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Novel HW Architecture Based on FPGAs Oriented
to Solve the Eigen Problem
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Abstract—A hardware solution is presented to obtain the eigenvalues and
eigenvectors of a real and symmetrical matrix using field-programmable
gate arrays (FPGAs). Currently, this system is used to compute the eigen-
values and eigenvectors in covariance matrices for applications in digital
image processing that make use of the principal component analysis (PCA)
technique. The proposed solution in this paper is based on the Jacobi
method, but in comparison with other related works, it presents a different
architecture that remarkably improves execution time, while reducing the
number of consumed resources of the FPGA.

Index Terms—CORDIC, eigenvalue, eigenvector, field-programmable
gate array (FPGA).

[. INTRODUCTION

The calculation of eigenvalues and eigenvectors is a problem ad-
dressed in numerous practical applications [9], [12], between that are
those that uses techniques of principal component analysis (PCA) [6],
[8].

One of the problems related to the application of PCA techniques
is the necessary calculation of the transformation matrix, formed by
the most significant eigenvectors of the covariance matrix. The diffi-
culty in calculating this transformation matrix resides in the large size
of the covariance matrix managed by many applications, for example,
computer vision algorithms [4], [5], frequently requiring the online up-
date of this transformation matrix. Some solutions for the calculation
of eigenvalues and eigenvectors have been proposed [1], [2], [7].

In most of them, the calculation of eigenvalues and eigenvectors is
done using digital processor-based platforms. Due to the features of its
internal architecture, the calculation process is highly sequential, re-
quiring a large amount of time to compute it. To improve the speed of
the system, in some proposals, for example in [7], the trigonometric
values necessary to make the calculation of eigenvalues and eigenvec-
tors are stored in memory tables. In other proposals, as in [2], the ob-
jective is to accelerate execution by using multiprocessor platforms.
Therefore, if the goal is the implementation of the calculation of eigen-
values and eigenvectors in a field-programmable gate array (FPGA),
different solutions must be designed and executed concurrently within
these devices while achieving high accuracy.

This paper has been divided into several parts. Section II describes
the computation process for the matrix eigenvalues, analyzing the dif-
ferent alternatives that exist. Section III presents the new proposal for
obtaining the eigenvalues and eigenvectors using a reconfigurable hard-
ware. Finally, Sections IV and V discuss the empirical results and the
conclusions obtained from this work, respectively.
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II. EIGENVALUE AND EIGENVECTOR COMPUTATION

To obtain the eigenvalues of a matrix using specific hardware, di-
verse techniques have been proposed [7], all of them based on recur-
rent methods that look for matrix diagonalization. Within the different
alternatives for the diagonalization process, the method proposed by
Jacobi [11] is the more commonly used because it is easy to implement
in terms of structure hardware of parallel processing.

The authors of this paper propose a no-systolic architecture, based
on the method of Jacobi, which optimizes the resources consumed in
the FPGA and at the same time maximizes speed of execution.

For the calculation of the eigenvalues of a Hermitian matrix S €
RM*M the algorithm proposed by Jacobi is used [3], [11]. This tech-
nique of diagonalization is based on the decomposition of the original
matrix S € R > in submatrices of 2 x 2 elements (S, ; € R**?).
These submatrices are defined in (1) and [3], where SEk]) corresponds
to elements set at zero in the matrix $*)
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The iterative process of diagonalization of matrix S € R >
posed by Jacobi, meets the following condition: s(zl:), 12 = 821;2 1=

0; Vi, j. For it, the iterative process depicted in (2) is used
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As observed in (4), the rotation angles are obtained from the diag-
onal submatrices (S;; € R2%2) | Therefore, it will be in the diag-
onal submatrices where diagonalization is obtained. The rotation an-
gles of the diagonal submatrices S; ; € R2*%,i # j are the calculated
ones in the adjacent diagonal submatrices; these are S; ; € R2%% and
S;, € R¥X2,

After each iteration k (2), a phase of internal rearrangement of the
elements of S; ; € R**? must be made and also a transference between
submatrices of such form that locate in the diagonal submatrices the
elements to be annulled [3].

After making h = M log M iterations, the first diagonal st ¢
RM*M corresponding to the original matrix S € RV %M is obtained.

The eigenvectors for the matrix S, which will be identified by V €
RM*M “are obtained following the iterative process also proposed by
Jacobi. Obtaining the matrix V is executed simultaneously with ob-
taining the eigenvalues. The process of obtaining V starts from an iden-
tity matrix V(® = I € R>*  which is also split in submatrices of
elements 2 x 2(V,; € R**?) where, in each iteration, the value is
updated according to the expression (5)

(k+1) _ /(0 (*)
viet — v R (am) :

ij=1,2,....M/2 k=1,....MlogM )

where R(a(k)) € R?*? is given by (3). After each iteration % (5),
it is made similar to the calculation of eigenvalues, a process of re-
arrangement of the elements of each V;; € R?** and achieving
transference between adjacent submatrices identical to the eigenvalues
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process [3]. After h = M log M iterations, the matrix of eigenvectors
V = V1) ¢ RMXM ¢ obtained, where each column v( ) from V(1)

corresponds to the eigenvector associated with the elgenvalue )\(h.) of
(h) c %RTX M

III. NEW PARALLEL ARCHITECTURE

The novel architecture shown in this work solves the problem of high
number of internal resources consumed by the systolic approach [3] and
implemented in [1], and it does not have high dependency with the size
of the input matrix. As described before in Section I, a new architecture
with an internal pipeline has been designed and implemented obtaining
an excellent performance. From the point of view of the system speed,
consumed resources, and accuracy, an excellent performance has been
achieved, compared to other alternatives such us [1], [3].

The proposed algorithm is an iterative process with the following
steps.

1) The first step for the calculation of eigenvalues is the storage of
the matrix S7 in memory. Thanks to the condition of symmetry
of § € RV*M we can use its upper triangular matrix (S7 €
RM XM) to obtain its eigenvalues and eigenvectors.

At the time of handling the elements of S7, they must be grouped

in 2 X 2 matrix size (S, € R?*?), where the classification be-

tween diagonal (S« ;) and nondiagonal (Sz, ;i # j) subma-
trices is made.

With respect to the calculation of eigenvectors, the initial matrix

that is needed (V) is an identity matrix I € ®*** [3]. This

matrix is stored in the same memory used for S7.

3) Once the memory contains all the initial data, the rotation angles

(k) (4) are calculated using S, ; € 9 R2*2 . The chosen method
to solve (4)is CORDIC since obtalmng the angles is one of the op-
erations that this algorithm solves using a vectorization mode with
circular coordinates [10]. The generated angles must be stored
since they will be used in the process of calculating eigenvalues
(2) and also extracting eigenvectors (5).

4) Once the rotation angles are obtained, the eigenvalue phase is
started in the first term in order to optimize the global execution
time of the whole algorithm, as it is justified later. Thus, each
St,; € R2** must perform the indicated operation in (2). This
operation includes two multiplications of submatrices of 2 x 2 el-
ements, which are solved by using the CORDIC algorithm in a
rotation mode for circular coordinates [10], since these multipli-
cations correspond to the rotation of two vectors with an angle
equal to afk,)

To solve (2) using CORDIC, the left product must be calculated
first: R(n(“)T S(") = Q(l‘), where Q(L) € R?*2; once
obtained, the computatlon continues with the product of Q(k)

R(a{")) = S{""VIf the number of stages of the CORDIC

modllle which coincides with the number of bits of the data (n)
is such that » > M, when computing Qi, ; using CORDIC, an
initial latency proportional to the number of stages of the internal
architecture (n) is introduced. To optimize the use of CORDIC
modules and reduce the execution time of calculating eigenvalues
and eigenvectors, in practical applications in which n > M, the
phase of calculation of eigenvectors (5) can be started using the
same CORDIC module during the latency of generation of the
first element of Q ) The eigenvector computation phase is inter-
rupted when th1s latency is surpassed and it is restarted when the
operation Q R« (k)) S(Hl) ends.

5) All the results of S(Tl‘,) , and Vf"j) must be stored in the same
memory where the initial matrlces had been stored. The form to
store each S| b Z) - and each V must be in accordance to the

process of rearrangement and transference of results [3].
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Fig. 1. New parallel architecture developed for the computation of eigenvalues
and eigenvectors computation.

Doing the previous steps, the first iteration is finalized. Then, the
system repeats steps 3)-5) during h iterations more.

For the implementation in FPGAs of the proposed algorithm the ar-
chitecture shown in Fig. 1 has been developed. It may be noted that this
new alternative is formed by only two CORDIC modules, memories to
store the temporary and final results, registers, and multiplexers. The
architecture proposed presents a temporal behavior and a processing
time very similar to those given by a systolic array, while the number of
resources used is fewer compared with those of other alternatives [1].
Another remarkable aspect of the developed architecture is the min-
imum increase in number of internal resources when the dimension of
the input matrix is enlarged; only the size of Dual-Port and ROM mem-
ories must be modified. The elements forming the architecture shown
in Fig. 1 are as follows.

* ROM Memory: It stores an ordered set of pseudocodes that are
partitioned and decoded by the finite state machine (FSM). These
pseudocodes correspond to the activation/deactivation of each
control signal from Fig. 1 according to this algorithm-flow.

* Dual-Port Memory (DP): It stores S and the identity matrix.
Therefore, its size will be (F + M?)/2 data with 2n bits for each
one where F' (6) is the number of data of the matrix S7. Also,
this memory is used to store temporary data in each iteration and
the final result of eigenvectors and eigenvalues. This memory type
has been chosen to be able to make readings/writings simultane-
ously for coordinates x and y, for each of the vectors handled by
CORDIC modules

F=M-(M+1)/2. (6)

e Finite-State Machine (FSM): 1t decodes the information of the
ROM memory and activates the necessary control signals as well
as the address for DP memory.

* First-Input—First-Output (FIFO) Memories: They temporarily
store the eigenvectors in each iteration when the data bus of
the DP memory is occupied by some phase of the eigenvalues
computation.

e CORDIC Modules: Two CORDIC-A and CORDIC-B modules for
circular coordinates have been used, whose internal structures are
identical. The difference is that module A works only in rotation
mode, whereas module B can execute rotation and vectorization
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Fig. 2. Sequence of operations of CORDIC modules.

modes. This is possible if » > 3 /2, only one module working
in vectorization mode is enough to obtain 3 /2 rotation angles
(n( ) ) with maximum efficiency. The internal structure of a de-
veloped CORDIC module corresponds to a parallel architecture
of n stages. The maximum size of the input data, n, is not limited.
Due to the existence of hardware multipliers in the output stage of
each CORDIC module, in order to apply the correction factor of
the CORDIC algorithm [10] the value of » will be limited to 18
bits.

* Block I: This block is made up of registers, multiplexers and
one adder/substractor. Its function is to generate the input data
for CORDIC_B module while computing the rotation angles ac-
cording to (4).

e Block 2: This block implements the feedback and interchange of
values for the first and second rotation of the eigenvalue phase. It
avoids storing these data in DP memory while making the transi-
tion between the first and second rotation.

* ANGLES Memory: In this one the rotation angles generated by the
CORDIC_B are stored. The system addresses an angle based on
the calculation phase in which the FSM is operating.

To further describe the operation of the system, note that the ROM
memory of Fig. 1 contains the ordered sequence of each iteration: angle
computation, double rotation for eigenvalues, and rotation for eigen-
vectors. The operation of this new proposal is described next, and its
temporary sequence is shown in Fig. 2.

Angle Computation: Initially, after storing the values of the input
matrix in DP memory, the first step is to calculate the rotation angle (4)
(TvrcT from Fig. 2). If the input matrix has M x M elements in each
iteration, calculate M /2 different rotation angles. The FSM of Fig. 1 is
in charge of decoding the first pseudocodes of the ROM of this figure;
these contain the information associated with the addresses of the DP
that has the necessary operands for angle computation. Looking at ex-
pression (4), it can be seen that the denominator presents a subtraction
operation. To make this operation, Block 1 is used; the result is sent to
the input registers of the x, y coordinates of the CORDIC_B module.
For the calculation of each rotation angle al according to (4), the
following data s2;—1,2;, 52,25, S2¢—1,2;—1 are needed.

The process of angle computation is sequential, first take from the
DP the three necessary operands for the first angle; next, the associated
ones to the second angle; and so on. When the data of the last rotation
angle to be calculated are introduced in CORDIC, the input of new data
is interrupted until the latency of the CORDIC is surpassed.

At this time, no other calculation starts inasmuch as the phase of cal-
culation of eigenvalues and that of eigenvectors both depend on these
angles. When the angles are generated, they are stored in ANGLES
memory of Fig. 1 to be read later in the phase of calculating eigen-
values and eigenvectors.

7,1 7

1) First Rotation of Eigenvalues (Eigenvalue_1): Once the last rota-
tion angle is generated, the phase of eigenvalue computation is initiated.

This phase is divided into two stages: first rotation R (« 5 ") )T S(Tk ) =
QE"J) (Tror: from Fig. 2) and second rotation QE"J) R(a gf‘])

S(kﬂ) (Trovr2 from Fig. 2).

In both rotations, the necessary data S( )_ are stored in DP. This
memory has a clock frequency (Tcr.x2x) which doubles the frequency
for the rest of the sequential elements of the design proposal (Tcrk ).
This is why four data can be extracted simultaneously from the DP in
one Tarxk, thus allowing the introduction of a data vector (x,y) for
each CORDIC in the same clock cycle.

For the first iteration, the eigenvalue phase needs the input matrix
S(O) S+ while the eigenvector computation starts with an identity
matrix I € RY*M Tn the rest of the iterations, the results obtained
from the previous iteration are used as input data.

2) First Part of Eigenvector Rotation (Eigvec_1): At the same time
that the last data of the first rotation process of the eigenvalue calcula-
tion is introduced, and because of the latency of the CORDIC modules,
the first elements QE? may have not been obtained yet. Therefore, in
that interval of time delay, the first data associated with eigenvector
calculation are introduced. The time consumed in this phase is denom-
inated Tgigvec in Fig. 2.

3) Second Part of the Eigenvalue Rotation (Eigenvalue_2): From
the moment the first results of the first eigenvalue rotation are gener-
ated, the data input for the eigenvector computation is interrupted and
the second rotation for the eigenvalue calculation begins (TroT2 in
Fig. 2). The results of the first rotation, are introduced into the CORDIC
modules along with their generation. Thus, the second rotation can be
initiated and again, the ANGLES memory must be addressed to intro-
duce in both CORDIC modules the necessary angles for this second
rotation.

While the new data for the second rotation are introduced, at the
output of the CORDIC modules, the results of the eigenvectors intro-
duced previously are obtained. These results are put on queue through
FIFO memories and orderly stored in the DP.

4) End of Eigenvector Rotation (Eigvec_End): When the introduc-
tion of new input data for eigenvalue computation is finished, the re-
maining eigenvector data are extracted from the DP and they start to be
inserted in the CORDIC modules (Tricvrce from Fig. 2). The results
of eigenvectors from Eigenvec{\_}I phase that are continuously gener-
ated are stored in FIFO memories and will be loaded from these into
the DP when this one becomes free.

When the first data of eigenvalue computation inside the Eigen-
value 2 phase are generated, these are accumulated in an orderly
fashion in DP (Twr _rraENvar,UR ). At this moment, the iteration has
still not been finalized since they have left results for eigenvectors that
have still not been generated (Eigenvec_I_end phase).
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Nevertheless, to accelerate the operation of the system, it is exactly
at this moment when the next iteration begins. After a certain number
of iterations, &, the process of eigenvalue and eigenvector calculation
can be considered final.

IV. RESULTS

This section describes the temporary results, errors, and resources
consumed using a Xilinx XC2VP7 FPGA obtained from the calculation
of eigenvalues and eigenvectors for input symmetrical matrices.

The results obtained after the Place&Route process show that our
new architecture performs efficiently from the point of view of pre-
cision. To obtain maximum precision in calculating eigenvalues and
eigenvectors, it is important to fix the optimal number of the neces-
sary h iterations. As indicated previously, the empirical form h =
M log(M) can be a possible solution [3]; nevertheless, depending on
the precision desired for obtaining the eigenvalues and consequently
the eigenvectors, it is necessary to look for the optimal value of /. The
number of optimal iterations given in [3] has been obtained experimen-
tally for a systolic architecture, thus in our case the optimal value of i
has also been found empirically. After several simulation-tests for dif-
ferent n-sizes and M -sizes, it can be concluded that, due to the internal
structure of the proposed architecture in this work, the optimal value is
h =6+ Mlog(M), for all M value.

Another important aspect that determines the final precision of the
results is the different rounding elements that take place inside the
CORDIC modules due to the internal arithmetical operations. Particu-
larly, there are three internal rounding blocks to be considered: 1) on the
shift registers; 2) maximum input size of the multiplying hardware used
in the correction factor; and 3) output size of the hardware multipliers.
Thus, the effect of the three previous situations will be considered,
comparing the corresponding errors with the one obtained using trun-
cation. After different simulations using rounding instead truncation in
the internal CORDIC elements, the eigenvector average quadratic error
is improved at least by 85%.

The temporary study of the proposal made in this work to calculate
eigenvalues and eigenvectors, and calling Tric the time consumed in
a complete iteration of the system described in Fig. 2, the total time
necessary to obtain the eigenvalues and eigenvectors will be T-roraL

Trorar = Li + h-Teiac + Ly (7

where Li corresponds to an initial latency associated to the load of the
input matrix (s7) and the identity matrix on the DP memory, consid-
ering that initial matrices are stored in external memory.

On the other hand, Tgig is the time consumed in each iteration of
the process of eigenvalue and eigenvector computation. This time is
decomposed into the sum of the vectorization time (Tvrc) (time of
generation for the rotation angles) and the time for the eigenvalue com-
putation (Tgv ). Again, it is divided into a series of processing times:
Trp_pp (time needed to read from the DP the data needed for the angle
calculation), Treq (time associated to the load of the three inputs of
CORDIC B), and Tcorpic_vec (time that takes CORDIC B to cal-
culate all angles necessary to make the rotations). Thus, the value for
TvEc is obtained by expression

Tvee = Two vr + Trea + Teorblo_vee
= (1 +n+ IWI/Q)TCLK. )
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Once the vectorization stage is finalized, the phase of calculation of
eigenvalues and eigenvectors in the next iteration begins. As described
in Section III and as shown in Fig. 2, the implementation of a pipeline
that optimizes the speed of the system has been chosen.

It has been proven that the novel proposal developed in this work
improves maximum work frequency by 23% and reduces considerably
(a factor of 16 times less) the number of consumed resources. If the
proposed architecture in this work is compared with the classic systolic
architecture of [3], the saving of internal resources of the FPGA is quite
significant, without penalizing the run time of the proposal with respect
to the classic one.

V. CONCLUSION

In this work, a new no-systolic proposal for the calculation of
eigenvectors and eigenvalues is implemented completely in an FPGA.
This new architecture is based on the Jacobi method for matrices of
2 x 2 elements. The newly developed proposal improves indices as
frequency or resources consumed with respect to other similar works
implemented in FPGAs. In addition, one of the main contributions of
the proposed alternative is the use of a novel architecture, which occu-
pies a reduced number of internal resources of the FPGA compared
with the classic systolic architecture.

Using this novel architecture with different matrix sizes, the number
of additional consumed internal resources is practically negligible, as it
is only necessary to modify the size of the ROM and DP memories. On
the other hand, an increase in data size (n) implies an increase in the
number of stages of CORDIC modules. Nevertheless, as was reflected
in the results section, working only with two modules has resulted in an
increase that is remarkably inferior to the classic systolic architecture.
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