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ABSTRACT—Neural networks (NNs) have been extensively used in speech technology
systems. In this paper, we present two novel applications of NNs in speech recognition
and text-to-speech systems.

In very large vocabulary speech recognition systems using the hypothesis-verification
paradigm, the verification stage is usually the most time consuming. State of the art
systems combine fixed size hypothesized search spaces with advanced pruning
techniques. We propose a novel strategy to dynamically calculate the hypothesized search
space, using neural networks as the estimation module and designing the input feature set
with a careful greedy-based selection approach. The main achievement has been a
statistically significant relative decrease in error rate of 33.53%, while getting a relative
decrease in average computational demands of up to 19.40%.

The prosodic modeling is one of the most important tasks for developing a new text-to-
speech synthesizer, especially in a female-voice high-quality restricted-domain system.
Our double objective is to get accurate predictors for both the fundamental frequency
(FO) curve and phoneme duration by minimizing the model estimation error in a Spanish
text-to-speech system, by means of a neural network estimator, which has proved to be an
excellent tool for the modeling. The resulting system predicts prosody with very good
results (for duration: 15.5 ms in RMS and a correlation factor of 0.8975; for FO: 19.80 Hz
in RMS and a relative RMS error of 0.43) that clearly improves our previous rule-based
system.

Key Words: Speech recognition, neural networks, search space reduction, hypothesis-

verification systems, greedy methods, feature set selection, prosody, FO modeling,
duration modeling, text-to-speech, parameter coding
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1. INTRODUCTION

Neural networks have been extensively used in speech technology systems, both in automatic
speech recognition [1][2], and text to speech conversion [3][4], with results comparable to
traditional techniques, usually at a lower cost and making full use of the intrinsic discrimination
capabilities of NNs. In this paper, we present two novel applications of NNs in speech recognition
and text-to-speech systems.

1.1 Search Space Reduction in Automatic Speech Recognition Systems

Computational demands are one of the main factors to take into account when designing
systems supposed to operate in real-time, especially when talking about public information
services using the telephone network. Telephone information service providers are demanding
systems and algorithms that allow them to increase the number of active recognizers to run in
dedicated hardware, to be able to significantly decrease production costs.

According to this scenario, state of the art systems are usually based in some form of
progressive search [5], whereby successively more detailed (and computationally expensive)
knowledge sources are brought to bear on the recognition search as the hypothesis space is
narrowed down. This approach is a generalization of the hypothesis-verification paradigm, with
several cascaded stages. In the simplest case the first stage (hypothesis), a rough analysis module
with low computational demands, face the whole search space of the task, and select a subset of
this search space to be fed to the second stage (detailed analysis module, verification), much more
demanding in computational resources and more able to accurately decode the input speech. For
the whole system to be successful, the rough analysis module must ensure that the selected subset
of the search space contains the right hypothesis with high probability, so as not to degrade the
overall performance.

In hypothesis-verification systems, the main concern is reducing the hypothesized search
space as much as possible, and this is not an easy task, especially when low detailed acoustic
models are used in the preselection stage. Traditionally, these systems use a fixed size
hypothesized search space, estimated according to the results obtained during system development
so that a minimum error rate is achieved. Under these constraints, most of the research work
aimed at lowering computational requirements has been centered in search space pruning
techniques, usually based in beam search techniques [6].

The first goal of this study is focused in the hypothesis stage: instead of only relying in static
or dynamic pruning techniques in the verification module, we want to design a procedure so that
the hypothesized search space varies in size, different for every utterance, depending on any
know-in-advance system parameter. If we lower the average hypothesized search space size while
keeping the error rate performance, the computational demands of the overall system would be
lower. Thus, the key factor to evaluate the effectiveness of different methods is calculating the
reduction in average hypothesized search space size (which we will refer to as average effort)
while keeping the required error rate. In addition to that, if the neural network estimation is
accurate enough, we could even get improvements in the system error rate, and this actually
happens in the experiments described below.

1.2 Prosodic Modeling in Restricted-Domain Text-to-Speech Systems

The second goal of this study was to develop an automatic system to model prosody for a
Spanish text-to-speech system (TTS) in a restricted-domain environment for a female voice. This
work is the continuation of [4] and [15] which were dedicated to a general-domain database for a
male voice and [16], that included the first version of the restricted-domain modeling, achieving
better results than our original rule-based system. For modeling duration this rule-based approach
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follows a classic multiplicative Klatt model; for the FO curve (the temporal evolution of the vocal
folds vibration frequency), it is modeled a parametric way as a series of text-dependent FO peaks
and FO valleys [17].

Although a domain-specific application does not require as many sentence structures as a
general one (the delivered messages are syntactically constraint), there can be many words
embedded in them (e.g., more than 40,000 family names, more than 30,000 village names, etc.). A
message is typically a sentence with two different parts: one of them, that is fixed, is a template
for the other, which is composed of one or more slots (Variable Fields) containing the relevant
information that the user is looking for in the message. Current prosodic patterns are judged as too
monotonous to allow a great diversity of services, but in restricted-domain applications and by
mixing female natural speech and diphone-concatenation synthesis (from the same speaker), we
can provide high quality services if we mimic the natural prosody exhibited by the speaker.

Many studies have been successfully carried out lately in the field of automatic estimation of
the prosodic values, using different techniques and input parameters to obtain the model. For
duration, these automatic techniques are mainly of two types: decision trees and neural networks
(the objective of this paper); another line of investigation with very good results is the statistical
sum-of-products method. For FO modeling, the dominant techniques are artificial neural networks
and k-nearest-neighbor, combined with a parametric model of the FO curve [18].

In all the systems, regardless of the modeling technique, it is crucial to find the parameters (or
features) that are most significant for prosodic modeling. So, we can take advantage of previous
studies dedicated to prosody prediction, but using other techniques to decide the parameter set.
Neural networks have previously been used with success. In [19] a neural network was trained to
predict syllable timing. In [20] they compare the performance of neural networks and
Classification and Regression Trees (CART) techniques for six different languages, including
Spanish. The results for both are very similar, which shows that any of them can be used.
Regarding the application of these techniques to Spanish, there are very little references and none
is dedicated to neural networks or CART approaches. We have considered some of them but only
to decide the parameters to be used as input. See in [4] a summary of references for Spanish.

1.3 Organization of the Paper

The paper is divided into two main sections; describing the two applications of neural
networks we propose (Sections 2 and 3). In both cases, there is a general structure describing the
system in which the NN-based estimator is being used, the experimental setup, the methodology
applied in the neural network system development, the feature selection process and the
experimental results. Finally, Section 4 draws the main conclusions, Section 5 the
acknowledgements and section 6 includes the references used along the paper.

2. EFFICIENT NN-BASED SEARCH SPACE REDUCTION IN A LARGE
VOCABULARY SPEECH RECOGNITION SYSTEM

2.1  System Overview

The general architecture we are working on is shown in Figure 1, in which an estimator
module is in charge of deciding the size of the hypothesized search space, to be passed to the
detailed analysis module, using for that purpose a certain set of features extracted from the feature
extraction and rough analysis processes. This estimator module will be the one in which we will
use NNs as the estimation strategy. The main hypothesis generator modules are fully described in
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[7], and to summarize, the current implementation of the hypothesis module follows a bottom-up,
two stage strategy (a phonetic string is first generated and then matched against a tree-structured
dictionary, using dynamic programming algorithms [8] and [9]).

In general, and given the proposed task, it is clear that the computational requirements are
closely related to two different factors: modeling complexity and search effort in the hypothesis
and verification algorithms. In this paper, we will focus our description to the work in the
preselection (hypothesis generation) system, although additional reductions in computational
demands are achieved in the verification module through the use of beam pruning techniques. Our
target objective will be achieving a maximum error rate, which should be lower than 2% in all
cases, so as not to limit the final recognition accuracy achieved by the verification stage.

2.2 Experimental Setup and Baseline System

Experiments have been carried out using part of VESTEL, a realistic isolated word telephone
speech database [10], captured using the Spanish Public Switched Telephone Network and
composed of 9,720 utterances. We have used a ten-fold cross-validation strategy in order to
increase the statistical significance of the results and with 3 non-overlapping sets (80% of the data
is used for training, 10% for validation (over-fitting detection) and tuning, and the remaining 10%
for the evaluation). The validation subset is used for early stopping and to make decisions
regarding the best feature selections, the optimal number of iterations, etc. All the training-
validation-testing procedure is repeated for each of the 10-fold subgroups and the results are
finally averaged.

The real-world application task was designed for the research and development division of
the Spanish Telephone Company (Telefonica 1+D) around the white pages idea, so that the
dictionary used in this work is composed of 10,000 words, the most probable names and surnames
in Spanish. The experiments will be carried out in the context of a large vocabulary isolated word
recognition system. In this case, the hypothesis module will generate a preselection list composed
of the most probable words (candidates) given the input speech utterance. The preselection list
length (PLL from now on) used, on the average, would give us the average effort for the task. To
give an example, the full search space would imply a preselection list composed of all the words
in the dictionary (10000 words), and our objective is reducing this number of words in the
preselection list (let’s say down to 900 words, leading to an overall reduction of 91% in search
space size), the ones that would be finally forwarded to the verification stage.
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The baseline experiment uses fixed PLLs, which is equivalent to a fixed search space size.
For its evaluation, we calculated the inclusion error rate achieved for every possible length of the
preselection list. The inclusion error rate is obtained assuming a recognized word is within the
first N candidates (N equals the PLL) proposed by the hypothesis module. In general, and given
the unequal performance of recognition systems depending on the word to be recognized, that
fixed length must be assigned a large value, leading to a large average effort, a large average
wasted effort and to computational requirements higher than desired. Actual system performance
measurements showed that the wasted effort almost equals the required average effort, so that
great improvements could be achieved.

In our system, we obtained 2% error rate for a fixed PLL of around 10% of dictionary size,
which is 1000 candidates. Taking into account this result and previous experiments, we
established the baseline system as the one that used exactly 1000 candidates for the fixed PLL,
which lead to an inclusion error rate of 1.72%.

So, our target will be achieving at least the same performance (1.72% error rate) while,
reducing the average PLL (which equals to the average hypothesized search space size, thus
lowering the computational demands for the whole system), as we will use variable PLLs
estimated using a neural network (NN).

2.3 Neural Network System Development Methodology

2.3.1 Topology of the Neural Network

In all our experiments we will use a multi layer perceptron [12], with a single hidden layer
and sigmoids as the activation functions. In order to increase the generalization capabilities of the
NN, we kept the number of neurons as low as possible, leading to relatively simple topologies
with less than 600 weights to train.

2.3.2 Feature Inventory and Input Coding

In our case we have created a wide spectrum of possibilities regarding the available feature

set: We designed an inventory of 56 features that can be classified in three broad classes:

e Direct parameters: Obtained from the characteristics of the acoustic utterance or the
preselection process: number of frames, phonetic string length, acoustic search score,
lexical access costs, etc.

e Derived parameters: Calculated from the previous ones applying different types of
normalization schemes (dividing by number of frames, phonetic string length, etc.)

e Lexical Access Statistical Parameters: Averages and standard deviations calculated over
the lexical access costs distribution, for different PLLs.

The input coding schemes we tested include both single and multiple inputs per parameter:

e For parameters coded in a single input, the alternatives were: No coding (raw data input),
linearly scaling the full parameter range between a minimum and maximum value of the
input neuron, standard z-score normalization, with optional data clipping to some
predefined values, proportional to the standard deviation of the training data set.

e  For parameters coded in multiple inputs:

1. Using a uniformly distributed linear mapping function: dividing the full parameter
range by the number of inputs, so that we activate the input corresponding to the
range in which the parameter value is located.
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2. Using a non-uniform mapping function: considering the distribution of the parameter
values in the training database, the segments assigned to each input are chosen so
that the number of activations is equalized for each parameter.

In addition to that, we tested different number of input units per parameter and different
values to encode every input activation. We tested all the different coding schemes using a subset
of the training database and we established that standard z-score normalization for the input
features achieved the best results [11].

2.3.3 Output Coding and NN Post-Processing

Our network is aimed at estimating a certain PLL, given the input parameters. For coding the
activations of the output neurons we could use the same strategies we discussed above for input
parameter coding. In this case we are interested in multiple output neurons, as they could encode
PLL values in a better way. In output coding, however, using a uniformly distributed linear
mapping function lead to very bad results, as only the first few neurons are activated during
training, as most utterances are recognized for the first few candidates in the preselection list.

We evaluated all the possible output coding strategies and we established that the best results
where obtained with the following setup [11]:

e Every output neuron k is defined to represent a different PLL range (PLLs from
lowerSegmentLength(k) to upperSegmentLength(k)), leading to the task formulated as a
classification problem in which the NN should decide which is the most likely output
neuron to be activated.

e The PLL ranges that every output neuron represents are trained with a criterion that aims
to get, when possible, a uniform number of training samples for all of them, in order to
avoid data sparseness during training.

The NN output values are finally post-processed to obtain the final PLL. The idea is further
increasing the proposed length, so that mismatches between the training and testing sets are
compensated to a certain extent. Different alternatives where tested:

e The output neuron with the higher activation value decides the PLL to be used (the upper

limit of the PLL range associated to the winning neuron). If act(k) is the activation value
for the k output neuron:

PLL =upperSegmentLength(g), g= argmax [act(k)]

0<k<numOutputNeurons (1)

e The PLL is calculated as a linear combination of output neuron activations multiplied by
the upper limit of the PLL range associated to each output neuron. The rationale for this
approach is based on the fact that, given certain premises, NN outputs can be interpreted
as class posterior probabilities [12], so that all output neurons have something to say
regarding the estimated PLL:

NumOutputNeurons
PLL= > upperSegmentLength(k)-act(k) )

k=1

From these basic approaches, two additional mechanisms were tested to increase system
robustness: Adding a fixed threshold to the proposed PLL. If PLL* is the final PLL to be used:

PLL*= PLL + fixedTrainedThreshold (3)

or using a proportional threshold to the proposed PLL.:
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PLL*= PLL-(1+ proportionalTrainedThreshold) 4)

Of course those thresholds are also calculated during the training phase, imposing the
achievement of a certain inclusion rate. We tested all the NN post processing strategies, and the
best one proved to be the one given by equation (2), with the threshold equation (3) [13].

2.4 Feature Selection

The initial experimentation described in sections 2.3.2 and 2.3.3 gave us the experimental
scenario to be used in the feature selection process. In order to select the most discriminative
features for our task, we used an adapted version of the greedy algorithm [14]. Initially, this
procedure was planned as follows:

1. The feature set is initialized as empty.

2. In every iteration of the feature selection algorithm, feature ensembles are generated
adding every pending feature to the existing feature set.

3. Experiments with variable number of iterations are performed for every feature
ensemble.

4. The feature ensemble achieving the highest reduction in preselection error rate for the
optimal number of iterations is selected as the new feature set for the next iteration.

5. Continue with step 2 if the preselection error rate decreases.

Initial evaluation showed that the computational complexity of step 3 is huge, so that we

simplified the process as follows:

e Insteps 3 and 4 we select the 8 feature ensembles which lead to the best results using a
training procedure with the optimal number of iterations found in the previous iteration.

o Before step 5 we carry out experiments to determine the optimal number of iterations for
each of the 8 best ensembles and we finally select the ensemble with the highest
reduction in preselection error rate.

With this approach, a set of 4 features was selected as the optimum. The most discriminative

features are related to the standard deviation of the lexical access costs, the normalized acoustic
score from the phonetic string build up module and the phonetic string length.

2.5 Experimental Results

As discussed above, the NN-based system will generate a different PLL for every utterance.
Inclusion error rates are calculated according to this approach and can be directly compared to the
baseline system inclusion error rate (1.72%). On the other hand, computational requirements in
the NN-based system are measured computing the average estimated PLL, and will be compared
with the fixed size of 1000 candidates in the baseline system.

Obviously we still need relative quality measurements, so that we will also calculate relative
error rate and average effort increments (A) when using the NN-based system. Table | shows the
final results (along with 95% confidence intervals for the error rate figures).

Table I. Experimental results

Inclusion error Average A error A effort
rate effort (% relative) (% relative)
Fixed list length system 1.72% + 0.21% 1000 - -

NN based system 1.14% + 0.26% 806 -33.53% -19.40%
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So, the best NN based system achieves a 33.53% reduction in error rate, while also reducing
the average computational effort in almost 20%. In addition to that, the differences are statistically
significant (confidence intervals do not overlap).

The computational impact of the NN calculations is negligible when compared to the overall
runtime of the preselection stage (under 0.01% of the total runtime).

3. PARAMETER SELECTION FOR PROSODIC MODELLING IN A
RESTRICTED-DOMAIN SPANISH TEXT-TO-SPEECH SYSTEM

3.1  System Overview

The general architecture we are working on is shown in Figure 1, in which an estimator
module is in charge of deciding the prosody to apply in the generated speech signal. The inputs to
the prosody estimation module are generated by the natural language processing stages, and are
typically related to the phonetic context of the input text, the syllabic structure, the relative
position of the phonetic or lexical unit being considered, etc.

3.2 Experimental Setup

The database used in this paper is described in [16]. We extracted a set of 19 Carrier
Sentences (CS) from two real services in banking and traffic information domains, provided by
the IVR design company. The CS contained 24 Variable Fields (VF) and each VF conveys the
most important information in the CS and must be surrounded by compulsory pauses. Prosodic
values are only computed for the VVFs. We classified the CS into 3 classes or groups:

e  Proper Names: surnames (both compound and simple ones), cities, villages, etc

e Questions: bank-related information such as currency, check status, etc.

e Noun Phrases: regarding accounts, credit cards, names of transactions and banks...

For the design of the database we used a greedy algorithm that is described in [16]. We aimed
at selecting a small database with the same probability distributions of certain phonetic and
prosodic features as in a very big database (about 6600 phonemes and 2800 syllables per class)

- f ‘ N
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Natural estimator Speech
Language — Synthesis
Processing Module
Module
Text Morphological Grapheme ] Digital
Text — T N :lx i and syntactic To phoneme > Phoneme > Signal
ormaiization analysis conversion J franscription Processing

Figure 2. Text-to-speech system architecture
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3.3 Neural Network System Development Methodology

3.3.1 Topology of the Neural Network

For both duration and FO modeling, we have used a multilayer perceptron (MLP), using the
sigmoid as the activation function and the backpropagation algorithm for training. For each
phoneme (or syllable), we compute a series of parameters (features), which we code and use their
values as inputs to the neural network. There is one output in our networks: the duration of the
phoneme (or the FO of the syllable). For duration experiments we used 2 sets (training and testing)
and we divided the training into three phases of 300 iterations each (for over-fitting detection).
For FO, we used a ten-fold cross-validation strategy with 3 non-overlapping sets (one for training,
one for over-fitting detection and one for the final evaluation). As it is very difficult to know the
optimum number of neurons and layers that the net should have, a set of experiments were carried
out in order to optimize the system without overtraining.

In this restricted-domain system we had the option to use a single network for the 3 classes of
sentences or 3 different networks for each class. Using the best configuration of parameters of [4]
we compared both approaches. The 3-networks option improved the results in 6% for duration so
we decided to use 3 different networks in our duration experiments.

3.3.2 Feature Input Coding
We have considered different ways of presenting the parameters to the neural network, i.e.,
the way they are coded, as we have different kinds of parameters.

1. Binary coding: this is the standard coding for true/false parameters.

2. One-of-N coding: to code N classes, we use N neurons and only 1 of them is active.

3. Inordinal values we have more possibilities, as these values can be ordered:

4. Percentage transformation: we divide the current value by the maximum value to obtain a
percentage. We obtain a floating-point value between 0 and 1 as input.

5. Thermometer: we divide all the possible values into different classes (intervals). We
activate all the neurons until we get to the current class and leave the remaining neurons
inactive. We developed an algorithm to obtain a uniform distribution of all the classes.

6. Z-Score mapping: we normalize the floating-point value by accounting for the average
and the standard deviation of the variable (a good coding for very variable parameters).

3.3.3 Output Coding

We obtained in [4] that phoneme durations should be normalized by the duration of the
phrase (to be less affected by changes of speed in the database recordings). After the
normalization, we use the standard deviation of the logarithm of the duration (to balance the
distribution of the values and to minimize the error, as it includes the characteristic duration of
each phoneme in the prediction) and a Z-Score codification. For FO, we just used Z-Score.

3.3.4 Network Evaluation

To evaluate the error of the networks (difference between the prediction from the network
and the optimum value), we have considered different metrics. The most important one is the Root
Mean Square error (RMSE). Another one is the relative RMSE (RMSE / sqrt [Z [t-t]?]), that it is
adimensional and independent of the way we code the target values (t;), and it does not have an
offset.
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3.4  Feature Selection and Experimental Results

3.4.1 Base Experiment for Duration

In our base experiment for duration (first row of Table 1) we have decided to include just the
phoneme identity (with a set of 38 phonemes and a windowing of three values, described in next
section), and the stress, which are the most relevant parameters according to our previous work
and to our own statistical studies. The coding used is a one-of-n coding: a ‘1’ in the input which
corresponds to the phoneme and ‘0’ for all the other inputs.

In Table I we can see the relative RMSE and the average improvement obtained for the test
set with individual parameters, using a 10-neurons network. The last column shows the results of
applying a T-Student test to compare the base experiment and the experiment considered (when
“2-tail-sig” is below 0.05 the difference between both systems is statistically significant).

3.4.2 Contextual Phonemes

In our previous studies, the duration of a phoneme was significantly affected by the phoneme
to the right and to the left. As the number of phonemes is too high, we made 14 clusters of
phonemes according to its type. Using a two-phonemes context (a window of five values) we
obtained an improvement of 5% for the test set (Table I, experiment 1). This result is really
remarkable, as it shows the importance of contextual information. But for a 7-values window the
results were slightly worse.

3.4.3 Parameters Related to Position and Binary Parameters

In [4] we found that “Position in phrase in relation to first/last stress* was an especially
relevant parameter, as it explicitly includes the “lengthening before pause” effect. We coded each
syllable in 5 possible classes with very good results (Table I, experiment 3).

We have also obtained new significant improvements over the base experiment by
considering several binary parameters (experiments 4-6 in Table I):

o Syllable structure: syllables ending with a vowel (open syllables) are generally longer.

o Vowel in diphthong (“i/u” before/after “a/e/0”). In Spanish, we differentiate both of them

as different allophones, and they follow different rules for duration.

e Phoneme in a function word. Syllables in a function word are shorter.

In [4] we considered different alternatives for parameters related to position and decided to
use: phoneme in the syllable, syllable in the word, and word in the phrase, as they provide
different information to the network (not redundant), their range of values is smaller, and, so,
fewer neurons and classes are needed. We carry out the following steps for the coding:

1. To normalize the value of position by the total length of the higher-order unit

2. This value is coded using 3 classes, and their intervals are computed automatically.

3. The 3 classes use a thermometer-type coding with 2 inputs (number of classes minus 1).

The results of these experiments (7 to 9 in Table I) have improved the base experiment again.
The best parameter is “‘position of the word in the phrase’, one conclusion that we did not obtain
in the unrestricted-domain system, where all parameters related to phrase were worse. The reason
is that the range of values is much more uniform in this restricted-domain system.

3.4.4 Parameters Related to the “Number of Units”

In a similar way as for parameters related to position, we decided to use the number of
phonemes in the syllable, the number of syllables in the word, and the number of words in the
phrase. Because of their different distribution, we needed a different coding:

1. To normalize the value by the maximum one: a floating point value between 0 and 1.
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2. To apply Z-score (using average and standard deviation): this way, we can restrict at our

will the operating range of the parameter, which is too variable.

The improvements (experiments 10-12 of Table 1) were significant and very similar to those
of position parameters (the number of words in the phrase is the best parameter). In order to check
the suitability of this floating point coding, we tested the thermometer-type coding (as for
position-related parameters), but the results were always below.

3.4.5 Summary of Results for Duration

The summary in Table Il corresponds to the best network (10 neurons). We have obtained the
best results for: window of 5 phonemes, number of words in the phrase, position of the word in
the phrase and position in phrase in relation to first/last stress.(Stress is important too, but it is
included in the base experiment); almost all the improvements are significant (not as in [4]).

Table Il. Summary of results in average relative RMS (for duration)

Experiment Test set Improvement 2-tail-sig

Base experiment 0.5580 - -

1- Base + window of 5 phonemes 0.5318 4.98 % 0.000
2- Base + window of 7 phonemes 0.5350 4.81% 0.000
3- Base + position in phrase 0.5450 248 % 0.001
4- Base + vowel in diphthong 0.5515 1.53% 0.045
5- Base + syllable structure 0.5462 243 % 0.001
6- Base + function word 0.5451 2.35% 0.000
7- Base + position of Phoneme in Sentence 0.5523 1.03 % 0.419
8- Base + position of Sentence in Word 0.5462 2.29% 0.006
9- Base + position of Word in Phrase 0.5427 2.49 % 0.001
10- Base + number of Phoneme in Sentence 0.5494 2.07 % 0.010
11- Base + number of Sentence in Word 0.5501 2.20% 0.048
12- Base + number of Word in Phrase 0.5403 3.43 % 0.000

3.4.6 Final Experiments for Duration

The next set of experiments was dedicated to including all the parameters together. This is the
crucial step in neural networks, because many times the improvements combining parameters are
not additive, because the parameters are closely correlated (do not offer additional information),
or the topology of the network needs to be tuned (a larger number of neurons may be needed).

In Table 1l we can see the summary of results. The numbers in the description of the
experiments refer to the experiments specified in Table Il. The T-Student test is now applied to
the comparison of an experiment with the previous one.

Table Ill. Results for duration including all parameters.

Experiment Test Improvement 2-tail-sig
Base experiment 0.5580 - -
13-Base + 1+ 3 0.5214 6.58 % 0.000
14-13+4+5+6 0.5206 6.83 % 0.512
15-14+7+8+9 0.5121 8.09 % 0.039
16-15+10+ 11+ 12 0.4927 11.12 % 0.002
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e Experiment 13: it is the base experiment using now a window of 5 phonemes and

position in phrase in relation to first/last stress. The improvement was remarkable.

e Experiment 14: we added the binary parameters: vowel in diphthong, syllable structure

and function word. The improvement is reduced and not significant

e  Experiment 15: with position parameters. The improvement is significant.

e Experiment 16: including the ‘no. of units’ parameters with significant improvements.

The results are really good, and the system keeps improving for both the train and the test set
as we increase the number of parameters, which shows the correct learning of the networks.

In the unrestricted-domain system [4], there were symptoms of overtraining with very few
neurons, which impeded the improvement of the global system. In this system, the best results
correspond to the topology with 20 neurons. The improvement over the base experiment is
18.71%, which shows that our solutions improved this system drastically. The relative RMS is
0.4536, the average absolute error is 11.79 ms, and the absolute RMS is 15.5 ms. The Pearson
correlation coefficient between estimated and measured durations is 0.8975, a very good figure.

3.4.7 Comparison to Previous Systems

As could be anticipated, the results are much better than those obtained with the unrestricted-
domain database: an absolute RMS equal to 19.1 ms. The relative RMS was equal to 0.76428,
clearly worse than the 0.4536 obtained in this domain.

Using our previous multiplicative rule-based system, with the best parameter coding of the
ANN experiments, the absolute error was 19.8 ms and the RMS was 28.5 ms, which is clearly
worse than the result obtained with our neural network.

Regarding other works in the literature, in [4] a comparison with several systems is included,
but as explained there, the comparison is not fair in any case as the corpus used in the papers are
completely different.

3.4.8 FO Experiments

For FO, we performed similar experiments with a different set of parameters. Our previous
rule-based system used features such as: whether the syllable is stressed, whether the following
syllable is stressed, the type of punctuation mark at the end of the intonation group (this parameter
is related to the shape of the FO curve at the end of the group) and the number of stressed syllables
and the position of the syllable in the group. The FO-curve obtained this way is acceptable but
unnatural in human perception tests [15].

In addition to these general parameters, we tried several ways of coding the influence of the
carrier sentences from the restricted-domain. The best results obtained correspond to a one-of-N
coding of the carrier sentences (we grouped sentences according to 3 classes as defined in section
3.1; with only a 1% improvement, that is not significant). No significant improvement was
obtained through parameters related to position, to function words or to the number of units.

The summary in Table IV corresponds to the best network (20 neurons). We have obtained
the best results for: a one-of-N coding for the carrier sentence and the final punctuation mark, a
window of 11 syllables for stress and for the position of the syllable in the phrase (in relation to
first and last stressed syllable). All the improvements are significant when compared to the
previous one except for experiments 5 and 6.

4. CONCLUSIONS AND FUTURE WORK

The main conclusion of the presented paper is that the use of neural networks has proved to
be an excellent alternative to traditional methods in novel applications related to speech
technology systems:
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Table IV. Results in average relative RMSE

FO Experiment Test Improvement
Base experiment: stress 0.7378 -

1- stress in a 3-syllables window 0.6815 7.63 %

2- stress in a 11-syllables window 0.6326 14.26 %

3- 2 +final punctuation mark 0.5500 25.45 %

4- 3 + identifier of the carrier sentence 0.4554 38.28 %

5- 4 + position of the syllable in the group 0.4360 40.91 %

6- 5 + 3-neural-networks option 0.4312 41.56 %

In the case of estimating the hypothesis search space size, the proposed NN-based system
clearly outperforms the baseline system (33% reduction in error rate and 20% reduction
in computational demands) and with statistically significant results. We also presented a
carefully designed experimental methodology, using a greedy-based strategy for feature
selection and an optimal experimental setup regarding input and output coding, along
with a NN output post-processing system that relies in the interpretation of the NN
outputs as being class posterior probabilities. Given the good results obtained in our
classification networks, we have started a study on the estimation of word confidence
measures, to allow assessing the reliability of the recognition systems used. Initial results
are really encouraging, as we are outperforming traditional methods using parameters
related to acoustic scores with some of the ones proposed in this paper.

In the case of the prosody estimation task, when comparing to our previous rule-based
systems, the results are much better, even when using a limited number of parameters. As
we expected, the results obtained in the restricted-prosody domain show improvements
that are much more significant than in [4] (because the database is more homogeneous)
and than in [16] (due to a better parameter selection): for duration: 15.5 ms in RMS and a
correlation factor of 0.8975; for FO: 19.80 Hz in RMS and a relative RMS error of 0.43.
For a new female voice, we have demonstrated that our prosodic model can be easily
adapted to specific contexts and/or new databases in a very short time. For duration
another important aspect is that the results improve when we include all the parameters
and increase the number of neurons, a tendency we did not observe in the unrestricted-
domain system. Regarding the topology, it is difficult to find the optimum of the
network. It is better to begin with a low number of neurons and increase it step by step.
The same applies to the inclusion of parameters: it is better to decide their best coding in
small networks. We have found that a second hidden layer is not necessary. The “Z-
score” normalization for numeric parameters shows a good behavior: it adjusts the
margin of accepted values automatically rejecting the out-of-range values. In general, we
can say that we have found a good compromise between network topology and
parameters considered, with good results that are stable. The system has been included in
a commercial high quality TTS system in Spanish [16] [21].
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