal bases.

Additionally, the results are mainly useful for large M , since many of the derivations
are based on asymptotic arguments as M → ∞. For our source localization application,
M corresponds to the number of sensors and is typically a small number (such as 7 in
some of our simulations). The fact that the number of time samples may grow large is
not relevant, since in most cases we first transform the data with multiple time samples
into a single problem.

Two interesting observations come out of the discussion. First, it may be possible
to improve the performance of our technique by considering a weighted �1 norm, e.g.
for a > 0, ‖x‖(a)

1 =
∑M

i=1 ai|xi|, where ai ≥ 0 for all i, instead of the usual �1-norm:
‖x‖1 =

∑M
i=1 |xi|. At the moment the proper choice of a is not clear for the reasons of

overcompleteness of the bases that we consider. Second observation is that we expect
the proper choice of the regularization parameter to scale linearly with σ, the standard
deviation of noise (which we assume to be Gaussian).

To summarize, although we do not use either the minmax or the universal rule for
overcomplete bases, we do not rule out the possibility that an extension may be made
which will work well for our source localization application. In fact, some research has
been done in the selection of the regularization parameter for the case of an overcom-
plete basis composed of several orthogonal bases [27, 86]. The main difference from
our approach is that in these applications the signal is typically represented not as a
general linear combination of the elements of the overcomplete basis, but rather as a
combination of elements of a particular orthogonal basis contained in the dictionary.
This restriction makes the problem much more amenable to analysis.
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