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Resumen

La presente Tesis se centra en el uso de técnicas modernas de optimización y de proce-
samiento de audio para la localización precisa y robusta de personas dentro de un entorno
reverberante dotado con agrupaciones (arrays) de micrófonos. En esta tesis se han estudi-
ado diversos aspectos de la localización sonora, incluyendo el modelado, la algoritmia, así
como el calibrado previo que permite usar los algoritmos de localización incluso cuando
la geometría de los sensores (micrófonos) es desconocida a priori.

Las técnicas existentes hasta ahora requerían de un número elevado de micrófonos
para obtener una alta precisión en la localización. Sin embargo, durante esta tesis se ha
desarrollado un nuevo método que permite una mejora de más del 30% en la precisión
de la localización con un número reducido de micrófonos. La reducción en el número de
micrófonos es importante ya que se traduce directamente en una disminución drástica del
coste y en un aumento de la versatilidad del sistema final.

Adicionalmente, se ha realizado un estudio exhaustivo de los fenómenos que afectan
al sistema de adquisición y procesado de la señal, con el objetivo de mejorar el modelo
propuesto anteriormente. Dicho estudio profundiza en el conocimiento y modelado del
filtrado PHAT (ampliamente utilizado en localización acústica) y de los aspectos que lo
hacen especialmente adecuado para localización.

Fruto del anterior estudio, y en colaboración con investigadores del instituto IDIAP
(Suiza), se ha desarrollado un sistema de auto-calibración de las posiciones de los micró-
fonos a partir del ruido difuso presente en una sala en silencio. Esta aportación relacionada
con los métodos previos basados en la coherencia. Sin embargo es capaz de reducir el ruido
atendiendo a parámetros físicos previamente conocidos (distancia máxima entre los mi-
crófonos). Gracias a ello se consigue una mejor precisión utilizando un menor tiempo de
computo.

El conocimiento de los efectos del filtro PHAT ha permitido crear un nuevo modelo
que permite la representación ’sparse’ del típico escenario de localización. Este tipo de
representación se ha demostrado ser muy conveniente para localización, permitiendo un
enfoque sencillo del caso en el que existen múltiples fuentes simultáneas.

La última aportación de esta tesis, es el de la caracterización de las Matrices TDOA
(Time difference of arrival -Diferencia de tiempos de llegada, en castellano-). Este tipo



x Resumen

de matrices son especialmente útiles en audio pero no están limitadas a él. Además, este
estudio transciende a la localización con sonido ya que propone métodos de reducción de
ruido de las medias TDOA basados en una representación matricial ’low-rank’, siendo
útil, además de en localización, en técnicas tales como el beamforming o el autocalibrado.

Palabras clave: localización acústica; optimización y modelado matemático; entornos
reverberantes; filtro PHAT; matrices TDOA.



Abstract

This thesis deals with the problem of indoor acoustic source localization using modern
optimization strategies. It includes modeling, algorithms, and calibration, which allows
using localization algorithms even when the geometry of the microphones is unknown.
The aim of this thesis is to localize robustly and accurately speakers within a reverberant
environment equipped with array of microphones.

The previous exiting techniques usually required a high number of microphones in
order to get high accuracy. During this thesis, we have develop a new method which
improves up to 30% the localization accuracy with a reduced number of microphones.
Using a low number of microphones is important since it directly reduce the cost and
improve the versatility of the final system.

On the other hand, we have performed a exhaustive analysis about the PHAT filtering
(broadly used in acoustic localization), including all the phenomena involved in acquisi-
tion and signal processing. Our analysis improves the knowledge about PHAT filtering,
modeling the main aspects involved in acoustic localization.

Previous model has yielded a sparse representation of the acoustic source localization
scenario. This kind of representation has been demonstrated very convenient for localiza-
tion since it allows to deal with multiple simultaneous sources easily.

Additionally, we have proposed a method for the calibration of pairwise distance using
the diffuse noise present in a silent room. The new algorithm is related with previous
methods based in coherence. Nevertheless, applying the developed model for PHAT
filtering we have been able to introduce physical constraints based on the maximum
expected distance between microphones. It allows to improve accuracy and reducing the
computational cost.

Finally but not least, we have characterize TDOA matrices. We have propose sev-
eral methods to robust denoise TDOA measurements exploiting low-rank properties of
TDOA matrices. Therefore, these methods are not limited to acoustic source localiza-
tion, but are useful for other techniques such as self-calibration and beamforming, and
other technologies (e.g. radar, ultrasound).

Keywords: acoustic localization; mathematical modeling and optimization; reverber-
ant environments; PHAT filtering; TDOA matrices.
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Part I

Dissertation by compendium of
publications: Dissertation summary

The present Thesis is presented in the format of compendium of articles regulated by
the “regulations for elaboration, authorization and defense of the doctoral Thesis” of the
University of Alcal? (UAH), approved by the UAH Governing board at 28th of September
of 2016.

This first part of the manuscript gives an overview of the thesis work accordingly to the
three indexed journal articles presented, an additional conference paper in a prestigious
conference, and a technical report on the latest Thesis developments that have not been
published yet. The first chapter provides a brief summary of the Thesis, it introduces
the background of the studies, presenting a general revision of the state of the art, and
describing and discussing the main contributions of the Thesis Work. In the second
chapter, the summary and conclusions of the thesis are presented.





Chapter 1

Dissertation Summary

1.1 Introduction

Audio signals give very rich information as humans communicate mainly with speech.
Nevertheless, is not totally clear yet how the human brain extract such information, so
that, it is a topical matter. In this field, typical applications include speech recognition
(including gender or emotion extraction), acoustic event recognition, source separation,
localization, etc.

In particular, there is a considerable amount of publications focused on obtaining the
exact position of any active acoustic source in a scene [1, 2]. Acoustic source localization
has also a high impact in several domains, such as speech enhancement, beamforming
techniques, and indoor human localization and tracking [3].

Localization of humans has a tremendous potential impact in diverse applied fields,
opening new ways in how humans interact with machines. One important factor in indoor
localization is the user awareness of the sensors used. Non-invasive technologies are pre-
ferred in this context, so that no electronic or passive devices are to be carried by humans
for localization. The two non-invasive modalities that have been mainly used in indoor
localization are those based on video systems and acoustic sensors.

This Thesis focuses on audio-based localization in a very general scenario, where un-
known wide-band audio sources (e.g. human voice) are captured by a set of microphone
arrays placed in known positions. The main objective of the Thesis is to use the signals
captured by the microphone arrays to automatically obtain the position of the acoustic
sources. This is an intricate problem due the existence of several source of error, such as
periodicity in correlated signals, coherent noise or multi-path due to reverberation, which
are inherent to the problem of acoustic source localization in indoor environments.

In a regular indoor scenario, most of the space is empty and there are only few sources
active at the same time. This idea leads to a sparse representation of the localization
problem and was the starting point of this Thesis [4]. Several methods have been proposed
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to find the best sparse approximation of a linear system of equations, including brute
force approaches as well as more computationally efficient approximate methods such as
methods based on ’non linear programming’ [5], and greedy pursuit [6–8]. Among all
approximate solutions, l1-norm based convex relaxations have flourished in the literature.
It can be highlighted the Basis Pursuit Denoising method [9,10], originally introduced by
[11] almost 40 years ago, but revisited with a profound theoretical study in the past decade,
due to its intensive use in modern compressive sensing techniques [12,13]. These methods
provide very effective polynomial time algorithms that, under certain circumstances, are
even equivalent to the original l0 based problems [10,13].

Nevertheless, the aforementioned methods need a descriptive model for the problem.
This Thesis thus investigates mathematical models for the sound source localization prob-
lem, providing an analytical model which predicts the behaviour of both GCC-PHAT and
SRP-PHAT [14]. We have also proposed several methods based on the previous model
that improve the state-of-the-art in different tasks such as sound source localization [4]
or microphone array pairwise distance based calibration [15]. Besides, we have proposed
a novel denoising method for TDOA measurements robust to outliers, missing data and
inspired by recent advances in robust low-rank estimation [16]. Furthermore, all meth-
ods proposed in this Thesis have been tested with data from real scenarios, such as the
AV16.3 [17] dataset.

1.2 Previous Work

Existing approaches for acoustic source localization can be roughly divided into three
categories [1, 2]: Time delay based, beamforming based, and High-Resolution Spectral-
Estimation based methods. This Thesis contributes to the first two categories.

1.2.1 Beamforming Based Methods

Beamforming based techniques [18] attempt to estimate the position of the source by
maximizing or minimizing a spatial statistic associated with each position. For instance, in
the Steered Response Power (SRP) approach, which is the simplest beamforming method,
the statistic is based on the signal power received when the microphone array is steered
in the direction of a specific location. Therefore, the position of the source is supposed to
be consistent with the position corresponding to the maximum estimated signal power.

SRP-PHAT is a widely used algorithm for speaker localization based on beamform-
ing. It was first proposed as such in [19]1, and is a beamforming based method which
combines the robustness of the steered beamforming methods with the insensitivity to
signal conditions afforded by the Phase Transform (PHAT). The classical delay-and-sum

1Although the formulation is virtually identical to the Global Coherence Field (GCF) described in [20].
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beamformer used in SRP is replaced in SRP-PHAT by a filter-and-sum beamformer using
PHAT filtering to weight the incoming signals.

The advantage of using PHAT is that no assumptions are made about the signal or
room conditions [20], and this is the reason for the robustness of the SRP-PHAT method
in reverberant scenarios, where the source is unknown. This method is usually defined as
a standard for source localization, being a widely used algorithm for speaker localization.
The main reasons of its popularity are its simplicity and robustness in reverberant and
noisy environments, [21–25].

SRP-PHAT power map is a proper representation for acoustic source localization when
only one source is active and many microphones are employed. Otherwise, the inherent
redundancy of SRP-PHAT makes really hard to separate sources and to distinguish be-
tween sources and artifacts. In real scenarios, where only few sources are active at the
same time and most of the space is empty, thus a sparse representation seems to be much
more convenient.

1.2.2 TDOA Based Methods

These methods are based on estimating the time delay of signals relative to pairs of spa-
tially separated microphones. In a second step, the time-difference of arrival information
is combined with knowledge about the microphones’ positions to generate a ML spatial
estimator arising from hyperbolas intersected in some optimal sense [1, 2].

An accurate estimation of the time delay is essential for the good performance of this
time delay of arrival (TDOA) methods. Assuming uncorrelated, stationary Gaussian
signal and noise with known statistics and not multi-path, the maximum likelihood (ML)
time-delay estimate is derived from a SNR-weighted version of the Generalized Cross
Correlation (GCC) function [26]. Consequently, the two major sources of error in time
delay estimation in real scenarios are coherent noise and multi-path due to reverberation.
Some Different approaches have been proposed to deal with them.

A basic method consists in making the GCC function more robust, de-emphasizing
the frequency-dependent weighting. The Phase Transform (PHAT) [26] is one example of
this procedure which has received considerable attention as the basis of acoustic source
localization systems due to its robustness in real world scenarios [14,27]. Other approaches
are based in blind estimation of multi-path (room impulse response) [28] but they need a
good initialization to perform well.

Other methods, which can be combined with PHAT, take advantage of the redundancy
of the TDOA measurements from different pairs of microphones in order to reduce noise.
In this regard, Gauss-Markov estimator (a.k.a. Best Linear Unbiased Estimator) can be
used in order to find the optimal solution. Nevertheless, those estimators only works well
under gaussian noise conditions that usually are not satisfied in real scenarios.
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Table 1.1: Comparison between different methods

Beamforming TDOA High-Resolution
Computational Complexity High Low Medium
Robust against Reverberation Yes No No
Multi-Source Poor Results No Yes
Bandwidth Wideband Wideband Narrowband†

† can be extended to wideband but increasing its computational cost

1.2.3 High Resolution Spectral Estimation

Methods based on spectral estimation of the signal, like the popular multiple signal clas-
sification algorithm (MUSIC) [29], exploit the spectral decomposition of the covariance
matrix of the incoming signals for improving the spatial resolution of the algorithm in a
multiple source context. These methods tend to be less robust than beamforming methods
[2], and are very sensitive to small modeling errors.

Unlike SRP and its derivatives, incoherent signals are assumed by MUSIC, but in real
scenarios with speech sources and reverberation effects, the incoherence condition is not
fulfilled, making the subspace-based techniques problematic in practice.

Table 1.1 shows a summary of the previously described methods. This table is not
exhaustive, and some methods in the literature combine the properties of each category.

1.3 Thesis Contributions

In this Thesis, we have made several contributions about acoustic source localization in
reverberant environments. The contributions can be categorized into two big groups based
in the previously described approaches.

The first category, which contains the majority of contributions, is related with beam-
forming techniques, GCC-PHAT and SRP-PHATmethods. On the other hand, the second
category are the contributions to TDOA methods. The main difference between the two
groups is that while all the techniques in the first group make use of all the samples
in correlation (i.e. GCC-PHAT), the techniques based in TDOA discard most of this
information, keeping only the TDOA estimations (e.g. peaks in correlation).

1.3.1 Based on PHAT

The main idea in this field is that source localization admits a sparse representation.
Given that the space in a room is discretized in voxels, most of those voxels will thus be
empty and only few of them will contain a source.

In order to exploit sparsity, we propose to use a linear generative model. This model
expresses SRP-PHAT measurements (also can be used with GCC-PHAT directly) as the
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linear combination of the contribution of each source. The position of the sources will
be estimated as those that minimize the fitting error between SRP-PHAT measurements
and the response predicted by the model. We augment this fitting process with a sparsity
constraint whose aim is to impose that the number of sources is small on the search space.

Assuming that the position of the sources are constrained to a finite set
Q = {q1,q2, · · · ,qQ} of Q positions, the former problem can be reformulated as:

min
a
‖φ− Φ a‖2 s.t. ‖a‖0 ≤ k , (1.1)

where k (k ≤ Q) is the maximum number of speakers and Φ = [φ̄(q1), · · · , φ̄(qQ)] is a
matrix which contains the models for each of the possible locations.

Consequently, the support of the optimal a, a∗, is related to the estimated position of
the sources. Thus, if i ∈ supp(a∗) then, our method estimates that a source is placed at
qi.

Nevertheless this is a NP-hard and non-convex problem. Despite its theoretical com-
plexity, several methods and approximations have been proposed. Especially relevant
approximation is the used during this Thesis which is based on using the l1 norm as a
convex relaxation of the l0 norm [10, 30]. This relaxation transforms equation (1.1) into
the following:

min
x
‖φ−Φa‖2 + λ‖a‖1 (1.2)

where λ is the Lagrange multiplier and has a direct relationship with k. Problem (1.2) is
convex, thus convergence is guaranteed and can be solved in polynomial time.

1.3.1.1 SRP-PHAT Denoising

Our first proposal [4] was a new approach for denoising SRP-PHAT based on using a
generative model and sparsity constrains introduced above. Although that method does
not take full advantage of the sparse representation (i.e. we were not able to localize
directly from supp(a∗)), we proved that l1 constrained optimization was essential for
performing denoising. Results showed statistically significant localization error reductions
of up to 30% when compared to standard SRP-PHAT strategies, especially when only few
pair of microphones are used.

Figure 1.1 shows the original SRP-PHAT power map and its denoised version which
is calculated as Phia∗. It seems clear that denoising effectively reduces the number of
artifacts and unwanted effects exhibited by the original map. This yields a better detection
of local maxima truly representing active acoustic sources.
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(a) measured SRP-PHAT (b) Denoised SRP-PHAT

Figure 1.1: Comparison between real SRP-PHAT power map and its denoised version.

1.3.1.2 Modeling of the PHAT Filtering Effects

The model used in the previous approach [4] is overly coarse, not being able to represent
accurately most of the SPR-PHAT artifacts. Therefore, such model was not enough to
sparsely represent SRP-PHAT.

In this Thesis we describe and model the effects of PHAT filtering with low-band
signals [14]. This yields an analytical model which allows us to predict with high accuracy
the GCC-PHAT of the signals. Given the array geometry the model can be also extended
to SRP-PHAT.

The proposed model is independent to the emitted signal (under some mild conditions)
and has been shown to be valid in reverberant environments and under far and near field
conditions (see Figure 1.2). Our model allows us to predict how the aforementioned factors
affect the SRP-PHAT power maps. These predictions are validated with both synthetic
and real data, showing that our model accurately reproduces SRP-PHAT power maps in
both anechoic and non-anechoic scenarios. It is thus an excellent tool to be exploited for
the improvement of real world relevant applications related to acoustic localization and
calibration [15]. Furthermore, this model has been demonstrated to be useful predicting
the optimal microphone placement for indoor acoustic localization [31].

1.3.1.3 Sparse Acoustic Source Localization

The last contribution of this Thesis shows that the proposed model in [14] is well suited
for localization using sparse constraints. In this case we no longer work over SRP-PHAT
representation but over GCC-PHAT. Working over GCC-PHAT allows us to reduce the
computational cost by removing the need of computing SRP-PHAT from GCC-PHAT.
Therefore, the input data is the concatenation of correlations (see Figure 1.2c) which is
very convenient since the size of such vector is related with the number of microphones
and the distance between them but not to the desired resolution.
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Figure 1.2: Comparison between the measured SRP-PHAT power map (Fig. a) and the SRP-PHAT
power map predicted by the proposed model (Fig. b) using only two pair of microphones. Fig. c shows
the measured GCC-PHAT in blue and orange (each color represents a different pair of microphones)

and the corresponding model in black solid line.

In our preliminary results, where a single source is assumed, we outperform SRP-
PHAT by using a very low-complexity algorithm that derives from our model and sparse
constraints based on the l0 regularization. We also expand the model proposed in [14] for
multiple sources demonstrating its linear behaviour when the coherence between sources is
small. Preliminary experiments shows promising results with multiple sources by finding
a sparse representation based on the l1 regularization.

In figure 1.3b is shown the solution of the problem (1.2) when two speakers are active.
Sparse representation is more compact, and therefore convenient, than the classical SRP-
PHAT power Map (figure 1.3a). In multiple source scenario more pairs of microphones are
needed for an accurate localization. In both images microphones have been represented
as black dots (shaped in circles in the center of the images).

0 0.2 0.4 0.6 0.8 1

(a) Measured SRP
0 0.2 0.4 0.6 0.8 1

(b) Sparse solution

Figure 1.3: Comparation between SRP-PHAT power map and our proposal for two sources
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1.3.1.4 GCC-PHAT Model for Calibration in Diffuse Noise

We have also extended the model of GCC-PHAT for the diffuse noise case [15]. Diffuse
noise is the kind of noise present in a quiet room or car (i.e. only with the noise of fans,
air conditioned, computers...). It can be roughly described as an acoustic field where the
signals propagate in all directions with the same power and equal probability.

The proposed model only depends on the pairwise distance between microphones and
the signal bandwidth, as shown in figure 1.4 . It’s thus suitable for geometry array
calibration. Furthermore, the proposed method for calibration is more accurate and
performs faster than other calibration methods based in the coherence of the diffuse
noise [32].
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Figure 1.4: The proposed GCC-PHAT model compared with the measured GCC-PHAT on real data
recordings in a diffuse sound field. The dependency on the signal bandwidth is demonstrated: the left

graphic uses f0 = 10 kHz and the right one uses f0 = 23.9 kHz.

1.3.2 Based on TDOA: TDOA Matrices

Measuring TDOA between a set of sensors is the basic setup for many applications, such
as localization or signal beamforming. TDOA Matrices [16] are a good representation for
redundant TDOA measurements in sensor arrays. In this Thesis we have studied and
given proofs of the properties of such matrices.

A TDOA matrix M, is a (n × n) skew-symmetric matrix where the element (i, j) is
the time difference of arrival (TDOA) between the signals arriving at sensor i and sensor
j:

M = {∆τij} =


0 ∆τ12 · · · ∆τ1n

∆τ21 0 · · · ∆τ2n

... ... . . . ...
∆τn1 ∆τn2 · · · 0

 (1.3)

with ∆τij = (τi − τj), where τi is the time of arrival of the signal x(t) at the sensor si.

We denote asMT (n) to the set of TDOA matrices of size n× n.
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Note that in the former definition, knowing the sensor array geometry is not required
so that they can also be used in calibration [33]. For a given geometry, all the feasible
TDOA matrices (those that are consistent with that particular geometry) are a subset of
MT (n).

Additionally, given a particular TDOA matrix, there are infinite number of sensors
geometries which match with it. Left side of figure 1.5 shows that, given a set of TOAs
(τ1,..., τn) compatible with the set of TDOA measurements, the microphones can be
situated in any place along the circumference (sphere in the 3D case) with center in the
source (dotted lines), preserving its correspondent TOA (and therefore, its TDOA). Right
side of figure 1.5 shows that there are an infinite number of TOA sets that comply with
a given set of TDOA measurements.

M''1

M''3

M''4

M''2

Δτ12 Δτ23

Δτ
13

τ'1

τ'2
τ'3

M1 M2

M3
M4

M'1

M'2

M'3

M'4

Δτ12 Δτ23

Δτ
13

τ1

τ2

τ3

SourceSource

Figure 1.5: Example of three different geometrical configurations (grey, green and blue) of 4 sensor with
identical TDOA matrix.

We demonstrate TDOA matrices are rank-two and have a special SVD decomposition
that leads to a compact linear parametric representation. We apply these properties to
perform denoising, by finding the TDOA matrix closest to the matrix composed with
noisy measurements. The Thesis shows that this problem admits a closed-form solution
for TDOA measurements contaminated with Gaussian noise which extends to the case
of having missing data yielding the Gauss-markov estimator (a.k.a. Best linear unbiased
estimator). We also propose a novel robust denoising method resistant to outliers, missing
data and inspired in recent advances in robust low-rank estimation.

Several experiments with both synthetic and real data show significant improvements
for the proposed denoising algorithms in terms of TDOA accuracy estimation and lo-
calization error. Furthermore, since knowledge about the sensor array geometry is not
necessary for none of the proposed algorithms, they can also be used for calibration.





Chapter 2

Conclusions and Future Work

In this chapter we will summarize the most relevant conclusions derived from this thesis.
Additionally, we also provide some proposal of future lines that could be tackled from this
thesis.

2.1 Conclusions

During this thesis novel mathematical models have been developed for the problem of
wideband acoustic source localization from microphone arrays. Unlike recent high reso-
lution spectral models, such as MUSIC, we base our modelling on the GCC-PHAT and
SRP-PHAT of the signals. These methods have demonstrated to have better performance
in real scenarios.

We have demonstrated that measured GCC-PHAT, and consequently SRP-PHAT,
can be accurately predicted by our analytical models wich has been proposed during this
thesis. They include reverberation effects and far and near field conditions. Multisource
scenario has also been addressed during this thesis. We have demonstrated that, if the
coherence between sources is small, the contribution of each source in the measurements
is linear.

Additionally, a new model for GCC-PHAT in diffuse sound field was proposed which
establishes the links between GCC-PHAT output and the microphone array geometry.
It was shown that this model is in fact equivalent to an inverse Fourier transform of an
ideally filtered coherence of the two signals.

These models provide extra information that was unemployed until this thesis. Nev-
ertheless, we propose several methods and algorithms to exploit it in many tasks. For
instance, we exploit it to achieve higher resolution in localization or higher accuracy in
calibrating microphone arrays from diffuse noise.

Concerning localization, we have explored the use of sparse constraints in source lo-
calization problems. This fits very well with the fact that generally only a few sources
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are active at the same time. Sparse constraints are included in model-based fitting for
SRP-PHAT and GCC-PHAT. Namely, we studied both l0 constraints and their convex
relaxations using l1 regularization.

We have shown along this thesis that having an accurate model is necessary in order
to get an sparse representation of the source localization problem. Nevertheless, a coarse
model has been employed for SRP-PHAT denoising with very good results in localization.

We mainly focused on single source scenarios where we show that imposing sparsity
improves localization accuracy. This thesis also presents some preliminary results in
multisource scenarios, where we obtain promising results that require further theoretical
analysis and are left as a future work.

Alternatively we have studied the algebraic properties of TDOA Matrices, an interest-
ing representation for solving TDOA denoising problems. Using such properties we have
addressed denoising of TDOA measurements contaminated with gaussian noise, outliers
and even where a percentage of such measurements were missing. The experimental re-
sults, both on real and synthetic data have shown that our algorithms successfully perform
denoising (up to 30% of improvement in localization accuracy) with a high rate of missing
data (up to 50%) and outliers, without knowing the sensor positions. This is important
as it can be applied to tasks where the sensors geometry is unknown. Interestingly, in real
datasets our robust denoising algorithm is systematically better than the Gauss-Markov
estimator even when there is no missing data. This is also an important result as it proves
that the assumption of Gaussian noise does not hold in real cases, while our robust model
is capable of automatically discard erroneous measurements.

Finally, he experiments conducted on real data recordings demonstrate the effective-
ness of the proposed calibration approach for pairwise distance estimation. The proposed
model suggests a simple denoising scheme for the coherence function via suppression of
the GCC-PHAT activation at the time intervals which do not meet the physical con-
straints. The model was shown to perform significantly faster than the coherence- based
counterpart and it is applicable for real time calibration setups.

2.2 Future Work

1. Although, preliminary results are promising, more extensive experimentation is
needed in the multispeaker scenario. It is necessary to perform a systematic experi-
ment varying the number the number of sources as well as the number of microphones
and their position.

2. We have define a linear basis for acoustic source localization. Each vector within
such basis correspond with the GCC-PHAT expected response in each position of a
given grid. During this thesis we haven’t done any assumption about the location
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of the grid positions. Nevertheless, it seems that an optimal criteria to design the
grid could be employed, for instance, attending to the restricted isometry property
(RIP). It will improve the sparse approximation of the l1 regularizated problem.

3. It is well known that reverberation contains information about the room geome-
try that can be exploit. On the other hand, according with the proposed model,
the reverberation effects can be predicted. Therefore, analyzing the residual after
localization may throw some information about the room geometry.

4. During this thesis we have used a convex relaxation of the sparse constrained problem.
This, is very common in compressive sensing where the amount of acquired data is
drastically reduced by randomization of the input. It would be interesting investigate
if it is possible to reduce the amount of data necessary to localize randomizing is some
way the calculation of GCC-PHAT.

5. It would be also interesting exploring new optimization techniques for improving the
results of this thesis.

6. Finally, a distributed version of our algorithms would improve their the applicability.
For example, some smartphones in a meeting could calibrate themselves and localize
sources in order to apply other kind of techniques such as beamforming. Maybe, it
could be done using message passing and/or stochastic gradient descend algorithms,
typically employed in distributed systems.
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Abstract: This paper presents a novel approach for indoor acoustic source localization
using sensor arrays. The proposed solution starts by defining a generative model, designed to
explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An
optimization approach is then proposed to fit the model to real input SRP data and estimate
the position of the acoustic source. Adequately fitting the model to real SRP data, where
noise and other unmodelled effects distort the ideal signal, is the core contribution of the
paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the
parameters of the model are included, enforcing the number of simultaneous active sources
to be limited. Second, subspace analysis is used to filter out portions of the input signal that
cannot be explained by the model. Experimental results on a realistic speech database show
statistically significant localization error reductions of up to 30% when compared with the
SRP-PHAT strategies.

Keywords: acoustic localization; microphone array sensors; sparse modeling; optimization
techniques

1. Introduction

The development and scientific research in perceptual systems has notably grown during the last
decades. The aim of perceptual systems is to automatically analyze complex and rich information taken
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from different sensors. These systems stem from basic sensor technologies, reaching the knowledge
frontier in signal processing and pattern recognition research areas.

On top of perceptual systems, the idea of using sensors to analyze the real world has emerged in
different scientific disciplines such as “ubiquitous computing” [1], “smart rooms” [2] or “intelligent
spaces” [3]. All these disciplines lay stress on the idea of systems with interaction capabilities that can
analyze human activities and provide services.

A basic but important milestone inside these disciplines is the development of sensor technologies
able to localize humans in indoor environments. Localization of humans has a tremendous potential
impact in diverse applied fields, opening new ways in how humans interact with machines. One
important factor in indoor localization is the user awareness of the sensors used. Non-invasive
technologies are preferred in this context, so that no electronic or passive devices are to be carried
by humans for localization. The two non-invasive technologies that have been mainly used in indoor
localization are those based on video systems and acoustic sensors.

Video systems provide very rich information at a low cost on the sensor side. However, video analysis
is a complex problem and needs a lot of effort to build robust and reliable systems. In recent years, there
are many publications focused on video-based indoor localization systems for humans [4,5], robots [6],
and object recognition systems [7].

Acoustic sensors give also very rich information as humans communicate mainly with speech. As in
video, there is also a considerable amount of publications focused on obtaining the exact position of any
active acoustic source in a scene [8,9]. Video and audio technologies are in fact very complementary in
many ways [10].

This paper focuses on audio-based localization in a very general scenario, where unknown wide-band
audio sources (e.g., human voice) are captured by a set of microphone arrays placed in known positions.
The main objective of the paper is to use the signals captured by the microphone arrays to automatically
obtain the position of the acoustic sources detected. Especially relevant in practice are the methods based
on computing the Steered Response Power (SRP) [11] of the signals captured in microphones arrays.
These approaches have proved to be successful for localization in reverberant and noisy scenarios [12].

This paper proposes a simple generative model to explain SRP measurements in environments
equipped with any combination of microphone arrays. The main contribution of the paper is to use an
optimization approach to fit the generative model to noisy SRP data, exploiting the fact that only a few
speakers are expected to be active at the same time. This simple idea is modeled with sparse constraints
in the optimization cost, and combined with subspace filtering. The paper shows that this model-based
approach can be used to notably improve the localization results of the state-of-the-art methods based
on SRP-PHAT. Although this proposal is developed and evaluated for speech signals, the authors believe
that it is general enough to be easily extended to other wideband and narrowband acoustic signals.

1.1. Paper Structure

The paper is structured as follows. In Section 2 we provide an extensive study of the state-of-the-art
in acoustic source localization and optimization methods. Section 3 describes the proposed generative
model and Section 4 deals with the optimization strategy to fit the model to real data. The experimental
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evaluation is detailed in Section 5, and Section 6 summarizes the main conclusions and contributions of
the paper and gives some ideas for future work.

2. State of the Art

2.1. Acoustic Source Localization

The acoustic source localization methods are the starting point of other techniques like speech
enhancement using beamforming. Therefore, acoustic source localization has received significant
attention lately as a mode of automatic tracking of persons and as a complement to other existing
alternatives of tracking, e.g., the CHIL (Computer in Human Interaction Loop) project [10].

Many approaches exist in literature and all of them use microphone arrays as a non-intrusive method.
These can roughly be divided in three categories [8,9]: time delay based, beamforming based, and
high-resolution spectral-estimation based methods.

The first methods are based on estimating the time delay of signals relative to pairs of spatially
separated microphones. Assuming uncorrelated, stationary Gaussian signal and noise with known
statistics and not multi-path, the maximum likelihood (ML) time-delay estimate is derived from a
SNR-weighted version of the Generalized Cross Correlation (GCC) function [13]. In a second step,
the time-difference of arrival information is combined with knowledge of the microphones’ positions to
generate a ML spatial estimator made from hyperbolas intersected in some optimal sense [8,9].

An accurate estimation of the time delay is essential for a good performance of this time delay
of arrival (TDOA) methods. Since coherent noise and multi-path due to reverberation are the two
major sources of error in time delay estimation, different approaches have been proposed to deal
with them. A basic method consists in making the GCC function more robust, de-emphasizing the
frequency-dependent weighting. The Phase Transform (PHAT) [13] is one example of this procedure
that has received considerable attention as the basis of speech source localization systems due to its
robustness in real world scenarios [14].

Beamforming based techniques [15] attempt to estimate the position of the source, maximizing or
minimizing a spatial statistic associated with each position. For instance, in the Steered Response Power
(SRP) approach, which is the simplest beamforming method, the statistic is based on the signal power
received when the microphone array is steered in the direction of a specific location. Therefore, the
position of the source is supposed to be consistent with the position corresponding to the maximum
estimated signal power

SRP-PHAT is a widely used algorithm for speaker localization based on beamforming. It was first
proposed in [11] and is a beamforming based method that combines the robustness of the steered
beamforming methods with the insensitivity to signal conditions afforded by the Phase Transform
(PHAT). The classical delay-and-sum beamformer used in SRP is replaced in SRP-PHAT by a
filter-and-sum beamformer using PHAT filtering to weight the incoming signals. In this paper, the term
SRP will be used interchangeably with SRP-PHAT.

The advantage of using PHAT is that no assumptions are made about the signal or room
conditions [16], and this is the reason for the robustness of the SRP-PHAT method in reverberant
scenarios, where the source is unknown. SRP-PHAT is usually defined as a reference standard for
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source localization, because of its simplicity and robustness in reverberant and noisy environments,
being a widely used algorithm for speaker localization [17–21].

The Minimum Variance Distortionless Response (MVDR), also called Capon’s method, is another
beamforming based approach which takes advantage of the estimated signal and noise parameters. These
parameters are used to carry out optimal beamforming techniques in order to minimize the measured
power from noise and sources located in other positions. However, MVDR has a poor performance in
the presence of reverberation, because it introduces a new trade-off between de-reverberation and noise
reduction [22] .

In [23,24], a unified maximum likelihood framework is presented, which is equivalent to forming
multiple MVDR beamformers along multiple hypothesis directions and picking the output direction
which results in the highest SNR [24]. Apparently, it outperforms SRP-PHAT in reverberant real
scenarios.

The spectral estimation based methods, like the popular multiple signal classification algorithm
(MUSIC) [25], exploit the spectral decomposition of the covariance matrix of the incoming signals for
improving the spatial resolution of the algorithm in a multiple sources context. These methods tend to
be less robust than beamforming methods [9], and are very sensitive to small modeling errors.

Unlike SRP and its derivatives, incoherent signals are assumed by MUSIC, but in real scenarios
with speech sources and reverberation effects, the incoherence condition is not fulfilled, making the
subspace-based techniques problematic in practice.

The work presented in this paper uses SRP-PHAT as the base to develop a generative model to explain
real data, and the experimental results are compared against SRP-PHAT.

2.2. Sparse Representation of Signals

Many areas of science share the principle of parsimony as the central criterion: the simplest
explanation of a given phenomenon is preferred over more complicated ones. This brilliant idea has
been recently applied to the representation of signals using overcomplete basis sets, sometimes called
dictionaries in the machine learning discipline. As a difference with respect to traditional basis functions
(e.g., Fourier basis functions), overcomplete dictionaries have more degrees of freedom than those
necessary to represent the signal. The mathematical tool to impose parsimony in the representation of
a signal, when several choices are available, is given by imposing the so-called sparse constraints. The
basic idea is to use the least amount of coefficients to represent a signal with the basis functions. Sparse
constraints, if they are applicable, allow to beat up several theoretical barriers in signal compression and
representation [26,27].

The sparsity is imposed mainly by using optimization approaches, where the l0 norm (defined as the
number of non-zero elements in the vector) is the usual way to impose sparsity to vectors [27].

Most of the problems in which sparsity is included using the l0 norm are very difficult to solve. Several
methods have been proposed to find sparse representations, including brute force approaches as well as
more computationally efficient approximate methods such as “nonlinear programming” [28], and greedy
pursuit [29–31]. Among all approximate solutions, l1 norm based convex relaxations have flourished in
the literature. The Basis Pursuit method [32,33], originally introduced by [34] almost 40 years ago but
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revisited with a profound theoretical study in the past decade, can be highlighted due to its intensive
use in the modern compressive sensing techniques [26,27]. These methods provide very effective
polynomial time algorithms that, under certain circumstances, are even equivalent to the original l0 based
problems [27,33].

2.3. Sparse Source Localization

In the last few years, sparse techniques explained above have been applied to the source localization
problem in very different fashions.

In [35] a localization approach based on sensor arrays is proposed. The signal obtained in each sensor
is expressed as a linear combination of an attenuated and phase shifted version of the original and known
signals emitted by the source. This conditions form an overcomplete linear model, where the position
of the sources is given thanks to the sparse constraints. Also in [35] they propose to use singular value
decomposition (SVD) to reduce problem size and filter noise in problems using multiple time samples.

The work presented in this paper includes sparse and SVD decompositions for acoustic source
localization but the objectives (unknown source signals) and the way these techniques are applied are
very different to those of [35]. Our proposal works in the SRP-PHAT acoustic power maps, while [35]
operates at the sensor signal level.

Numerous modifications of the ideas proposed in [35] has been further developed. For example,
in [36] an adaptive algorithm to dynamically adjust both the overcomplete basis and the sparse solution
is proposed. Also, the concept of Compressive Sensing [27] has been used in order to perform a
distributed localization reducing the information transmitted between sensors. Nevertheless, the sparse
source localization algorithms discussed above do not perform well and are not properly tested in real
acoustic reverberant environments due to input signals coherence caused by multipath.

In acoustic environments, sparse l1 relaxations are employed to model the room acoustically using
only a reduced number of microphones in [37]. However, only simple rooms (four walls and ceiling)
can be modeled, and a loudspeaker emitting a known sound pattern is required. Using this technique in
a previous training step has been proved to be useful to improve source localization [38].

Recently, a novel technique for source localization in reverberant environments using wavefield sparse
decomposition has been proposed in [39]. However, although it shows promising performance, the
experimental results are only based on simulations and narrowband signals, which makes their approach
not applicable to speech signals, which is our target scenario.

3. Model Proposal

3.1. Notation

Real scalar values are represented by lowercase letters (e.g., δ). Upper-case letters are reserved
to define vector and set sizes (e.g., vector x = (x1, · · · , xN)> is of size N ). Vectors are by
default arranged column-wise and are represented by lowercase bold letters (e.g., x). Matrices are
represented by uppercase bold letters (e.g., M). The lp norm (p > 0) of a vector is depicted as
‖.‖p, e.g., ‖x‖p = (|x1|p + · · ·+ |xN |p)

1
p , where |.| is reserved to represent absolute values of scalars.
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Special cases are the l0 norm, written ‖.‖0 and defined as the number of non-zero elements in the vector,
and the l∞ norm, written ‖.‖∞ and defined as the maximum value of the vector components. The l2
norm ‖.‖2 will be written by default as ‖.‖ for simplicity. Calligraphic fonts are reserved to represent
sets (e.g., R for real or generic sets G).

3.2. Interpretation of the SRP-PHAT Estimations

Assume we have equipped a certain indoor environment with a set of N different microphone pairs
distributed in some fashion in three-dimensional known positions. All pairs of microphones are described
as elements in a setP = {p1,p2, . . . ,pN}, where pj = (mj,m

′
j) is composed of two three-dimensional

vectors, mj and m′j , describing the spatial location of the microphones in pair j.
The three-dimensional space where acoustic sources are to be localized is discretized using a

finite set of Q spatial locations Q = {q1,q2, . . . ,qQ}, where qk is a three-dimensional vector
qk = (qkx, qky, qkz)

>.
The classical SRP-PHAT method constructs a statistic srp(qk),qk ∈ Q based on the steered

power received by all pairs of microphones from each spatial location. Simplifying the mathematical
description of the SRP-PHAT formulation of [11] and applying the summation over all microphone
pairs, we can write

srp(qk) = 2π
∑

∀pj∈P
cj(∆τ(pj,qk)) (1)

where cj(∆τ(pj,qk)) is the generalized cross-correlation (generally applying a PHAT weighting) of the
signals acquired by each microphone in the pair pj , and

∆τ(pj,qk) =
1

c
(‖mj − qk‖ − ‖m′j − qk‖) (2)

is the difference in arrival times of the audio signal to reach microphones mj and m′j , that is, the required
delay to steer the microphone pair pj to the location qk. In Equation (2) c is the sound velocity in air.
Note than in the SRP-PHAT formulation we do not make any assumption regarding near-field/far-field
conditions.

So, Equation (1) shows how the SRP-PHAT power estimation for every location srp(qk) can be
calculated as the sum of the cross-correlation functions for all microphone pairs, evaluated at the
adequate steering delays (full implementation details of SRP-PHAT can be found in [11]). It is thus
expected to see high values of srp(qk) in regions in which active acoustic sources exist.

To provide an easier geometric interpretation, we now restrict the result of the srp(qk) estimations
when only one omnidirectional acoustic source is active at position s = (sx, sy, sz)

>, and only one
microphone pair, e.g., pair pj , is located in the environment. The SRP-PHAT power estimation at s can
be calculated as:

srp(s) = 2πcj(∆τ(pj, s)) (3)

From Equation (3), if we define qh as the locations in Q for which ∆τ(pj,qh) = ∆τ(pj, s), the
corresponding cross-correlation values cj(∆τ(pj,qh)) will be identical to cj(∆τ(pj, s)), consequently:

srp(qh) = srp(s) if ∆τ(pj,qh) = ∆τ(pj, s) (4)
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For a microphone pair, it can be easily demonstrated that the geometric place of points qh, for which
the difference in time delays of arrival to the position of two microphones (∆τ(pj,qh) in our case) is
equal to a given fixed value (∆τ(pj, s) in our case), is one of the sheets of a two-sheeted hyperboloid of
revolution, whose foci are located at the microphone locations, as shown in Figure 1(a). If we define H
as all the points qh in Q that belong to the hyperboloid that passes through the acoustic source location
s, the ideal SRP-PHAT power estimation for all points in Q will be:

srp(qk) =

{
srp(s) ∀qk ∈ H
0 otherwise

(5)

Equation (5) is correct if we assume that the environment is not reverberant and the array directivity
pattern is perfect (i.e., maximum gain in the steered direction and perfect cancellation in all other
directions). We will address the effect of these simplifications in Section 3.3.

Figure 1. Geometric places with equal srp(qh) generated for a microphone pair and a single
acoustic source (a) 3D hyperboloid; (b) 3D hyperboloid cut by a plane; (c) Resulting 2D
hyperbola (cutting hyperboloid by a plane).

(a) (b) (c)
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Further simplifying, if we restrict the qk positions to be located in a plane at a given height in the
environment (qkz = z0 ∀qk ∈ Q), then srp(qk) can be easily represented as an image that can be
interpreted as the scene acoustic power map. In this situation, the place of points qk with power equal
to srp(s) will be the result of intersecting the proper sheet of the hyperboloid of revolution with a plane
parallel to the environment floor at z0, and the generated geometric figure obtained will be a hyperbola.

As an example, if we consider the case of microphone pair pj , composed of
microphones mj = (−f, 0, 0) and m′j = (f, 0, 0), and given a time difference of arrival
∆τ(pj, s) = 1

c
(‖mj − s‖ − ‖m′j − s‖) for a speaker position s, the feasible acoustic source locations

qh = (x, y, z) ∈ Q are those which satisfy the following expression (from Equations (2)–(4)):

∆τ(pj,qh) =
1

c
(‖mj − qh‖ − ‖m′j − qh‖) = ∆τ(pj, s) (6)
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Condition (6) defines the place of feasible locations qh to be located in one sheet of the following
two-sheeted hyperboloid of revolution (shown in Figure 1(a)):

x2

a2
− y2

b2
− z2

b2
= 1 (7)

where a and b are related to the corresponding time difference of arrival ∆τ(pj, s) and the microphones
position through the following expressions:

a = c∆τ(pj, s)/2 (8a)

b2 = f 2 − a2 (8b)

Figure 1(c) shows the hyperbola that results from intersecting the hyperboloid with a plane, as shown
in Figure 1(b).

If we add additional microphone pairs, each of them will generate a new hyperboloid/hyperbola, all
passing through the geometric location of the active acoustic source, as shown in Figure 2(a) for the
3D case and Figure 2(c) for the 2D case (cutting the hyperboloids by a plane as shown in Figure 2(b)).
Using additional microphone pairs will allow us to disambiguate the actual position of the acoustic
source, searching in the intersection of all hyperboloids/hyperbolas.

Figure 2. Geometric places generated for two microphone pairs and a single acoustic source
(a) 3D hyperboloids; (b) 3D hyperboloids cut by a plane; (c) Resulting 2D hyperbolas
(cutting hyperboloids by a plane).

(a) (b) (c)
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The final conclusion of this section is that, given some simplifications, for every active acoustic source
and every microphone pair, we will see hyperbolic regions of constant acoustic power values in the
acoustic power map generated by the ideal SRP-PHAT estimations. All the contributions for every
acoustic source and every microphone pair will sum up to build the complete acoustic power map for the
given situation.
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3.3. Considerations in Real-World Scenarios

The simplifications established in this discussion (namely, only one omnidirectional acoustic active
source, an ideal directivity pattern for the acoustic sensor array, and a non-reverberant environment) are
far from being admissible in a real world scenario and deserve an additional comment:

• Non-omnidirectionality of the acoustic active source: Previous studies such as [40] and [41]
show that human speakers do not radiate speech uniformly in all directions. The impact of this
assumption in our SRP-PHAT interpretation would lead to hyperbolic regions with different power
estimations, but this effect is also present in the current formulation, as the distance between
the acoustic source and the microphone varies with the source position. The use of the PHAT
transform that whitens the correlation of the input signals alleviates this problem, as the module is
not taken into account.

• Reverberant environments: If the localization system operates in a reverberant environment,
new hyperbolic regions, not initially predicted by just the position of the acoustic source, will
appear. Room acoustic simulation techniques could help in improving the ability to also take
into account these regions [42,43]. These false active regions actually complicate the accurate
location estimation, but the problem is alleviated as more microphone pairs are taken into account:
locations that are not consistent for all microphone pairs will tend to attenuate. As we will see in
Section 5, our proposal is actually efficient in denoising the original SRP-PHAT power map, thus
leading to better results.

• Non-ideal directivity patterns: The microphone array geometry has a profound impact in the
estimation of the cross-correlation functions, as the steered response will perceive energy coming
from locations different from the actual acoustic source [44]. This implies that the acoustic power
map will not be composed of plain hyperboloids/hyperbolas, but of hyperbolic regions spreading
from the ideal hyperbolic trajectories, as will be shown in Figure 3(a), described in the next section.
There are additional considerations that contribute to this spreading effect, related to the fact
that the spatial uncertainty in the correlation evaluation increases as we move further from the
microphone pairs. This will be addressed also in the next section.

To give a real world example, Figure 3(a) shows a real SRP-PHAT image generated by two
microphone pairs (blue and green dots in the center of the image) and a single active speaker located
at the red circle (the higher the power, the darker the color in the map). Analyzing this image, we
can clearly see two high energy, intersecting hyperbolic areas passing trough the speaker location, each
one corresponding to each microphone pair. Obviously, the speaker’s position corresponds to the place
where those hyperbolic areas intersect, as the maximum of the power map is found at this intersection.
In general, the higher the number of microphone pairs used, the better the localization performance, as
more hyperbolic regions contribute to the power map estimation. In Figure 3(b) the ideal hyperbolas
corresponding to each of the microphone pairs have been superimposed to the SRP-PHAT map. The
power map has been calculated at a plane located 61 cm above the microphone locations, which is why
the hyperbolas do not pass between the hyperbola’s foci—the microphone locations.
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Figure 3. Real SRP-PHAT power map generated for a single speaker located in the red circle
with two microphone pairs (blue and green dots). (a) Plain power map; (b) Superimposing
ideal hyperbolas that should be generated by the single speaker.

(a) (b)

This example shows us that in real acoustic power maps, the ideal hyperbolic functions are spread
out and blurred, leading to these hyperbolic areas, and that additional hyperbolic areas appear, not
explainable by just the position of the active acoustic source.

Summarizing, all these non-idealities will generate additional artifacts, additional hyperbolic regions
and variations on the standard behavior of these regions in the acoustic power map that are not predicted
by the ideal formulation. These non-idealities should be taken into account if we want our model to be
as precise as possible. Our thesis is that our proposal, even when no developing a fully realistic model,
is powerful enough to extract relevant information given realistic data, as will be shown in Section 5.

3.4. Proposal of a SRP-PHAT Based Generative Model

Taking into account the previous discussion and results, this section proposes a generative model that
is able to explain the acoustic power map generated by SRP-PHAT as a sum of basis functions.

Let us define the set of scalar functions F = {f(si,pj,qk)}, ∀si ∈ Q, ∀pj ∈ P , with
f : R3×6×3 → R. From this, the general formulation of the proposal can be written as:

ˆsrp(qk) =
∑

∀si∈Q
ω(si)

∑

∀pj∈P
f(si,pj,qk) (9)

where ˆsrp(qk) is the model estimation of srp(qk), and the weights ω(si) will be non-zero if there is an
acoustic source in the given position si, or 0 if otherwise.

The basis functions f(si,pj,qk) must be designed so that they provide accurate estimations of the
behavior of the real SRP-PHAT value at location qk, taking into account that there is an active source at
position si and that the signal is acquired by the microphone pair pj . This generic formulation allows for
models (basis functions) as complex as required, in principle able to include any of the considerations
described in Section 3.3.

In the experimental work described in Section 5, we are using a relatively simple model that is able
to clearly outperform standard SRP-PHAT results. In our experiments, the basis functions f(si,pj,qk)
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describe if point qk belongs to the hyperbolic region generated by an acoustic source si and a given pair
of microphones pj:

f(si,pj,qk) =

{
1 if |∆τ(pj, si)−∆τ(pj,qk)| ≤ ε ε ≥ 0

0 otherwise
(10)

where threshold ε accounts for the fact that in real-world scenarios there are uncertainties in measuring
time delays as discussed in Section 3.3. Using ε > 0, the width of the hyperbolic region is not constant,
modeling the effect that can be clearly seen in Figure 3(a). In fact, the width increases with distance to
the microphone pair, partly because for a given uncertainty (error) in the time delay estimation (due to the
fact that we are using sampled signals), the spatial uncertainty (error in precisely assigning a correlation
value to a given spacial location) increases as we consider positions further away from the microphone
pair generating the hyperbolic region.

The model described by Equations (9) and (10) is valid to reproduce SRP-PHAT measurements,
as the hyperbolic regions of the power maps are related to the high values of the Generalized Cross
Correlation function of each pair of microphones [9]. Consequently the position of the hyperbolic regions
is consistent with the time difference of arrival for each microphone pair given a certain speaker position.

3.5. Description of a Linear Model of SRP-PHAT

Using the model previously proposed in Equation (9) over all positions insideQ the following vector
ŷ is defined:

ŷ =
(

ˆsrp(q1) · · · ˆsrp(qQ)
)>

qk ∈ Q (11)

This section shows that vector ŷ can be represented as a linear combination of vectors of sizeQ. Each
vector is only representative of a specific spatial location where an acoustic source can be active. As was
described in previous sections, this model accounts for the fact that single acoustic sources are viewed
in SRP-PHAT data as the intersection of multiple hyperbolic regions.

For each position q ∈ Q, define the following vector v(s):

v(s) =
(
v(s,q1), · · · , v(s,qQ)

)>
with v(s,qi) =

1

N

∑

∀pj∈P
f(s,pj,qi), qi ∈ Q (12)

where N is the number of microphone pairs, Q is the size of Q and f(s,pj,qi) ∈ F are the basis
functions defined in Equation (10).

Vector v(s) can be intuitively seen as the ideal SRP-PHAT measurements that would be obtained for
a single acoustic source located at position s. If Q contains points with constant height, v(s) can be
visualized as an image, composed as the sum of hyperbolic areas (one for each pair of microphones),
intersecting at point s (see Figure 4). It must be remarked that v is normalized by definition, i.e.,
max(v(s)) = 1.

The proposed generative model consists of the following linear system:

ŷ = Mx with M =
(
v(s1) · · · v(sQ)

)
si ∈ Q (13)

where x = (x1, · · · , xQ)> is a vector of size Q, representing a numerical weight associated to each
position considered in set Q, where an acoustic source could be active. In fact, weight xi corresponds
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exactly to weight ω(si) defined in Equation (9) up to a scale factor. In this case, x are the unknown
parameters of the model.

Figure 4. Model content defined for a single active speaker located in the position of the
red circle.

Matrix M is a Q × Q matrix whose columns are obtained using vector v defined at every s ∈ Q.
Vector ŷ can be seen as the SRP-PHAT data synthesized by the proposed model as a function of weight
vector x. Figure 5 shows a graphical diagram of the proposed linear model.

Figure 5. Explicit matrix layout for the model proposal given by Equation (13).
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Expanding the terms in Equation (13), vector ŷ is obtained as the following weighted sum of vectors:

ŷ = x1v(s1) + · · ·+ xQv(sQ) (14)

where it is explicitly seen that weight xi directly affects the influence of vector v(si) in the output
vector ŷ. Therefore, if vector x has high values around a single position si, the resulting vector ŷ

will have a maximum at si, producing a SRP-PHAT image consistent with the model presented in the
previous section. Nevertheless, as it was discussed in Section 3.3, it must be recalled that the hyperbolic
model defined by Equation (10) is only a rough simplification of the real phenomenon, where noise,
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reverberation and array directivity issues produce artifacts in the SRP-PHAT approximation that are not
considered in the model. The consideration of these additional effects in the formulation of the basis
functions can lead to improvements in the modeling ability of the proposed solution.

4. Model Fitting

This section explains how to use the linear model proposed in the previous section to fit real
SRP-PHAT data. One of the main contribution of the paper is to show that as a result of model fitting,
the performance of SRP-PHAT based localization techniques can be remarkably improved.

Suppose that vector y contains SRP-PHAT measurements (arranged in a column vector) obtained in
a real scenario:

y =
(
srp(q1) · · · srp(qQ)

)>
qi ∈ Q (15)

with srp(qi) defined in Equation (1).
Our aim is finding a vector x capable of explaining y using model M. It is expected that y includes

modeling errors, reverberation, array directivity effects, and noise, thus making the proposed model
invalid for an exact representation of y. Instead, the goal will be finding a vector x capable to better
explain y. The notion of which vector x is better at modeling y can be answered using optimization
techniques.

The basic approach is then to solve the following optimization problem:

min
x
ρ(y, ŷ) = min

x
ρ(y,Mx) (16)

where ρ is a metric measuring how different are the measurements y and the vector ŷ generated by the
model (i.e., Mx from Equation (13)). A straightforward and somehow natural choice for ρ is to use the
Euclidean distance as a metric:

min
x
‖y −Mx‖22 (17)

which yields to a linear least squares problem. If matrix M has full rank, the minimum of Equation (17)
is unique and can be obtained in closed-form. Otherwise a regularized problem can be solved instead
using Tikhonov regularization [45]. In either case, solving problem (17) represents a weak approach
when the model M is not accurate enough to fit the data y, which contains noise and effects that cannot
be reproduced by the model.

The approach of this paper, and one of the basis of our contribution, is to include additional constraints
into Equation (17) able to give meaningful answers for x with noisy measurements, and for relatively
simple basis functions in the generative model. Two basic improvements of problem (17) are proposed
and detailed next.

4.1. Adding Sparse Constraints

In this paper it is assumed that there is only a small number of simultaneous active acoustic sources
inside the space defined byQ, which is a reasonable assumption in the majority of scenarios considered.
Given that values of x represent positions in which there is an active acoustic source, it is thus sensible
to force x to have as many zeroes as possible. In the mathematical language that means to force the
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vector x to be a sparse vector, in which the number of non-zero elements is limited. In the optimization
scheme, making the x vector to be as sparse as possible is equivalent to forcing the l0 norm of x to be
minimum.

Finding the vector x that simultaneously reduces the error between the input data and the model and
forces x to be as sparse as possible can be mathematically expressed as follows:

min
x
‖x‖0 s.t. ‖y −Mx‖22 < η (18)

where η is a real value that bounds the amount of error and model mismatch that is admissible.
Minimizing (18) is very difficult as the l0 norm makes the problem highly non-linear, NP-Hard and
non-convex. No practical method guarantees the global convergence in this case.

Sparse optimization methods have received remarkable attention from the scientific community.
Despite its theoretical complexity, several methods and approximations have been proposed so far, and
of special relevance are those methods based on using the l1 norm as a convex relaxation of the l0
norm [33,46]. This relaxation transforms (18) into the following:

min
x
‖x‖1 s.t. ‖y −Mx‖2 < γ (19)

where γ is an hyperparameter closely related to η in (18). Equivalently, problem (19) can be expressed
in its Lagrangian form:

min
x
‖y −Mx‖22 + λ‖x‖1 (20)

where λ is the Lagrange multiplier and has a direct relationship with γ.
Both Equations (19) and (20) are equivalent convex problems, in which convergence is guaranteed

and can be solved in polynomial time.
The problem of finding a least squares estimation subject to a l1 restriction has been independently

presented and popularized under the names of Least Absolute Shrinkage Selection Operator
(LASSO) [47] and Basis Pursuit Denoising [32], being object of intensive study. In the past few years
numerous optimization methods have been proposed, some of them adapted to specific problems.

Additionally, several generic libraries and toolboxes implementing those methods have been
developed and are being extensively used. The results shown in the paper have been generated using
one of these libraries [48], using a truncated Newton interior-point method, described in [49].

Solving the relaxed problem (20) does not necessary imply finding the solution to the original l0
problem. The closeness and validity of l1 relaxations have been extensively studied [33]. In some
problems, the structure of matrix M and the expected degree of sparsity in the solution can make l1
relaxations to be exact. For general linear systems, as it is the case in this paper, where matrix M has
no apparent structure, l1 relaxation empirically tends to impose only approximate sparse solutions. This
paper provides strong experimental evidence of the improvements obtained by imposing l1 penalties,
effectively making the solution x more sparse. Sparsity is a strong “prior” that helps to bias the solution
x so that the effect of noise and model mismatches are properly attenuated.
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4.2. Adding Subspace Filtering

Although sparsity is a well founded constraint and the l1 relaxations are effective, the experimental
results in Section 5 show that, given the current model, sparsity is not strong enough to cope with errors
and model mismatches in real SRP-PHAT measurements so that additional strategies must be used to
improve model fitting.

This section introduces a new constraint on the problem based on filtering out the part of the input
signal y that is not reproducible using model M.

First decompose y into two parts:

y = ŷ + ỹ = Mx + ỹ (21)

where ŷ is a term that can be explained exactly by the generative model (i.e., there exists a vector x such
that ŷ = Mx) and ỹ represents the non-reproducible part of the signal (i.e., ỹ 6= Mx for any vector
x). This section proposes to use subspace filtering to remove the non-reproducible part ỹ from the input
vector y.

First, matrix M is expressed using singular value decomposition (SVD) as follows:

M = UΣV∗ (22)

where U and V are unitary matrices of dimensions Q × Q and Σ is a semidefinite positive diagonal
matrix of dimension Q × Q. The diagonal elements of Σ are the singular values, sorted in descending
order. Using singular values it is possible to know the amount of degrees of freedom available in the
model by just looking how many non-zero singular values it has.

By identifying the number of zero singular values of M, namely Nz, the SVD decomposition shown
in Equation (22) can be expressed using the following sub-matrices:

M =
(
U1 U0

)(Σ1 0

0 0

)(
V∗1
V∗0

)
= U1Σ1V

∗
1 (23)

where U0 and V0 are Q × Nz matrices, U1 and V1 are of size Q × (Q − Nz) and Σ1 is a diagonal
(Q−Nz)× (Q−Nz) matrix.

U1 and U0 are subspace projection matrices. Any nonzero vector z such that U>1 z = 0 is a vector
that cannot be obtained using the model M, i.e., z 6= Mx for any possible x.

So, recalling that U∗U = UU∗ = I, both sides of the equality (21) can be multiplied by U∗ with the
following result: (

U∗1y

U∗0y

)
=

(
Σ∗1V

∗
1

0

)
x +

(
U∗1ỹ = 0

U∗0ỹ

)
(24)

By definition, if ỹ cannot be expressed by the model, then its projection using matrix U>1 must be
zero. Contrary, the projection into the kernel subspace represented by U0 is nonzero.

Therefore, in order to remove the dependence of ỹ, only the Mahalanobis distance of the upper part
of system (24) is optimized, regularized with the l1 term, and resulting into the problem (20) to become:

min
x
‖Σ−11 U>1 y − V ∗1 x‖22 + λ‖x‖1 (25)
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In practice, a small threshold ψ is used to decide if a singular value can be considered zero.
Experiments are carried out in Section 5.5 to learn the value of parameter ψ from real SRP-PHAT data,
which turns out to be an important parameter in practice. In order to give meaningful discrete values to
ψ this paper uses the following ratio:

r(ψ) =

∑
λj>ψ

λj
∑Q

i=1 λi
100 (26)

where diag(Σ) = (λ1, · · · , λQ)> are the singular values of M. The meaning of Equation (26) is
basically the percentage of Frobenius norm that M has lost after filtering out small singular values
using ψ. By bounding the ratio with an energy threshold, namely eψ ∈ [0%, 100%], which can be chosen
easily with independence of scale factors (e.g., eψ = 50% means half of the energy in the model), the
value of ψ can be chosen adequately as:

min
ψ

s.t. r(ψ) ≤ eψ (27)

In Section 5, the value of ψ is chosen by giving values to eψ using (27) afterwards.
After setting to zero all the N ′z singular values below threshold ψ, we can build new matrices U′0

and V′0 (Q × N ′z), U′1 and V′1 (Q × (Q − N ′z)) and Σ′1 ((Q − N ′z) × (Q − N ′z)), for which the SVD
decomposition (23) becomes:

M′ =
(
U′1 U′0

)(Σ′1 0

0 0

)(
V′∗1
V′∗0

)
= U′1Σ

′
1V
′∗
1 (28)

and the optimization problem (25) becomes:

min
x
‖Σ′−11 U′

>
1 y −V′

∗
1x‖

2

2 + λ‖x‖1 (29)

4.3. Improving SRP-PHAT with Model Fitting

The main objective of the paper is to show that, as a result of the optimization methods proposed
before, the solution x can be used to improve source localization, comparing with traditional approaches
directly using SRP-PHAT measurements. The detection of local maxima in SRP-PHAT acoustic power
maps is the standard way to retrieve the position of the acoustic source. This technique yields good
results but is still prone to errors due to reverberation and noise and when the number of microphones is
limited.

Our approach consists of replacing the original SRP-PHAT measurements y with those generated by
the model solving the optimization (29), i.e., ŷ′ = M′x′, where M′ is obtained from Equation (28) and
x′ is the solution of Equation (29). Vector ŷ′ can also be interpreted as a filtered/denoised version of
y that is consistent with the proposed model. Figure 6 shows the acoustic power map described by the
denoised vector ŷ′ (Figure 6(a)) and the original SRP-PHAT acoustic power map y (Figure 6(b)). From
the figure, it seems clear that the denoising effectively reduces the number of artifacts and unwanted
effects exhibited by the original map, and the assumption is that this denoised version ŷ′, if properly
constrained during the optimization, is a better place to find local maxima truly representing active
acoustic sources. In Section 5 the paper gives strong experimental indicators to support this idea.
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Figure 6. Comparison between real SRP-PHAT power map and its denoised version.
(a) Denoised acoustic power map described by ŷ′; (b) Real SRP-PHAT acoustic power map
described by y.

(a) (b)

5. Experiments and Discussion

5.1. Experimental Setup

We have evaluated our proposal using the audio recordings of the AV16.3 database [50], an
audio-visual corpus recorded in the Smart Meeting Room of the IDIAP research institute, in Switzerland.

Figure 7. Idiap Smart Meeting Room for AV16.3 recordings (a) Room layout showing the
microphone positions in two circular arrays (MA1 and MA2), three cameras (C1, C2 and
C3), and the L-shaped area for speaker locations in the recordings. (b) Sample of recorded
video frame.

(a) (b)

The IDIAP Meeting Room consists on a 8.2 m × 3.6 m × 2.4 m rectangular room containing a
centrally located 4.8 m × 1.2 m rectangular table, on top of which two circular microphone arrays of
0.1 m radius are located, each composed by 8 microphones. The centers of the two arrays are separated
by 0.8 m and the origin of coordinates is located in the middle point between the two arrays. Possible
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speakers’ locations are distributed along a L-shaped area around the table as seen in Figure 7(a). A
detailed description of the meeting room can be found in [51].

The audio recordings are synchronously sampled at 16 KHz, and the complete database along
with the corresponding annotation files containing the recordings ground truth is fully accessible
on-line at [52]. It is composed by several sequences or recordings which range in the number of speakers
involved and their activity. In this paper we will just focus on the single static speakers sequences, whose
main characteristics are shown in Table 1. We will refer to the sequences as seq01, seq02 and seq03 for
brevity.

Table 1. Characteristics of the audio sequences used in the experimental results.

Sequence name speaker Average speaker height∗ (m) duration(s) number of ground truth frames
seq01-1p-0000 male 54.3 208 2, 248

seq02-1p-0000 female 62.5 171 2, 411

seq03-1p-0000 male 70.3 220 2, 636
∗ In the reference coordinate system.

Every audio sequence is assigned a corresponding annotation file containing the real ground truth
positions (3D coordinates) of the speaker’s mouth at every time frame in which that speaker was talking.
The segmentation of acoustic frames with speech activity was first checked manually at certain time
instances by a human operator in order to ensure its correctness, and later extended to cover the rest
of recording time by means of interpolation techniques. The frame shift resolution was defined to
be 40 ms.

5.2. Evaluation Metrics

Our localization algorithm yields a set of spatial coordinates q(t) = (x, y, z)> that are estimations
of the actual speaker position, for every time frame t. These position estimates will be compared, by
means of the Euclidean distance, to the ones labeled in a transcription file containing the real positions
s(t) (ground truth), of the speaker.

We have decided to use the metrics developed under the CHIL project and described in their
Evaluation Plan [53]. A complete description of the CHIL Evaluation strategies can be found at [53],
but in this work we will only refer to the Multiple Object Tracking Precision (MOTP ), calculated
as the average localization error for all (NT ) acoustically active frames in the data set: MOTP =
∑NT
t=1‖q(t)−s(t)‖

NT
.

5.3. Evaluation Plan

We are evaluating our model in a 2D scenario, considering the acoustic power maps generated by
SRP-PHAT at locationsQ belonging to a plane 61 cm above the microphone array positions (this height
roughly corresponds to the average height of the speaker positions in the AV16.3 sequences). Locations
for SRP-PHAT data are calculated uniformly sampling Q in a 10 cm × 10 cm grid.
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The procedure to generate the position estimations q(t) consists of searching for maximum values in
vector ŷ′ (calculated as described in Section 4.3) that could be seen as a denoised version of the original
SRP-PHAT acoustic power map.

In the experimental results shown below, we are assessing the performance of our proposal in
terms of:

• Optimization parameters: We will provide results depending on the two main tunable parameters
of the optimization algorithms used, namely λ and eψ.

The estimation of the optimal values for this parameters will be done on an independent data set
(training set) and applied to unseen data in the evaluation stage (test set).

• Sensor array configuration: In this work, we are using a simple microphone array configuration,
aimed at evaluating our proposal in a resource-restricted environment. In order to do so, we
are using 4 or 8 microphones (out of the 16 available in the AV16.3 data set), grouped in
two or four microphone pairs to generate the baseline SRP-PHAT acoustic maps. The selected
microphone pairs configurations are shown in Figure 8, in which microphones with the same color
are considered as belonging to the same microphone pair. Given that the microphone separation
for each microphone pair is 20 cm, we will violate spatial aliasing requirements, considering the
signal bandwidth. Fortunately, when using SRP-PHAT, the use of more than one microphone pair
alleviates this problem, as side lobes are different for each pair, and thus their effects are partially
compensated.

• Acoustic frame size: We will provide results depending on the length of the acoustic frame, for 80,
160 and 320 ms, to precisely assess to what extent the improvements are consistent with varying
acoustic time resolutions.

Figure 8. Microphone pairs setups used in the experiments (microphones with the same
color belong to the same pair).
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The baseline we are comparing with will be the results of directly searching the maximum of the
SRP-PHAT acoustic power map. The position of this maximum will correspond to the most probable
source location.

Comparisons will specifically consider the relative improvement in MOTP , defined as
∆MOTP
r =

MOTPbaseline−MOTPproposal
MOTPbaseline

.
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Our main interest is assessing whether the results and improvements are consistent across different
conditions. After describing the baseline results (in Section 5.4) and in order to evaluate the
generalization capability of the proposed methods, we will address an initial study using sequence
seq01 as the training set (in Section 5.5). From this study, we will decide on the optimal values of
the tunable parameters used in the optimization process (those leading to the best results), and then use
them to provide final performance and improvement results on the test sets, namely seq02 and seq03 (in
Section 5.6). This evaluation plan ensures adequate independence and variability between train and test
sets, with different speakers in all sequences (also differing in gender and height).

In all cases were appropriate, we will include references to statistical confidence values for a 95%
confidence level, to adequately assess whether the improvements are statistically significant.

5.4. Baseline Results

Tables 2 and 3 show the baseline results using the standard SRP-PHAT algorithm for all sequences
and different frame sizes, and the two microphone setups of Figure 8.

Table 2. Baseline MOTP (m) results for all sequences, different frame sizes and
microphone setup A.

80 ms 160 ms 320 ms
seq01 MOTP 1.02± 0.03 0.91± 0.03 0.83± 0.03

seq02 MOTP 0.96± 0.03 0.84± 0.03 0.77± 0.02

seq03 MOTP 0.90± 0.03 0.77± 0.03 0.69± 0.03

Table 3. Baseline MOTP (m) results for all sequences, different frame sizes and
microphone setup B.

80 ms 160 ms 320 ms
seq01 MOTP 0.87± 0.03 0.74± 0.03 0.62± 0.02

seq02 MOTP 0.73± 0.02 0.62± 0.02 0.56± 0.02

seq03 MOTP 0.71± 0.02 0.59± 0.02 0.50± 0.01

The main conclusions for the baseline results are:

• The performance obtained is reasonable if we take into account that only two or four microphone
pairs are used. Best MOTP values are around 50 cm.

• Performance improves as the frame size increases, as expected, given that longer frames lead to
better estimations of the correlation functions.

• Adding an additional microphone pair in setup B as compared with setup A also leads to
performance improvements as expected.
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5.5. Evaluation of the Sensitivity to λ and eψ Values

The proposed model fitting strategies heavily depend on the estimation of adequate values for both λ
and eψ (as they are the parameters controlling the optimization process), so that a detailed study on the
sensitivity of the performance with variations in these parameter values is mandatory.
λ expresses the relative importance of the sparse constraints applied in the optimization problems

(20), (25) and (29), so that the higher its value becomes, the sparser the solution will be. In the l1
optimization software used [48], it is required that λ < λmax being λmax dependent on both the model
and the input data [49]. In the results shown, the hyperparameter is represented normalized with respect
to the calculated λmax: λnorm = λ/λmax, as described in [49].

The energy threshold eψ used in the subspace filtering strategy described by Equation (27) decides
the size of the model that is not able to adequately explain the input signal.

To decide on the optimal λnorm and eψ to be used, we will select the values that achieve the best result
in terms of MOTP , for every microphone setup and frame size.

In the upper part of Figure 9, we show the evolution of the MOTP quality metric as a function of
λnorm and the energy value eψ, for both microphone setups, evaluating the training sequence seq01,
with a frame size of 160 ms, as an example. The horizontal black trace show the baseline results for
the SRP-PHAT algorithm (obviously independent of λnorm and eψ). In the lower part of Figure 9 the
evolution of the relative improvements in MOTP are shown.

Additionally, and in order to evaluate the effectiveness of the subspace filtering step, we ran an
experiment in which only the optimization with sparse constraints described in Equation (20) is applied
(i.e., our proposal without using subspace filtering). The results are shown in the “W/o SVD” trace of
Figure 9.

Figure 9. Optimization results forMOTP and relative improvements as a function of λnorm
and eψ, for microphone setups A and B on sequence seq01. The black trace is the baseline
SRP-PHAT system.
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In Figure 10 we show the best MOTP results for sequence seq01 for both microphone setups and
all frame sizes, with 95% confidence intervals. Data includes results for the baseline SRP-PHAT results
(“SRP” in the legend, blue bars), for our proposal (“Proposal” in the legend, yellow bars), and for our
proposal without applying the SVD step (“Proposal w/o SVD” in the legend, green bars) (the orange bar
(“SVD+SRP” in the legend) refers to results that will be discussed later).

Figure 10. Best MOTP results for sequence seq01 for both microphone setups (A, B) and
all frame sizes (80, 160 and 320 ms.), with 95% confidence intervals.

From this, we can conclude that, for adequate values of the optimization tuning parameters:

• Our proposal is able to improve the SRP-PHAT results with statistically significant relative
improvements of up to almost 25%, with consistent improvements for a wide range of λnorm
values.

• Microphone setups have a similar impact in the relative performance improvements. The
improvements for setups A and B are 24.6% and 25.6%, respectively.

• In what respect to the dependency of the best results with λnorm (once selected the optimal eψ),
both microphone setups show a desirable behavior, achieving a reasonably clear optimal area for
a wide range of parameter values.

• Using either the model with sparse constraints (i.e., “Proposal w/o SVD”) or SVD without actually
filtering (i.e., eψ = 100%) is giving worse localization results than the SRP-PHAT baseline
algorithm. It thus seems that fitting the complete model to data is not making any progress even
if sparse constraints are included. The explanation of this phenomenon was partially advanced in
Section 4.2 but it needs some additional justification. The model that is proposed in this paper is
not able to explain every SRP-PHAT map (i.e., matrix M is rank-deficient). When using any of
the optimization strategies proposed in the paper, the position of speakers is the result of looking
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at local maxima in the SRP-PHAT map reproduced through the model. Therefore, in theory,
the results must not be necessarily equal to the baseline algorithm, even if subspace filtering is
removed, or the l1 term is not having strong influence. Empirical data tell us that in these cases,
localization results can be in fact worse than the baseline. The main result of the paper is to show
through experiments that statistically significant improvements can be reached using a specific
combination of subspace filtering and sparse constraints. In these cases the model is able to
adequately filter the effects of noise and reverberation in the SRP-PHAT map, giving a cleaner
image about the real position of the speaker.

Table 4. Relative improvements of MOTP (m) for sequence seq01, including the values of
the optimal parameters, estimated per microphone setup and per frame size.

80 ms 160 ms 320 ms

setup A
∆MOTP
r 22.1% 24.6% 29.1%

λoptimalnorm 0.1 0.1 0.1

eoptimalψ 99% 99% 99%

setup B
∆MOTP
r 22.9% 25.6% 27.6%

λoptimalnorm 0.04 0.08 0.1

eoptimalψ 97% 97% 97%

Table 4 shows the highest relative improvements obtained for sequence seq01 and the optimal values
of the parameters found to achieve these best results (namely λoptimalnorm and eoptimalψ ). The table shows how
the maximum improvement is high and consistent along different frame sizes and microphone setups.
Improvements in MOTP clearly increase as the frame size increases.

Table 5. Relative improvements of MOTP (m) for sequence seq01 and microphone setup
B, using different values for the optimization parameters.

80ms 160ms 320ms
setup B

eoptimal−Bψ = 97%

∆MOTP
r 22.9% 24.2% 26.7%

λnorm 0.04 0.04 0.04

setup B
eoptimal−Bψ = 97%

∆MOTP
r 22.1% 25.6% 27.2%

λnorm 0.08 0.08 0.08

setup B
eoptimal−Bψ = 97%

∆MOTP
r 22.2% 25.3% 27.6%

λnorm 0.1 0.1 0.1

setup B
λoptimal−Anorm = 0.1 eoptimal−Aψ = 99%

∆MOTP
r 21.4% 22.6% 24.3%

Interestingly, the optimal values for the parameters controlling the optimization process are identical
for all frame sizes in the setup A (λoptimal−Anorm = 0.1 and eoptimal−Aψ = 99%). This seems not to be the
case for setup B, in which eoptimal−Bψ = 97% in all cases, but λoptimal−Bnorm values varies for different frame
sizes. However, even in this case, the improvements are stable for a wide range of parameter values as
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can be seen in the first three rows of Table 5, where the relative improvements have been calculated for
different values of λnorm (0.04, 0.08 and 0.1), setting eψ = eoptimal−Bψ = 97%.

From Table 4 it also seems that the optimal values of the parameters are dependent on the microphone
setup used, as both λoptimalnorm and eoptimalψ are different for setups A and B. A more detailed evaluation
shows that, again, the improvements are stable even when we use the optimal values estimated for setup
A (λoptimal−Anorm = 0.1 and eoptimal−Aψ = 99%), in the optimization process for setup B data, as it can be
seen in the last row of Table 5.

An additional way of visually assessing to what extent the results of the optimal values for the
optimization parameters are consistent for different situations is plotting a surface map of MOTP

versus variations on λnorm and eψ and making a comparison. For example, Figures 11 and 12 show
this optimization map for microphone setups A and B respectively, using sequence seq01. In these maps,
the optimal points for each evaluation are represented with a circle for seq01 and setup A, and with
a triangle for seq01 and setup A. The maps show a similar structure for the optimal region in both
microphone setups, supporting the idea that the optimal optimization parameters do not heavily depend
on changes of the experimental conditions. Moreover, in the cases for microphone setup B, where the
optimal points (triangles) seem not to be close to the optimal points of setup A (circles), it can be seen
that these positions belong to an area with roughly the same MOTP level (the area can be recognized
as a flat optimal region).

The main conclusion of these experiments is that, for the given experimental setup, our proposal
is able to clearly outperform the standard SRP-PHAT results. The statistically significant relative
improvements roughly vary between 22% and 30%, and, what is more important, with little sensitivity
to the optimization parameters selected when changing the microphone setup and the frame size used
(once the optimal parameters have been estimated for the training data).

Figure 11. Optimization map for microphone setup A on sequence seq01. The circle is the
position of the best parameter combination.
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Figure 12. Optimization map for microphone setup B on sequence seq01. The circle is the
position of the best parameter combination in seq01 calculated for setup A and the triangle
is the position of the best parameter combination in seq01 calculated for setup B.
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To further evaluate the contribution of the subspace filtering strategy, we ran an experiment in which
we applied the subspace filtering to the original SRP-PHAT data, that is, projecting the SRP-PHAT
acoustic power map on the span of model M′ obtained from (28). This projection generates a new
filtered power map, calculated as y? = U′U′>1 y. The results applying this transformation are given in
the orange bars of Figures 10 and 15, referred to as “SVD+SRP”. In these figures, we can see that
SRP+SVD also outperforms SRP, although the differences are not statistically significant.

5.6. Evaluation on the Test Set

The evaluation carried out in the previous section only addresses the estimation of the optimal
parameters for a single training sequence and the proposal evaluation on this same data set (seq01). We
still need to assess whether the optimal values estimated for the training data set are able to achieve good
results when using different sequences. As stated above, we are using seq02 and seq03 as independent
test sets.

Figures 13 and 14 show the optimization maps for all sequences, frame size 160 ms, and microphone
setups A and B, respectively. The cross is located in the optimal point for each sequence and setup A,
and the diamond is located in the optimal point for each sequence and setup B. It can be seen that, again,
the structure of the optimal regions are reasonably similar, thus suggesting that the optimal values for
the optimization parameters estimated in the training set will also achieve good results in the test sets.
The position of the optimal points in each map also belong to the same flat optimal region.

Figure 15 shows the best MOTP results for sequences seq02 and seq03 for both microphone setups
and all frame sizes, with 95% confidence intervals (using the optimal parameter values estimated for the
training sequence seq01).
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Figure 13. Optimization map for microphone setup A on all sequences, evaluating MOTP

and frame size 160 ms. The circle is the position of the best parameter combination
calculated for sequence seq01 and the cross is the best position calculated for each sequence.
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Figure 14. Optimization map for microphone setup B on all sequences, evaluating MOTP

and frame size 160 ms. The circle is the position of the best parameter combination
calculated for sequence seq01 with setup A,the triangle is the position of the best parameter
combination in seq01 with setup B and the diamond is the best position calculated for each
sequence.
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Figure 15. Best MOTP results for both microphone setups (A, B) and all frame sizes (80,
160 and 320 ms), with 95% confidence intervals, (a) for sequence seq02 and (b) for sequence
seq03.

(a) (b)

Table 6. Relative improvements of MOTP (m) for sequence seq02, using the optimal
parameter values estimated for sequence seq01.

80 ms 160 ms 320 ms

setup A
∆MOTP
r 10.0% 9.6% 9.9%

λnorm 0.1 0.1 0.1

eψ 99% 99% 99%

setup B
∆MOTP
r 20.7% 22.9% 25.1%

λnorm 0.04 0.08 0.1

eψ 97% 97% 97%

Table 7. Relative improvements of MOTP (m) for sequence seq03, using the optimal
parameter values estimated for sequence seq01.

80 ms 160 ms 320 ms

setup A
∆MOTP
r 23.8% 26.9% 29.9%

λnorm 0.1 0.1 0.1

eψ 99% 99% 99%

setup B
∆MOTP
r 25.7% 27.3% 29.0%

λnorm 0.04 0.08 0.1

eψ 97% 97% 97%

Tables 6 and 7 show the relative improvements achieved when evaluating sequences seq02 and seq03
for both microphone setups, also using the optimal parameter values for sequence seq01. As expected,
the relative improvements are in the range of those obtained for sequence seq01, except for sequence
seq02 and microphone setup A (with lower improvements of around 10%). Our hypothesis is that the
fact that this is a female speaker imposes significant differences in the speech signals, thus modifying the
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correlation functions used in the input data, and posing additional difficulties to the optimization process
when only two microphone pairs are used. Nevertheless, this will have to be evaluated in future work.

Apart from the case of seq02 with setup A, the improvements are relevant and statistically significant,
roughly varying between 20% and 30%. These achievements also show little sensitivity to the
optimization parameters selected, in spite of the fact that we are additionally dealing with different
speakers.

6. Conclusions and Future Work

This paper has proposed a novel method to localize active acoustic sources in a room equipped
with sensor arrays. Two main contributions can be highlighted: First, a simple but very promising
generative linear model is proposed to explain SRP-PHAT data taken from any geometrical combination
of microphone arrays. The model simply reflects the geometry of three-dimensional points sharing
common difference of time-of-arrival between each microphone pair. This model is independent of the
spectrum properties of the signals emitted by the source and can be easily computed in practice. Second,
this paper shows, using convincing experiments based on publicly available data, that such a simple
model can be used to fit real SRP-PHAT data that is usually very noisy and has many unmodeled effects
(such as reverberation in the scene). Fitting the model is done by imposing two constraints. The first one
is forcing the model parameters to be sparse, as acoustic sources cannot be densely distributed in a typical
environment. The second constraint simply removes the part of the measurements that is not exactly
reproducible by the model. In the light of the experimental results, these two constraints in combination
are the real key of the paper, notably improving the performance of state-of-the-art localization methods
based on SRP-PHAT. It is also worth mentioning that all algorithms and experiments proposed in the
paper are very easy to reproduce.

In future works the performance of this approach must be thoroughly validated in rooms with multiple
speakers and using the whole three-dimensional set of spatial positions. Immediate improvements should
cover all issues commented in Section 3.3. That means to propose basis functions in the model that
take into account additional factors, such as the spectral content of the acoustic sources, directivity
pattern effects in the microphone arrays, and also adding geometric information that would help to
predict reverberation effects. The authors believe that improvements in the model may yield remarkable
improvements in the localization accuracy in real world scenarios.
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37. Ba, D.; Ribeiro, F.; Zhang, C.; Florêncio, D. L1 regularized room modeling with compact
microphone arrays. In Proceedings of 2010 IEEE International Conference on Acoustics Speech
and Signal Processing (ICASSP), Dallas, TX, USA, 14–19 March 2010; pp. 157–160.
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a b s t r a c t

The algorithms for acoustic source localization based on PHAT filtering have been
profusely used with good results in reverberant and noisy environments. However, there
are very few studies that give a formal explanation of their robustness, most of them
providing just an empirical validation or showing results on simulated data. In this work
we present a novel analytical model for predicting the behavior of both the SRP-PHAT
power maps and the GCC-PHAT functions. The results show that they are only affected by
the signal bandwidth, the microphone array topology, and the room geometry, being
independent of the spectral content of the received signal. The proposed model is shown
to be valid in reverberant environments and under far and near field conditions. Using this
result, an analysis study on how the aforementioned factors affect the SRP-PHAT power
maps is presented providing well supported theoretical and practical considerations. The
model validation is based on both synthetic and real data, obtaining in all cases a high
accuracy of the model to reproduce the SRP-PHAT power maps, both in anechoic and non-
anechoic scenarios, becoming thus an excellent tool to be exploited for the improvement
of real world relevant applications related to acoustic localization.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the last three decades perceptual systems have
been extensively studied. The objective is to automatically
analyze complex information extracted from one or multiple
sensors. These systems are the result of recent advances in
sensor technologies, signal processing, andmachine learning.

A fundamental task within this research area is the
development of sensor technologies able to localize
humans in indoor environments. While outdoor localiza-
tion performance is very accurate, using GPS systems,
indoor localization is still a largely unsolved problem.

Localization of humans has a tremendous potential impact
in diverse applied fields, opening new ways in how
humans interact with machines.

In these scenarios, non-invasive technologies are pre-
ferred, so that no electronic or passive devices need to be
carried by humans for localization. The two main non-
invasive technologies for indoor localization are those based
on cameras [1,2] and acoustic sensors [3,4]. Camera-based
systems are very promising due to their reduced cost and
the rich amount of information they provide. However
camera-based systems still lack robust and fast methods
that are resistant to varying light conditions and occlusions.
Acoustic sensors give very rich information as humans
naturally communicate with speech. Recent advances show
that accurate localization with microphone arrays is possible
and thus it is a promising technology in many applications.
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Video and audio technologies are in fact very complemen-
tary in many ways and their fusion for localization has been
extensively studied [5].

This paper focuses on audio-based localization in a very
general indoor scenario with known geometry, where
unknown wide-band audio sources are captured by a set
of microphone arrays placed at known positions within
the environment. From the various approaches in the
literature we focus on systems based on computing the
Steered Response Power (SRP) [6] of the signals captured
in microphone arrays.

The gold standard for audio localization is based on
combining SRP with the Phase Transform (PHAT) filtering,
with varied modifications in order to provide improve-
ments in precision and/or computational demands. SRP-
PHAT has proved to be successful for localization in
reverberant and noisy scenarios [4,7–9], but these propo-
sals are only based on an empirical evaluation. Despite the
success of the SRP-PHAT strategy, there are very few
theoretical studies to understand its properties. To the
best of our knowledge, there is no previous published
work in which researchers provide an analytical model of
the SRP-PHAT algorithm behavior, and none of the related
published efforts attempt the validation of their findings
using real data, thus limiting their application in real
scenarios.

This paper's main contribution is to describe an analy-
tical model of the SRP-PHAT power map that is valid in
reverberant environments, under far and near field condi-
tions, assuming reasonable constraints about sound pro-
pagation and its reflection on surfaces. We explicitly
show that SRP-PHAT only depends on the signal band-
width, the number of microphones, the geometry of the
array and the geometry of the environment. As a conse-
quence, the spectral content of the signal is not necessary
to predict the SRP-PHAT maps. Using the proposed model
we give well supported theoretical and practical insights
about how each of these factors affect SRP-PHAT localiza-
tion. Furthermore, since SRP can be understood as the sum
of the generalized cross-correlations (GCC) of the chosen
pairs of microphones [6], our model and conclusions can
be easily extended to GCC-PHAT.

The model validation is carried out with both synthetic
and real data, showing that our model is highly accurate to
reproduce the SRP-PHAT power maps in reverberant
scenarios. We believe that our model, given its parametric,
analytical and differentiable nature, opens the path to
interesting applications towards improving the perfor-
mance of current localization systems, and automatic
microphone arrays topology design, among others.
Although this proposal is developed and evaluated for
speech signals, we also believe that it is general enough to
be easily extended to other wideband and narrowband
acoustic signals.

1.1. Paper structure

The paper is structured as follows. In Section 2 we
provide the state-of-the-art in acoustic source localization,
focusing on the SRP-PHAT strategy. Section 3 describes the
proposed model for the anechoic and non-anechoic cases.

The experimental setup is detailed in Section 4 and model
validation with synthetic and real data is addressed in
Section 5. We study in Section 6 the effect of bandwidth
and array topology in the model and finally, Section 7
summarizes the main conclusions and contributions of the
paper and gives some ideas for future work.

2. State of the art

Acoustic source localization has received significant
attention lately for people indoor localization, comple-
menting other existing technologies, e.g., the CHIL (Com-
puter in Human Interaction Loop) project [5]. The main
motivation relies in the fact that acoustic source localiza-
tion is essential in most of speech based human–machine
interaction systems.

Existing approaches for acoustic source localization can
be roughly divided into three categories [3,4,10]: (i) two-
stage time delay, (ii) one-stage beamforming, and (iii)
high-resolution spectral-estimation based methods. Meth-
ods in (iii) are not able to efficiently cope with real-world
conditions (mainly noise and reverberation issues), mak-
ing (i) and (ii) the leading methods.

Methods in (i) are composed of two stages: in the first
step they estimate the time-difference of arrivals (TDOA) of
signals between pairs of microphones [11]. This is usually
done using generalized cross-correlation (GCC) techniques
[12]. Among the possible weighting functions, the Phase
Transform (PHAT) has been found to perform very well
under realistic acoustical environments [13], leading to the
GCC-PHAT [12] (also known as the Crosspower-Spectrum
Phase [14]). There are also alternative methods, such as
those based on Blind Source Separation [15], or those using
a likelihood function of phase differences [16]. In a second
step, the TDOA information is combined with knowledge of
the microphones’ positions, using optimization (maximum
likelihood, least squares, spherical interpolation, etc.), to
generate a spatial estimator of the source position [3,4,17].
The main problem with methods in (i) is their sensitivity to
errors in the TDOA estimation, that can be hardly corrected
if severe enough [6].

Beamforming [18] based techniques (ii) estimate the
position of the source by sampling a set of possible spatial
locations and computing a beamforming function at each
location. The approach then chooses the source location
that maximizes a statistic that is maximum when the
target position matches the source location. For instance in
SRP, which is the simplest beamforming method, the
statistic is based on the signal power received when the
microphone array is steered in the direction of a specific
location. SRP-PHAT is a widely used algorithm for speaker
localization based on beamforming. It was first proposed
in [6] 1 and is a beamforming based method that combines
the robustness of the steered beamforming methods with
the insensitivity to signal conditions afforded by the PHAT
filter. The classical delay-and-sum beamformer used in SRP

1 Although the formulation is virtually identical to the Global
Coherence Field (GCF) described in [14].
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is replaced in SRP-PHAT by a filter-and-sum beamformer
using PHAT filtering to weight the incoming signals.

The main problem with beamforming methods is their
high computational cost, provided that they sample all
potential positions of the space, labeling all local maxima
as position candidates for acoustic sources.

SRP-PHAT is usually defined as a reference standard for
source localization, because of its simplicity and robust-
ness in reverberant and noisy environments, being a
widely used algorithm for speaker localization [19–23].

The superior performance of SRP-PHAT is well sup-
ported by empirical evidence [4,8,9] yet there are just a
few works aimed at giving formal explanations for its
robustness. The authors of [24] evaluate SRP-PHAT and its
variant β-PHAT so that they can emphasize the actual effect
of the PHAT filtering, giving interesting insights about the
effects of noise and reverberation in the localization per-
formance. Unfortunately, the evaluation is purely experi-
mental, without an analytic explanation, and based on
simulated data. [13] shows that, under low noise and high
reverberation conditions, SRP-PHAT is a special case of the
maximum-likelihood estimator. Again, the results are based
on simulated data and the assumptions made about the
noise being gaussian do not hold when using real data [25].
The most recent known work in this area is described in
[10]. Their approach is different to previous works, as they
start from the signal models with some environmental
assumptions, deriving an interesting analytic solution for
the PHAT strategy. However, the formulation is only meant
at explaining the PHAT robustness against reverberation, so
that there is no attempt to further refine it by solving the
frequency dependent terms, thus not allowing the deriva-
tion of further considerations to be used in practical
applications. Additionally, the validation of their proposal
is again based on simulated data, thus compromising its
possible application to real-world scenarios.

In this paper, we derive an analytical model for pre-
dicting the behavior of the SRP-PHAT power maps, taking
into account both the room geometry and the microphone
array topology, and considering wideband signals. The
proposal is valid for both near and far-field conditions,
with a widely used signal model [26,10]. Our model also
allows to intuitively analyze SRP-PHAT power maps, while
being able to accurately represent their expected behavior.
The model is validated using both synthetic and real data
(as experiments in a real environment are essential for a
model to be acceptable), and we provide a final discussion
on some aspects of the model, easily extracted from the
model formulation, thanks to its meaningful parametric
analytical expression.

3. Generative steered response power model

3.1. Notation

Real scalar values are represented by lowercase letters
(e.g., δ). Vectors are by default arranged column-wise and
are represented by lowercase bold letters (e.g., x). Upper-
case letters are mostly reserved to define the size of
vectors and sets (e.g., vector x¼ ðx1;…; xNÞ> is of size N).
The l2 norm of a vector JxJ2 ¼ jx1j2þ⋯þjxNj2

� �1=2
will be

written by default as J � J for simplicity. Calligraphic fonts
are reserved to represent ranges or sets (e.g., R for real or
generic sets G). Continuous time signals are represented by
scalar functions of t variable as for instance x(t). Discrete
time signals use k to denote discrete time samples. The
Fourier transform of a continuous signal x(t) is represented
with complex function XðωÞ, with XðωÞn being the
complex-conjugate of XðωÞ and jXðωÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðωÞnXðωÞ

p
.

ReðXðωÞÞ and ImðXðωÞÞ are the real and imaginary parts
of XðωÞ respectively. We refer to ⌊�c and ⌈ � ⌉ as the floor
and ceiling rounding operators respectively.

3.2. Steered response power formulation

Let us assume we equip an indoor environment with an
array of Nμ microphones M¼ fm1;m2;…;mNμ g, where mn

is a three-dimensional vector mn ¼ ðmnx;mny;mnzÞ> denot-
ing the position of the microphone from a reference
coordinate origin.

Given this setup, let us assume that an acoustic source
is located at the generic position r¼ ðrx; ry; rzÞ> , emitting
an acoustic signal x(t). We denote as xn(t) the signal
received by a microphone located at mn, and as
q¼ ðqx; qy; qzÞ> to a generic target location at which we
steer the microphone array. We usually discretize the
space using a finite set Q¼ fq1;q2;…;qQ g of Q three-
dimensional vectors.

A delay-and-sum beamformer aligns the set of signals
x1ðtÞ;…; xNμ ðtÞ, compensating the propagation delays from
the target position q to each microphone mn. The resulting
beamformed signal when the array is steered to q is defined
as (also including the frequency domain expression):

y t;qð Þ ¼
XNμ

n ¼ 1

xn tþτnðqÞð Þ2F Yðω;qÞ ¼
XNμ

n ¼ 1

XnðωÞejωτnðqÞ;

ð1Þ
where XnðωÞ is the Fourier Transform of xn(t), and τnðqÞ is the
propagation delay between mn and q, which is calculated as
τn qð Þ ¼ 1

c Jq�mn J , where c is the speed of the sound in air.
The filter-and-sum beamformer is a generalization of

the delay-and-sum beamformer, which applies adaptive
filtering to the microphone signals. In this case, the signal
received at microphone mn is then filtered with HnðωÞ. The
beamformed signal when the array is steered to the
position q is given in the frequency domain by

Yðω;qÞ ¼
XNμ

n ¼ 1

HnðωÞXnðωÞejωτnðqÞ: ð2Þ

The Steered Response Power (SRP) can be expressed as
the output power of the signal received from a filter-and-
sum beamformer of Nμ elements [4]:

PðqÞ ¼
Z �1

�1
jYðω;qÞj2 dω

¼
XNμ

i ¼ 1

XNμ

j ¼ 1

Z ω0

�ω0

HiðωÞHn

j ðωÞXiðωÞXn

j ðωÞejωτiðqÞe� jωτjðqÞ dω;

ð3Þ
where PðqÞ is the power received at position q, and xn(t) is a
baseband signal with bandwidth ω0 ðXnðωÞ ¼ 0; 8ω4ω0Þ.
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3.3. Steered response power with PHAT

The PHAT filter has been typically applied in the
context of the Generalized Cross Correlation (GCC) [12].
The GCC of two signals XiðωÞ and XjðωÞ is defined as

Ri;j τð Þ ¼ 1
2π

Z þ1

�1
Ψ ij ωð ÞXi ωð ÞXn

j ωð Þe� jωτ dω; ð4Þ

where Ψ ijðωÞ is a weighting function that is chosen to
optimize a performance criteria. Apart from PHAT, many
other weighting functions have been proposed, such as the
Smoothed Coherence Transform (SCOT) [27]. In PHAT,
weighting Ψ ijðΩÞ is chosen as

Ψ ij ωð Þ ¼ 1
jXiðωÞXn

j ðωÞj ¼
1

jXiðωÞj jXjðωÞj; ð5Þ

where we also assume that jXiðωÞj and jXjðωÞj must be
strictly greater than 0 within the signal bandwidth. PHAT
weighting empirically reduces the influence of multipath
in the GCC of a signal arriving to two different micro-
phones in a reverberant acoustic environment.

Applying the PHAT filter as defined in Eq. (5) to
the received power in Eq. (3), is equivalent to using,
on each microphone, a filter whose transfer function is
HnðωÞ ¼ jXnðωÞj�1:

P qð Þ ¼ 2π
XNμ

i ¼ 1

XNμ

j ¼ 1

Ri;j ΔτijðqÞ
� �

¼
XNμ

i ¼ 1

XNμ

j ¼ 1

Z ω0

�ω0

XiðωÞXn

j ðωÞ
jXiðωÞj jXjðωÞje

jωΔτijðqÞ dω

¼ 2Nμω0þ
XNμ

i ¼ 1

XNμ

j ¼ 1
ja i

Z ω0

�ω0

XiðωÞXn

j ðωÞ
jXiðωÞj jXjðωÞje

jωΔτijðqÞ dω;

ð6Þ

where ΔτijðqÞ ¼ τiðqÞ�τjðqÞ
� �

, and where we have expli-
citly stated the calculation of the SRP as a function of the
generalized cross correlations [6]. In this expression we
have also considered that for i¼ j, the integral represents
the power received by each single microphone after
applying PHAT. These terms have a trivial solutionRω0

�ω0

XiðωÞXn

j ðωÞ
jXiðωÞj jXjðωÞj dω¼ 2ω0; 8 i¼ j

� �
which does not depend

on the steering position, so they only represent a known
offset ð2Nμω0Þ that can be easily removed from Eq. (6).
Without loss of generality, we will not take this offset term
into account hereinafter (this will imply the appearance of
negative values in PðqÞ).

We group the microphones in different pairs, described
as elements in a set P ¼ fp1;p2;…;pNP

g, where pj ¼
fmj1 ;mj2 g is composed of two three-dimensional vectors,
mj1 AM and mj2 AM, with mj1 amj2 , describing the
spatial location of the microphones in pair j. If all micro-
phone pairs are allowed then NP ¼NμðNμ�1Þ=2.

Eq. (6) can be rewritten taking into account the con-
tributions of each pair of microphones:

P qð Þ ¼
XNP

j ¼ 1

Z ω0

�ω0

Xj1 ðωÞXn

j2
ðωÞejωΔτðpj ;qÞ þXn

j1
ðωÞXj2 ðωÞe� jωΔτðpj ;qÞ

jXj1 ðωÞj jXj2 ðωÞj dω

¼
XNP

j ¼ 1

Z ω0

�ω0

2
Re Xj1 ðωÞXn

j2
ðωÞejωΔτðpj ;qÞ

� �
jXj1 ðωÞj jXj2 ðωÞj dω

2
4

3
5

¼ 4π
XNP

j ¼ 1

Rj1 ;j2 Δτðpj;qÞ
� �

; ð7Þ

where Δτðpj;qÞ ¼ ðτj1 ðqÞ�τj2 ðqÞÞ is the difference in arrival
times of the acoustic signal to reach the microphones in
pair pj (mj1 andmj2 ), that is, the required delay to steer the
microphone pair pj to the location q. The last expression in
(7) will allow us to extend the conclusions of the paper to
both SRP-PHAT and GCC-PHAT, as it states the calculation
of the SRP-PHAT as the sum of the GCC-PHAT functions

Rj1 ;j2 Δτðpj;qÞ
� �

, for the considered Np pairs of micro-

phones [6].

3.4. Anechoic propagation

In the simplest scenario, when anechoic propagation is
assumed, the signal received by each microphone is a delayed
and attenuated version of the acoustic source signal x(t):

xnðtÞ ¼ αnxðt�τnðrÞÞ2F XnðωÞ ¼ αnXðωÞe� jωτnðrÞ; ð8Þ
where αn ¼ 1

4πcτnðrÞ is a distance-related attenuation assuming
spherical propagation [28].

In this case, Eq. (7) can be simplified as follows:

P qð Þ ¼
XNP

j ¼ 1

Z ω0

�ω0

2
Re αj1 αj2 jXðωÞj2ejω Δτðpj ;qÞ�Δτðpj ;rÞð Þ� �

αj1αj2 jXðωÞj2 dω

¼
XNP

j ¼ 1

Z ω0

�ω0

2 cos ðωðΔτðpj;qÞ�Δτðpj; rÞÞÞ dω

¼
XNP

j ¼ 1

4 sin ðω0ðΔτðpj;qÞ�Δτðpj; rÞÞÞ
Δτðpj;qÞ�Δτðpj; rÞ

" #
; ð9Þ

where αj1 and αj2 are the attenuation factors for the first
and second microphones of the pj pair respectively. Each
of the terms in the sum of Eq. (9) corresponds to the GCC-
PHAT model for each microphone pair.

From (9) we derive the following result for anechoic
propagation:

In anechoic conditions the steered response pattern with
PHAT filtering does not depend on the spectral content of the
measured signal. It is only affected by the signal bandwidth,
the number of microphones and the distance between them.

The signal independence we show here is one of the
reasons why the PHAT approach performs so well in real
scenarios with human speech involved, in which the signal
content is largely unknown.

3.5. Non-anechoic propagation

The anechoic propagation model described in Eq. (8)
only considers the direct path between the source and
each microphone. In real indoor scenarios, where many
reflective surfaces (i.e. walls, ceiling, floor, etc.) are present,
some acoustic energy from the source is reflected on these
surfaces and reaches the microphones.
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The room's effect on the signal can be generically
characterized by the room impulse response hðt; r;mnÞ
[29], which depends on the position of both source and
receptor (microphone). The signal received in each micro-
phone can be calculated as follows:

xnðtÞ ¼ hðt; r;mnÞ n xðtÞþnðtÞ; ð10Þ
where n is the convolution operator and n(t) represents
additive noise.

In [28] a very detailed signal propagation model for a
general enclosure is presented. However, it is too complex
to be handled, so that certain (reasonable) assumptions are
usually employed in the literature:

� The sources emit spherical sound waves. We know that
in real situations the human head shows a more
complex, frequency dependent radiation pattern [30].

� The medium is homogeneous and non-dispersive (so
that the sound speed c is constant and frequency

independent), and lossless (it does not absorb energy
from propagating waves).

� The acoustic signal travels from the source position to
the destination microphone through different paths
(each one composed of several subpaths), as the signal
is reflected by the corresponding surfaces.

� The frequency shaping and dependence effect of the
source, microphones and surface reflections are
ignored, assuming them to be constant and frequency
independent for all signal paths.

� The background noise is assumed negligible [10] and
not correlated with the reverberation effect [13], as we
are mainly concerned with the reverberation effects .

The aforementioned restrictions are equivalent to con-
sider the room impulse response as the sum of a finite
number of delayed Dirac deltas, each of them multiplied
by a factor inversely proportional to the delay:

h t; r;mnð Þ ¼
XK
k ¼ 0

Akδðt�τn;kðrÞÞ
4πcτn;kðrÞ

; ð11Þ

where Kþ1 is the number of different paths from the
source r to the destination microphone mn, and τn;kðrÞ is

the propagation delay between r and mn for path k. Ak is
the attenuation factor due to reflections along the path k.
The index k¼0 will be used for referring the direct path,
therefore τn;0 rð Þ ¼ 1

c Jr�mn J and A0 ¼ 1.
In conclusion, applying the former considerations to Eq.

(10), we obtain the following expression for the signal
received in each microphone:

xn tð Þ ¼
XK
k ¼ 0

Akxðt�τn;kðrÞÞ
4πcτn;kðrÞ

¼
XK
k ¼ 0

G
τnn;kðrÞ

x t�τn;k rð Þ� �
; ð12Þ

where G¼ 1
4πc is constant among all paths and τnn;k rð Þ ¼ τn;kðrÞ

Ak

combines the effects on the amplitude of Ak and τn;kðrÞ.
The Fourier Transform of Eq. (12) is

Xn ωð Þ ¼
XK
k ¼ 0

G
τnn;kðrÞ

X ωð Þe� jτn;kðrÞ: ð13Þ

Using the signal model described by Eq. (13) in Eq. (7),
we get

where, in order to simplify the notation, τn;k and τnn;k are
used instead of τn;kðrÞ and τnn;kðrÞ. Indices j1 and j2 refer to
the first and second microphones of the pair pj, respec-
tively. Therefore, Δτk;lðpj; rÞ ¼ τj1 ðr; kÞ�τj2 ðr; kÞ is the dif-
ference in arrival times of the acoustic signal to reach the
first microphone of the pair pj ðmj1Þ using path k, and the
second microphone of the pair pj ðmj2Þ using path l.

The denominator term in Eq. (14) can be developed as
follows:

XK
k ¼ 0

XK
l ¼ 0

e� jωðτj1k þτj2 lÞ

τnj1kτ
n

j2l

�����
�����

¼
XK
k ¼ 0

XK
l ¼ 0

XK
m ¼ 0

XK
n ¼ 0

cos ω τj1kþτj2l�τj1m�τj2n
� �� �
τnj1kτ

n

j2 l
τnj1mτ

n

j2n

 !1=2

:

ð15Þ
The last expression in Eq. (15) can be rewritten as

XK
k ¼ 0

XK
l ¼ 0

1
ðτnj1kτ

n

j2 l
Þ
2

þ
X
k1

X
l1

X
k2

X
l2

cos ω τj1k1 þτj2l1 �τj1k2 �τj2 l2
� �� �
τnj1k1τ

n

j2 l1
τnj1k2τ

n

j2l2

0
@

1
A

1=2

;

ð16Þ
where the first term includes all the terms in Eq. (15) such
that k¼m and l¼n.

P qð Þ ¼
XNP

j ¼ 1

Z ω0

�ω0

2

Re
PK

k ¼ 0
GXðωÞ
τnj1k

e� jωτj1k

 ! PK
l ¼ 0

GXnðωÞ
τnj2 l

eþ jωτj2 l

 !
ejωΔτðpj ;qÞ

 !

PK
k ¼ 0

GXðωÞ
τnj1k

e� jωτj1k

�����
����� PK

l ¼ 0
GXðωÞ
τnj2l

e� jωτj2 l

�����
�����

dω

¼
XNP

j ¼ 1

Z ω0

�ω0

2

Re
PK

k ¼ 0
PK

l ¼ 0
ejω Δτðpj ;qÞ�Δτk;lðpj ;rÞÞð Þ

τnj1kτ
n

j2l

 !

PK
k ¼ 0

PK
l ¼ 0

e� jωðτj1k þτj2 lÞ

τnj1kτ
n

j2l

�����
�����

dω

¼
XNP

j ¼ 1

XK
k ¼ 0

XK
l ¼ 0

2
τnj1kτ

n

j2 l

Z ω0

�ω0

cos ðωðΔτðpj;qÞ�Δτk;lðpj; rÞÞÞPK
k ¼ 0

PK
l ¼ 0

e� jωðτj1k þτj2 lÞ

τnj1kτ
n

j2 l

�����
�����

dω ð14Þ
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Based on the Law of large numbers, and under the
reasonable assumption that the distribution of the cosine
argument in Eq. (16) is uniform, it can be demonstrated that
the expected value of the second term in Eq. (16) is zero [10,
Chapter 2.3]. Consequently, we can approximate the

denominator in Eq. (14) as D rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k ¼ 0
PK

l ¼ 0
1

ðτn
j1k
τn
j2 l
Þ2

r
,

which is a frequency-independent term.
From the discussion above, we finally get the expres-

sion of the SRP at any given location q:

P qð Þ ¼
XNP

j ¼ 1

XK
k ¼ 0

XK
l ¼ 0

2
τnj1kτ

n

j2 l

Z ω0

�ω0

cos ðωðΔτðpj;qÞ�Δτk;lðpj; rÞÞÞ
DðrÞ dω

¼
XNP

j ¼ 1

XK
k ¼ 0

XK
l ¼ 0

4
τnj1kτ

n

j2l
DðrÞ

sin ðω0ðΔτðpj;qÞ�Δτk;lðpj; rÞÞÞ
Δτðpj;qÞ�Δτk;lðpj; rÞ

¼
XNP

j ¼ 1

XK
k ¼ 0

XK
l ¼ 0

4ω0

τnj1kτ
n

j2 l
DðrÞsincðω0ðΔτðpj;qÞ�Δτk;lðpj; rÞÞÞ

" #
;

ð17Þ

which is a linear combination of sinc functions sinc xð Þð
¼ sin ðxÞ

x Þ. Again, each of the terms in the sum for j of Eq.
(17) (the term within brackets) corresponds to the GCC-
PHAT model for each microphone pair. Note that the
anechoic pattern expressed in Eq. (9) is a particular case
of the non-anechoic pattern when K¼0.

From (17) we derive the following result for reverber-
ant conditions:

In non-anechoic conditions, the steered response pattern
with PHAT filtering does not depend on the spectral content
of the measured signal. It is only affected by the signal
bandwidth, the number of microphones, the distance
between them and the environment's impulse response.

3.6. Practical considerations

In the previous section, continuous time signals were
assumed and the continuous time Fourier Transform was
used to determine the spectral content of the acoustic
signals. In practice we use discrete representations of the

signals and we apply the Discrete Fourier Transform (DFT)
to a given signal window.

Considering that Ts ¼ 1
f s

is the sampling period,
ŷðn;qÞ ¼wðnÞyðnTs;qÞ is the windowed and sampled ver-
sion of yðt;qÞ defined in Eq. (1), where w(n) is the used
window function.

Assuming that we are working with a signal window of
NW samples, we can write

PDFT qð Þ ¼
XNW �1

n ¼ 0

ŷðn;qÞ
�� ��2 ¼ 1

NF

XNF �1

k ¼ 0

jŶ ðk;qÞj2; ð18Þ

in which we have applied Parseval's Theorem, and where
Ŷ ðk;qÞ is the DFT of ŷðn;qÞ2.

Given a properly selected windowing function, we can
approximate Ŷ k;qð Þ � Y 2πk

NFTs
;q

� �
, to avoid further compli-

cating the mathematical development. Therefore

PDFT qð Þ � 1
NF

XNF �1

k ¼ 0

Y
2πk
NFTs

;q
� 	����

����
2

¼ 1
NF

XN
i ¼ 1

XN
j ¼ 1

XNF �1

k ¼ 0

Xi
2πk
NFTs

� 	
Xn

j
2πk
NFTs

� 	

Xi
2πk
NFTs

� 	����
���� Xj

2πk
NFTs

� 	����
����
ejð2πk=NFTsÞΔτijðqÞ:

ð19Þ

Since the DFT is periodic in frequency, XðωÞ is bandlimited,
and f 0o fs

2, we can restrict the sum to kA ½�M0;M0�, being
M0 the DFT index corresponding to the signal bandwidth
(ω0):

M0 ¼
ω0TsNF

2π


 �
¼ f 0NF

f s


 �
: ð20Þ

Grouping in pairs, in the same way as we did in Section 3.3,
Eq. (19) can be rewritten as

PDFT qð Þ ¼ 1
NF

XNP

j ¼ 1

XM0

k ¼ �M0

2
Re Xj1

2πk
NFTs

� 	
Xn

j2

2πk
NFTs

� 	
ejð2πk=NFTsÞΔτ pj ;qð Þ

� 	

Xj1
2πk
NFTs

� 	����
���� Xj2

2πk
NFTs

� 	����
����

:

ð21Þ

Microphone
Arrays

Table

Fig. 1. IDIAP Smart Meeting Room for AV16.3 recordings. (a) Room layout showing the centered table, and the microphones arranged in two circular arrays.
(b) Sample of recorded video frame showing the arrays area. (For a better visualization of the color information in these figures, the reader is referred to the
web version of this paper.)
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Taking into account the propagation model described
in (8), we can rewrite (21) as

PDFT qð Þ ¼ 1
NF

XNP

j ¼ 1

XM0

k ¼ �M0

2 cos
2πk
NFTs

ðΔτðpj;qÞ�Δτðpj; rÞÞ
� 	

¼ 1
NF

XNP

j ¼ 1

2 sin
2π M0�0:5ð Þ

NFTs
ðΔτðpj;qÞ�Δτðpj; rÞÞ

� 	

sin
π

NFTs
ðΔτðpj;qÞ�Δτðpj; rÞÞ

� 	 ;

ð22Þ
in which the DFT effects are implicit. Note that the non-
anechoic model described in Eq. (12) can be also applied,
resulting in

PDFT qð Þ ¼ 1
NF

XNP

j ¼ 1

XK
k ¼ 0

XK
l ¼ 0

2 sin
2π M0�0:5ð Þ

NFTs
ðΔτðpj;qÞ�Δτðpj; rÞÞ

� 	

τnj1kτ
n

j2 l
D rð Þ sin ð π

NFTs
Δτðpj;qÞ�Δτðpj; rÞÞ
� �

2
664

3
775;

ð23Þ
where the term within brackets corresponds to the GCC-
PHAT model for each microphone pair.

In practical applications, the Fast Fourier Transform (FFT) is
used for the DFT, and in order to avoid its circular convolution
effects, zero-padding is needed. So, assuming that we are
working with a signal window duration of TW seconds,
sampled at f s ¼ 1

Ts
Hz, the number of samples needed after

zero-padding is at least NF ¼ 2TWf s. In addition, for efficient
execution of the FFT, NF must be a power of 2, so that the

number of samples needed is NF ¼ 2 ⌈log2 TW f sð Þ⌉þ1
� 

.
If NF is high enough (more precise details about this

approximation can be found in Section 6.3), it can be easily
shown that Eqs. (22) and (9) are proportional, so that
PDFT qð Þ ¼ 1

2πf s
P qð Þ, thus validating also PDFT ðqÞ to accurately

represent PðqÞ.

4. Experimental setup

The model proposed here has been evaluated using
audio recordings from the AV16.3 database [31], an audio–
visual corpus recorded in the Smart Meeting Room of the
IDIAP research institute, in Switzerland.

The IDIAP Meeting Room (shown in Fig. 1) is a 8:2 m�
3:6 m� 2:4 m rectangular space containing a centrally
located 4:8 m� 1:2 m rectangular table, on top of which
two circular microphone arrays of 10 cm radius are located,
each of them composed by 8 microphones. The centers of
the two arrays are separated by 80 cm and the origin of
coordinates is located in the middle point between the two
arrays. The arrays can be also seen in Fig. 2a and b, in which
each one shows different scenarios that were used in the
experiments, displaying only the relevant section of the
room. Fig. 2c shows the microphone numbering notation,
and different microphone arrangements that were tested:
2Pshort and 2Plong using two microphone pairs (with differ-
ent microphone separations), and 6P using six microphone
pairs. Experiments considering all microphone pairs have
also been done. A detailed description of the meeting room
can be found in [32].

The audio recordings are synchronously sampled at
16 KHz, and the complete database along with the corre-
sponding annotation files containing the recordings
ground truth is fully accessible on-line at [33]. It is
composed by several sequences or recordings which
range in the number of speakers involved and their
activity. In this paper we will just focus on sequence 01,
in which a single male speaker generates digit strings in
16 static positions (which can be seen as small circles in
Fig. 2b), distributed along the room. The sequence dura-
tion accounts for 208 s in total, with 2248 ground truth
frames.

The audio sequence is assigned a corresponding anno-
tation file containing the ground truth positions (3D
coordinates) of the speaker's mouth at every time frame
in which that speaker was talking. The frame shift resolu-
tion was defined to be 40 ms.

5. Model validation

In this section the validity of the proposed model is
checked, first against simulated data, and then using real
data. In both cases the results will show that the model fits
the validation data with high precision. The validation
strategy is designed as follows: First we assess the validity

Fig. 2. Geometrical details for the experiments carried out. In (a) and (b) only the relevant room section is shown. (a) Positions for validation with
simulated data. (b) Positions for validation with real data. (c) Numbering scheme for microphones and naming notation for arrangements of pairs of
microphones.
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of the model to be able to accurately predict the contribution
of a single microphone pair to the SRP-PHAT map (each GCC-
PHAT model term in Eqs. (9), (17) and (23)), using simulated
data: if the accuracy is high, the model is also expected to be
useful to predict the SRP-PHAT behavior, given that the SRP-
PHAT map is built by adding the contribution of all the
selected microphone pairs, as expressed in Eq. (7). Next, and
also on simulated data, we show how the modeled single
pair contributions are combined to form the full SRP-PHAT
maps, showing the accuracy of the model prediction. Finally,
we address the evaluation using real data, checking the
ability of the model to accurately predict the real full SRP-
PHAT maps for varying geometrical conditions.

5.1. Validation with simulated data: GCC-PHAT prediction
performance

The first validation experiments are based on simulated
data, with the following characteristics (refer to Fig. 2 for
geometrical details):

� The sound propagation effects have been simulated
considering a room with the same dimensions as the
IDIAP Meeting Room. The simulated waveforms have
been generated using the impulse responses from the
source to each microphone, computed using the image
method model [34]. To ease the simulation and inter-
pretation, only first order reflections have been

considered, with all reflection coefficients set to 0.95
(corresponding to an absorption coefficient of 0.10).

� A single microphone pair is used, with a separation of
20 cm between them, corresponding to microphones
m1 and m5 in the AV16.3 setup.

� The received array power is calculated steering the array
towards different angles along a semi-circle centered at
the microphone pair center, with radius of 1.4 m.

� The speaker is moving also along the same semi-circle.
� In order to perform an angular sweep, 181 different

angular positions separated 11 between each other
were evaluated.

The validation was done on the 181 different source
positions, and some example results are shown in Fig. 3, in
which we have evaluated the situation for the speaker
located at different angles (01, 181, 361, 541 and 721, as
shown in Fig. 2a), while the array was being steered from
�90 to þ90. Fig. 3 shows, for each steering angle, the
comparison between the steered response power generated
by the model (shown as solid lines and corresponding to
the GCC-PHAT model for the given microphone pair (the
term within brackets in Eq. (23))) with the actual steered
power calculated using the simulated waveforms as they
propagate in the environment (shown as stems, correspond-
ing to the GCC-PHAT function for the given microphone
pair). Note that the resolution of the simulated measure-
ments is restricted by the sample rate: the angular position
of the measurements correspond with the samples of the
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Fig. 3. Comparison between the steered power response generated by the model (solid line) and that calculated using simulated waveforms in the AV16.3
environment (stems). Results for the speaker in given angles and the array steered from �901 to þ901 are shown. (a) 01, (b) 181, (c) 361, (d) 541, (e) 721.
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correlation function. On the other hand, the proposed
model is continuous, what means that it could be used for
increasing the resolution in localization.

To further assess the model precision, in Fig. 4, we show
the comparison between the steered response power gen-
erated by the model for each steering angle (shown as a
solid line) and the average actual steered power calculated
using the simulated waveforms (shown as dots). In Fig. 4 we
have also added the intervals corresponding to the standard
deviation of the error between the model and the simulated
response. It can be seen that the error deviation is very
small along the angular variation, with a slight increment
around the 01 angle, due to the increased ambiguity given
the symmetry of the room, that leads to different acoustic
paths to generate the same delays.

To summarize, from Figs. 3 and 4, we can clearly see
that the model is able to reproduce the main correlation
lobes generated by the effect of the direct path with high
precision, and also the spurious effects caused by rever-
beration (shown by lower amplitude sinc-like functions),
so that we can conclude that the agreement between the
model predictions and the simulated data is very high,
thus validating it from a theoretical perspective.

5.2. Validation with simulated data: SRP-PHAT prediction
performance

The second validation experiments are also based on
simulated data, following the same characteristics described
in the previous section. In this case we are interested in
showing how the proposed model is able to accurately

predict simulated SRP-PHAT maps, by combining the GCC-
PHAT responses of several microphone pairs.

For the IDIAP meeting room, all reflection coefficients
have been set to 0.86 (given that we do not have the precise
details on the materials of the real room surfaces, we have
estimated this reflection coefficient making reasonable
assumptions on these materials (painted concrete walls,
carpet on the floor, and fiberboard in the ceiling), averaging
their frequency absorption coefficients using the data
available at [35], and taking also into account the area of
the corresponding surfaces (using Sabine's formula [36]).
The estimated RT60 coefficient for this setup is 392 ms.

In the graphics showing the comparison of the SRP-PHAT
power maps (predicted by Eq. (23), or calculated), the plots
are provided from a top view of the room, spanning the full
room plan for a regular two-dimensional grid of 10 cm, at a
height of 61 cm above the microphone arrays (this height
was the ground truth one for sequence 01). The green point
represents the real (ground truth) speaker position, and the
black dots represent the positions of the microphones used.
In all the comparisons, three graphics are plotted:

� The graphics on the left will show the SRP-PHAT
acoustic power maps generated by the proposed model
(for example, the left graphic in Fig. 5a).

� The graphics in the middle will show the SRP-PHAT
acoustic power maps calculated using the acoustic
waveforms for a single selected frame (for example,
the middle graphic in Fig. 5a).

� The graphics on the right will show the average
SRP-PHAT acoustic power maps, averaging for all the
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Fig. 4. Comparison between the steered power response generated by the model (solid line) and the average behaviour calculated using simulated
waveforms in the AV16.3 environment, plus the standard deviation of the error (between the model and the simulation) for each angle (intervals). Results
for different angles are shown. (a) 01, (b) 181, (c) 361, (d) 541, (e) 721.
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Fig. 5. Comparison between the SRP-PHAT map predicted by the model (left graphics), the simulated SRP-PHAT map (middle graphics), and the average
(simulated) SRP-PHAT map (right graphics), for several speaker positions, and using the 2Pshort microphone arrangement. See Fig. 2 for geometrical
references. (a) For position at angle 01. (b) For position at angle 181. (c) For position at angle 361. (d) For position at angle 541. (e) For position at angle 721.
(For a better visualization of the color information in these figures, the reader is referred to the web version of this paper.)
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Fig. 6. Comparison between the SRP-PHAT map predicted by the model (left graphics), the simulated SRP-PHAT map (middle graphics), and the average
(simulated) SRP-PHAT map (right graphics), for two speaker positions (at 01 and 721), and using different microphone arrangements. See Fig. 2 for
geometrical references. (a) For position at angle 01 (2Plong arrangement). (b) For position at angle 721 (2Plong arrangement). (c) For position at angle 01
(6P arrangement). (d) For position at angle 721 (6P arrangement). (e) For position at angle 01 (all pairs). (f) For position at angle 721 (all pairs). (For a better
visualization of the color information in these figures, the reader is referred to the web version of this paper.)
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Fig. 7. Comparison between the SRP-PHAT map predicted by the model (left graphics), the real SRP-PHAT map (middle graphics), and the average (real)
SRP-PHAT map (right graphics), for several speaker positions, and using the 2Pshort microphone arrangement. See Fig. 2 for geometrical references.
(a) For position 1. (b) For position 2. (c) For position 4. (d) For position 6. (e) For position 8. (f) For position 16. (For a better visualization of the color
information in these figures, the reader is referred to the web version of this paper.)
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Fig. 8. Comparison between the SRP-PHAT map predicted by the model (left graphics), the real SRP-PHAT map (middle graphics), and the average (real)
SRP-PHAT map (right graphics), for speaker positions 1 and 16, and using different microphone arrangements. See Fig. 2 for geometrical references. (a) For
position 1 (2Plong arrangement). (b) For position 16 (2Plong arrangement). (c) For position 1 (6P arrangement). (d) For position 16 (6P arrangement). (e) For
position 1 (all pairs). (f) For position 16 (all pairs). (For a better visualization of the color information in these figures, the reader is referred to the web
version of this paper.)
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frames in which the user was in the given position (for
example, the right graphic in Fig. 5a).

In Fig. 5 we evaluated the results for the positions in
the angles used in Figs. 3 and 4 (those emphasized in
Fig. 2a), using two pairs of microphones (the 2Pshort

arrangement shown in Fig. 2c, composed of pairs m1–m5

and m11–m15), being orthogonal to each other, and
belonging to the upper and lower arrays, respectively. This
particular arrangement allows us to easily identify the
expected hyperbolic shapes generated by each pair in the
SRP-PHAT map (given a microphone pair, the place of
points with equal time-difference of arrival is a hyperbola
in the two-dimensional case, being a hyperboloid of
revolution in the three-dimensional case), along with the
sinc-like behaviour expressed by the proposed model. The
figure shows an excellent agreement between the model
predictions and the simulated SRP-PHAT maps.

In Fig. 6 we show the comparison considering different
arrangements for the selected pairs of microphones
(Fig. 6a and b for the 2Plong arrangement shown in
Fig. 2c (using pairs m1–m13 and m5–m9), Fig. 6c and
d for the 6P arrangement shown in Fig. 2c (using
pairs m1–m5;m3–m7;m9–m13;m11–m15;m1–m13, and
m5–m9), and Fig. 6e and f using all available pairs or
microphones). In this case, only the positions at angles 01
and 721 are shown due to space constraints, and our target
is showing how the model is able to accurately cope with
very different microphone array topologies. Again, it can
be clearly seen that the predictions are very similar to the
simulated SRP-PHAT maps.

5.3. Validation with real data: SRP-PHAT prediction
performance

In order to assess how accurate our model is in real
scenarios, we have performed additional experiments
using real recordings.

The experiments consisted on generating the SRP-PHAT
acoustic power maps as predicted by the proposed model,
and comparing it with the real SRP-PHAT acoustic power
map calculated using the real acoustic waveforms from
sequence 01 in the AV16.3 database. The IDIAP meeting
room dimensions, with reflections up to order 2, have
been considered for the model generation process, with
the same acoustic assumptions discussed in the previous
section. The evaluation includes the results of the compar-
ison for several speaker positions (1, 2, 4, 6, 8 and 16,
emphasized in Fig. 2b), that were selected to provide
different acoustic situations, both in terms of distance
and angular position with respect to the arrays.

In Fig. 7 we initially evaluated the results with the
2Pshort arrangement for the microphone pairs (as in the
evaluation shown in Fig. 5), to allow for an easy identifica-
tion of the relevant effects (we again expect to see the
hyperbolic components with the sinc-like behaviour pre-
dicted by the model). From Fig. 7, it can clearly be seen
that, again, the predictions closely match the results with
real data for the different acoustic conditions, even when
the model predictions are generated using fixed and
frequency independent average reflection coefficients,

and that the acoustic model is based on the simplistic
image method model.

Following the same approach than in the previous
section, in Fig. 8 we next show the comparison considering
different arrangements for the selected pairs of micro-
phones (the same ones used for the evaluation shown in
Fig. 6: 2Plong , 6P and all), and only for positions 1 and 16
(due to space constraints). In this case, our target is again
showing how the model deals with very different micro-
phone array topologies. It can be clearly seen that even
with the varied situations, the maps generated by the
model accurately predict the real SRP-PHAT maps. It is
specially interesting to note the results of the real maps for
position 16 in Fig. 8, in which the maximum power value
does not coincide at all with the speaker position (the
green point). The fact that this is also correctly predicted
by the model could be effectively used to improve speaker
localization systems.

6. Model discussion

Given the parametric formulation of the proposed
model, some relevant conclusions can be deduced from
it. In this section, we will provide some discussion on the
effects of signal bandwidth, distance between micro-
phones, window size, and sampling frequency. For the
sake of simplicity, we will only consider the pattern
generated by a microphone pair, since the pattern of an
array of any number of elements can be expressed as the
sum of the contributions of all microphone pairs, as shown
in Eq. (7). All the considerations discussed here can be
easily extrapolated to any array topology.

6.1. Bandwidth considerations

The directivity patterns typically referred in the litera-
ture only take narrowband signals into account. This is not
appropriate for signals such as speech where the broad-
band assumption is mandatory.

The proposed model, as well as the SRP formulation,
integrates the response for the full signal bandwidth. This,
along with the PHAT filtering, increases the immunity of
the localization systems to the unknown spectral content
of the acoustic signals.

Given the inverse relationship between frequency and
wavelength, a better spatial resolution is expected for
broader bandwidths (provided that the power in the
higher frequencies is high enough compared with the
noise). The proposed model is also consistent with this
idea, and its analytic formulation contributes with two
additional advantages. First, it allows us to derive con-
straints on the optimal bandwidth to use, provided the
rest of system parameters, and, second, this optimization
can be directly related to the final system performance, as
the quality of the SRP-PHAT maps are directly related to
their performance, so that optimization metrics could be
derived from the model.

Fig. 9 shows the response power patterns predicted
by the model for different bandwidths ðf 0Af3 kHz;
4:5 kHz;6 kHzgÞ, where the increment in spatial resolution
as the signal bandwidth increases can be easily seen.
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In Fig. 11, and for two speaker positions (1 and 6 this
time), we show the model behavior as compared with
the real data, for different bandwidths
ðf 0Af3 kHz;4:5 kHz; 6 kHzgÞ, and using the same type of
graphics shown previously in Section 5.3. Again, there is
a high agreement between the predicted maps and the
real ones, and it is also clear the increment in spatial
resolution for increasing bandwidths (the width of the
hyperbolic regions gets narrower as the bandwidth
increases), both for the model predictions and those
calculated from the real data.

6.2. Distance between microphones

The distance between microphone elements is an
important factor for the design of microphone arrays.
Referring to Fig. 12, the time difference of arrival Δτðp; xÞ
between an acoustic source located at x and the micro-
phones of a given pair p can be expressed as

Δτ p; rð Þ ¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
xþd2pþDpRx sin ðθxÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
xþd2p�DpRx sin ðθxÞ

q� 	

�DpRx sin ðθxÞ
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
xþd2p

q ; ð24Þ

where c is the sound velocity, Dp ¼ 2dp is the distance
between the microphones, θx determines the angular
position of x from the microphone pair center, and Rx is
the distance from this center to x. The final approximation
uses the Taylor Series

ffiffiffiffiffiffiffiffiffiffi
1þx

p
¼ 1þ x

2þ⋯ to simplify the
equation.

In this section we will analyze the influence of the
distance between microphones, as compared to the dis-
tance to the speaker, in the received power pattern. Two
cases attending the source position are discussed, to finally
provide some insights on the spatial aliasing effects.

6.2.1. Far-field considerations
When the distance between the speaker and the

array is much higher than the distance between both

microphones2 ðRx⪢dpÞ, the power pattern does not depend
on how far the speaker is, as from Eq. (24):

Δτ p; rð Þ �Dp sin ðθxÞ
c

; ð25Þ

so that the power pattern will only depend on the arrival
angles, and the angular resolution could be improved by
increasing the separation between the microphones (see
Section 6.2.2 below, for details on spatial aliasing).

Using Eq. (25) in Eq. (22), we can get the expression of
the power pattern in far-field conditions:

PFF qð Þ ¼ PFF θq
� �¼ 4 sin ω0

Dp

c
sin ðθqÞ� sin ðθrÞ
� �� 	

Dp

c
sin ðθqÞ� sin ðθrÞ
� � ; ð26Þ

where θq and θr are the array steering and arrival angles
respectively.

Fig. 10 shows the predicted response power patterns for
different distances between microphones ðDpAf10 cm;

20 cm;40 cmgÞ, in the far-field case, in which we can see
how the angular resolution improves for increasing Dp.

On the other hand, when Rx⪡dp, the power pattern can
discriminate angle as well as distance, and the distance
between microphones is not relevant anymore as, from
Eq. (24):

Δτ p; rð Þ � 2Rx sin ðθxÞ
c

: ð27Þ

Using Eq. (27) in Eq. (22), we can get the expression of
the power pattern in this condition:

PNF qð Þ ¼ PNF Rq;θq
� �¼ 2c sin 2k0 Rq sin ðθqÞ�Rr sin ðθrÞ

� �� �
Rq sin ðθqÞ�Rr sin ðθrÞ

;

ð28Þ
where k0 ¼ ω0

c is the wavenumber at ω0. Eq. (28) shows
that the power pattern depends on the projection of the
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Fig. 10. Response Power Pattern for a microphone pair and different
distances between microphones ðf 0 ¼ 4:5 kHzÞ.
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Fig. 9. Response Power Pattern for a microphone pair and different signal
bandwidths ðDp ¼ 20 cmÞ.

2 The theoretical far-field criterion is Rx4
πD2

p

λ [28], but we have made
the ðRx⪢dpÞ assumption for simplicity, as this is not a critical limit for our
considerations.
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Fig. 11. Comparison between the SRP-PHAT map predicted by the model (left graphics), the real SRP-PHAT map (middle graphics), and the average (real)
SRP-PHAT map (right graphics), for different bandwidths and two speaker positions. See Fig. 2 for geometrical references. (a) For position 1 ðf 0 ¼ 1:5 kHzÞ.
(b) For position 6 ðf 0 ¼ 1:5 kHzÞ. (c) For position 1 ðf 0 ¼ 3 kHzÞ. (d) For position 6 ðf 0 ¼ 3 kHzÞ. (e) For position 1 ðf 0 ¼ 4:5 kHzÞ. (f) For position 6
ðf 0 ¼ 4:5 kHzÞ. (For a better visualization of the color information in these figures, the reader is referred to the web version of this paper.)
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source and steered positions on the line linking the
corresponding microphones (Rr sin ðθrÞ and Rq sin ðθqÞ).

In Fig. 13, and for two speaker positions (again 1 and 6),
we show the model behavior using two microphone pairs,
as compared with the real data (with the same graphical
information than the one shown in Section 5.3), and for

two microphone distances: 20 cm (corresponding to
microphone pairs m1–m5 and m11–m15 in AV16.3, as
shown in Fig. 2c), and 82:46 cm (which was selected as
the most suitable given the array topology, and corre-
sponding to pairs m1–m13 and m5–m9, as shown in
Fig. 2c). Again, there is a high agreement between the
predicted maps and the real ones, and it is also clear the
increment in spatial resolution for increasing distance
between microphones (the width of the hyperbolic regions
gets narrower as Dp increases).

6.2.2. Spatial aliasing
The microphone array theory states that spatial aliasing

occurs when Dp4λ
2. When it happens, grating lobes

appear in the array directivity pattern, negatively affecting
the array spatial discrimination.

Some authors have pointed out that the spatial Nyquist
criterion has limited importance for microphone arrays
[37], and specifically when considering broadband steered
response patterns [38]. The model proposed in this paper
is also able to explain this characteristic.Fig. 12. Geometrical details for Section 6.2.

0 0.5 1 0 0.5 1 0.2 0.4 0.6 0.8 0 0.5 1 0 0.5 1 0.4 0.6 0.8 1

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fig. 13. Comparison between the SRP-PHAT map predicted by the model (left graphics), the real SRP-PHAT map (middle graphics), and the average (real)
SRP-PHAT map (right graphics), for different microphone spacings and two speaker positions ðf 0 ¼ 1:5 kHzÞ. See Fig. 2 for geometrical references. (a) For
position 1 ðDP ¼ 20 cmÞ. (b) For position 6 ðDP ¼ 20 cmÞ. (c) For position 1 ðDP ¼ 82:46 cmÞ. (d) For position 6 ðDP ¼ 82:46 cmÞ.
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For narrowband signals, the main lobe of the power
pattern always appears in the steered direction, but the
position of the grating lobes changes with frequency. For a
broadband signal, the use of the SRP-PHAT approach
implies an integration over the full bandwidth, and equally
weighting all frequency components (due to the use of the
PHAT filtering). That way, the main lobes are coherently
merged, while the grating lobes are incoherently com-
bined, thus reducing the impact of spatial aliasing.

Fig. 14 shows a microphone pair power pattern for
three different directions (01, �451 and �901) when the
microphones are separated Dp ¼ 82:46 cm (same separa-
tion as the one shown for pairs in Fig. 2c). For this Dp,
aliasing should occur for frequencies above 206 Hz, well
below the considered bandwidth ðf 0 ¼ 1:5 kHzÞ. The model
prediction and the simulated waveforms were generated
in the same conditions than Section 5.1, except for the
assumption of anechoic propagation (in order to avoid
other effects). Neither the simulated SRP-PHAT power
pattern (shown as stems) nor the model prediction (shown
as a solid line, which perfectly fits the simulated SRP-PHAT)
exhibits aliasing effects, and only the main lobe is present
in both cases.

6.3. Signal and FFT window lengths

The temporal signal window length, TW o NF
2f s
, is also an

important parameter in real implementations of the SRP-
PHAT algorithm. It determines the length of the analyzed
audio segment, the computational demands, and the
response time of the system. The window length is, as
shown in Section 3.6, also related to the FFT size (NF).

Geometrically, the minimal required window length is
determined by the maximum distance between micro-
phones ðTW 42Dp

c Þ, in order to allow calculating all the
possible steering delays. However, in practical discrete time
implementations using signal windows, this condition
should become TW⪢Dp

c , because if this is not satisfied for
some microphone pair, the signal segment captured by a
microphone cannot be approximated as a simply time-
shifted instance of the segment captured by the other
microphone, as was assumed in Eqs. (8) and (13). This
limitation is usually not considered in the literature, as for
typical microphone arrays, the window length is long
enough. However, for applications combining microphones

with high Dp in spatially distributed microphone arrays, it
should be considered.

With the previous restrictions in the values of TW, it

follows that NF⪢2Dp f s
c . This expression also guarantees the

assumption made in Section 3.6 related to the fact that the
discrete and continuous versions of the model (Eqs. (22)
and (9)) are proportional when NF is high enough (as the
restriction in NF allows to apply the small angle approxima-
tion ( sin ðxÞ � x,for x-0) in the denominator of Eq. (22)).

Finally, longer window lengths may also lead to a worse
spectral estimation for moving sources, as the results will
integrate effects for different source positions.

7. Conclusions and future work

In this paper we have proposed an analytical model
that accurately predicts the acoustic power maps gener-
ated by the SRP-PHAT algorithm in both anechoic and non-
anechoic conditions. It is based on reasonable assumptions
about sound propagation and its interaction with the
environment. Our model predicts that SRP-PHAT (and
the corresponding GCC-PHAT functions from which SRP-
PHAT is calculated) depends on the topology of the array,
room's geometry and signal bandwidth, but not on the
spectral content of the signal. This last property is very
important in speaker localization as the speech signal is
unknown. Our model allows us to discuss the influence of
all these factors in the localization accuracy, specially in
reverberant scenarios. The model has been thoroughly
validated using simulated and real data for a wide range
of conditions (speaker positions, bandwidth and array
topology considerations). In the synthetic case we show
that our model predictions are very close to that provided
by the image method, a standard room acoustics simulator.
We also tested our model with real data from a publicly
available dataset. Our results are reproducible and verify
empirically that the model is able to reproduce SRP-PHAT
power maps with high fidelity in a real case.

Regarding potential applications, the proposed model is
parametric, analytical and differentiable in function of all
aforementioned factors and the position of an acoustic
source. We thus believe that this model can be of high
interest to improve SRP-PHAT (and GCC-PHAT) based
speaker localization in several ways. Given that the
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Fig. 14. Microphone pair power pattern in an anechoic simulation, showing no spatial aliasing effects. Dp ¼ 82:46 cm, aliased frequencies start at 206 Hz
and signal bandwidth is f 0 ¼ 1:5 kHz. (a) 01. (b) �451. (c) �901.
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geometry of the room is known, our model can predict the
effect of reverberation and can serve as a way to avoid
sampling the possible space of target positions. Also, as the
array topology is an input parameter of our model, it can
play an important role for improving methods that find
optimal array topologies [39,40] (for instance maximizing
the predicted accuracy), and in automatic array geometry
calibration systems [41,25,42]. In a similar case, given that
the room's geometry is also an input parameter, we believe
that our model can be used to contribute to the automatic
identification of room's geometry [43–45] from acoustic
measurements.

Regarding future work, we first plan to apply the
proposal to the localization system described in [46], that
will be clearly benefited, as it is based on the use of a
generative model with sparse constraints. Additionally,
and taking into account that the actual success of the
model application depends on the availability of the room
geometrical details and the array topology, the integration
of the proposal with automatic calibration and room
geometry estimation strategies will also be addressed.
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Abstract

This paper presents a novel approach for indoor acoustic multi-source localization using
sensor arrays. This new approach is based on the reliable assumption that only few punctual
sources are active at the same moment, and the coherence between them is small. The
position of the active sources is determined by fitting the measured GCC-PHAT to a model
imposing sparse constraints. The employed model has been previously described in the
literature for a single source, this paper proves that it behaves linearly for multiple sources
if small coherence between them is assumed

1 Introduction

The acoustic source localization methods are the starting point of other techniques like voice
enhancing using beamforming. Therefore, acoustic source localization has received significant
attention lately as a mode of automatic tracking of persons, and as a complement to other existing
alternatives of tracking, e.g. the CHIL (Computer in Human Interaction Loop) project [45]

Many approaches exist in the literature, all of them using microphone arrays as a non intrusive
audio acquisition method. These can roughly be divided in three categories [6, 18]: i) two-stage
time delay estimation based methods, ii) one-stage beamforming based methods, and iii) high-
resolution spectral-estimation based methods. Methods in iii) are not able to efficiently cope
with real-world conditions (mainly noise and reverberation issues), making i) and ii) the leading
methods.

Methods in i) are composed of two stages: in the first one they estimate the time-difference
of arrival (TDOA) of signals between pairs of microphones [5]. This is usually done using gen-
eralized cross-correlation (GCC) techniques [23]. Among the possible weighting functions, the
Phase Transform (PHAT) has been found to perform very well under realistic acoustical environ-
ments [46], leading to the GCC-PHAT [23] (also known as the Crosspower-Spectrum Phase [29]).
There are also alternative methods, such as those based on Blind Source Separation [7], or those
using a likelihood function of phase differences [30]. In a second step, the TDOA information is
combined with knowledge of the microphones’ positions, using optimization techniques (maxi-
mum likelihood, least squares, spherical interpolation, etc.), to generate a spatial estimator of the
source position [6,18,33]. The methods in i) are usually not well suited to multisource scenarios,
and their main problem is their sensitivity to errors in the TDOA estimation, that can be hardly
corrected if severe enough [17,44].
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On the other hand, beamforming [19] based techniques estimate the position of the source
by sampling a set of possible spatial locations and computing a beamforming function at each
location. The approach then chooses the source location that maximizes a statistic that is
maximum when the target position matches the source location. For instance in SRP, which is
the simplest beamforming method, the statistic is based on the signal power received when the
microphone array is steered in the direction of a specific location. SRP-PHAT is a widely used
algorithm for speaker localization based on beamforming. It was first proposed in [17] 1 and is a
beamforming based method that combines the robustness of the steered beamforming methods
with the insensitivity to signal conditions afforded by the PHAT filter. The classical delay-and-
sum beamformer used in SRP is replaced in SRP-PHAT by a filter-and-sum beamformer using
PHAT filtering to weight the incoming signals.

The main problem with beamforming methods is their high computational cost, provided that
they have to sample all potential positions of the space, labeling all local maxima as position
candidates for acoustic sources.

This paper focuses on audio-based localization in a very general scenario, where unknown
wide-band audio sources (e.g. human voice) are captured by a set of microphone arrays placed
in known positions. The main objective of the paper is to use the GCC-PHAT correlations
computed from the signals captured by the microphone arrays to robustly obtain the position of
the active acoustic sources.

We propose an optimization approach to fit the generative model proposed in [42] to noisy
GCC-PHAT data. We exploit the fact that only a few speakers are expected to be active at the
same time. This simple idea is modeled using sparse constraints in the optimization task.

The proposed approach, unlike methods in i), takes advantage of all the valuable information
in GCC-PHAT. It has the same philosophy as the beamforming based methods, which combines
the GCC-PHAT measures in a robust manner, but since we use a generative model, our approach
is able to perform hiper-resolution even when only few microphones are available. Furthermore,
the proposed method is well suited for multi-source scenarios.

This paper has a limited experimental section where it is shown that our model-based ap-
proach has results similar to SRP-PHAT in a single source-scenario but improving the fine error.
In multi-source scenarios, we also show some qualitative results of the promising behavior of this
approach.

1.1 Notation

Real scalar values are represented by lowercase letters (e.g. δ). Vectors are by default arranged
column-wise and are represented by lowercase bold letters (e.g. x). Matrices are represented by
uppercase bold letters (e.g. M). Upper-case letters are reserved to define vector and set sizes
(e.g. vector x = (x1, · · · , xN )> is of size N), and x> denotes transpose of vector x. The l2

norm of a vector ‖x‖2 =
(
|x1|2 + · · ·+ |xN |2

) 1
2 will be written by default as ‖.‖ for simplicity.

Calligraphic fonts are reserved to represent ranges or sets (e.g., R for real or generic sets G).
Continuous time signals are represented by scalar functions of t variable as for instance x(t).
Discrete time signals use k to denote discrete time samples. The Fourier transform of a continuous
signal x(t) is represented with complex function X(ω), with X∗(ω) being the complex-conjugate
of X(ω) and |X(ω)| =

√
X∗(ω)X(ω). Re(X(ω)) and Im(X(ω)) are the real and imaginary parts

of X(ω) respectively. We refer to supp(.) as the support function.

1Although the formulation is virtually identical to the Global Coherence Field (GCF) described in [29].
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1.2 Paper Structure

The rest of paper is distributed as follows. In section 2 we provide the state-of-the-art in sparse
representation of signal an sparse source localization. Section 3 recall those acoustic source
localization based on GCC.In section 4 we describe the redundancy of the previous methods
when PHAT filtering is in use. We extend the model proposed in [42] to the multisource case.
In section 6 we propose new algorithms for acoustic source localization using sparse constrains.
We also provide some experimentation to validate the proposed algorithms using real data in
section 7. Finally, conclusions are drawn in section 8.

2 State of the art

2.1 Sparse Representation of Signals

Many areas of science share the principle of parsimony as the central criterion: the simplest
explanation of a given phenomenon is preferred over more complicated ones. This brilliant
idea has been recently applied to the representation of signals using overcomplete basis sets,
sometimes called dictionaries in the machine learning discipline. As a difference with respect
to traditional basis functions (e.g. Fourier basis functions), overcomplete dictionaries have more
degrees of freedom than those necessary to represent the signal. The mathematical tool to
impose parsimony in the representation of a signal, when several choices are available, is given
by imposing the so-called sparse constraints. The basic idea is to use the lowest amount of
coefficients to represent a signal with the basis functions. Sparse constraints, if applicable, allow
to beat up several theoretical barriers in signal compression and representation [4, 9].

The main way sparsity is imposed is by using optimization approaches, where the l0 norm is
the usual way to impose sparsity to vectors [9].

Most of the problems in which sparsity is included using the l0 norm are very difficult to
solve. Several methods have been proposed to find sparse representations, including brute force
approaches as well as more computationally efficient approximate methods such as ’non linear
programming’ [31], and greedy pursuit [16, 36, 38]. Among all approximate solutions, l1 norm
based convex relaxations have flourished in the literature. Among them, we can be highlight the
Basis Pursuit method [13,39], originally introduced by [14] almost 40 years ago, but more recently
revisited with a profound theoretical study in the past decade, due to its intensive use in the
modern compressive sensing techniques [4, 9]. These methods provide very effective polynomial
time algorithms that, under certain circumstances, are even equivalent to the original l0 based
problems [9, 39].

2.2 Sparse Source Localization

In last few years, sparse techniques explained above have been applied to the source localization
problem in very different fashions.

In [26,27], a localization approach based on sensor arrays is proposed. The signal obtained in
each sensor is expressed as a linear combination of an attenuated and phase shifted version of the
original and known signals emitted by the source. These conditions form an overcomplete linear
model, where, thanks to sparse constraints, the position of the sources is given. Also in [26, 27]
they propose to use singular value decomposition (SVD) to reduce problem size and filter noise
in problems using multiple time samples.

Numerous modifications of the ideas proposed in [26] have been further developed. For
example, in [35] an adaptive algorithm to dynamically adjust both the overcomplete basis and
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the sparse solution is proposed. Also, the concept of Compressive Sensing [9] has been used
in order to carry out distributed localization, reducing the information transmitted between
sensors. Nevertheless, the sparse source localization algorithms discussed above, don’t perform
well and are not properly tested in real acoustic reverberant environments due to the input
signals coherence caused by multipath.

In acoustic environments, sparse l1 relaxations are employed to acoustically model the room
only using a reduced number of microphones in [2]. However, only simple rooms (four walls, floor,
and ceiling) can be modeled, and a loudspeaker emitting a known sound pattern is required.
Using this technique in a previous training step, has been proved to be useful to improve source
localization [32].

More recently, a novel technique for source localization in reverberant environments using
wavefield sparse decomposition has been proposed in [12]. However, although it shows promising
performance, the experimental results are only based on simulations and narrowband signals,
which make their approach not applicable to speech signals, which is our target scenario.

3 Review of GCC based approaches

In this section we will recall the Generalized Cross Correlation and some classical procedures
for source localization based on it. Some common characteristics of these algorithms are that 1)
they are simple, 2) they can be used for any array topology, and 3) they don’t require any extra
knowledge about the signal, the noise or the room/environment. All those features make GCC
based approaches to be fast, robust, and suitable for realistic scenarios.

3.1 The Generalized Cross Correlation

Let us assume that we equip an indoor environment with an array ofN microphonesM = {m1,m2, . . . ,mN},
where mi = (mix,miy,miz)

> is a three-dimensional vector denoting the position of the micro-
phone i from a reference coordinate origin.

Given this setup, let’s assume that an acoustic source is located at the generic position
r = (rx, ry, rz)

>, emitting an acoustic baseband signal x(t). We denote as xi(t) the signal received
by the microphone located at mi. The Generalized Cross Correlation (GCC) [23] obtained for
each pair of microphones, mi and mj can be expressed as:

Ri,j(τ) =
1

2π

∫ +∞

−∞
Ψij(ω)Xi(ω)X∗j (ω) ejωτ dω , (1)

where Xn(ω) is the Fourier Transform of xn(t), and Ψij(ω) is a weighting function that is chosen
to optimize a performance criteria. A number of such functions has been studied in the literature,
yielding the different variants of GCC [23].

Ideally, the τ for which Ri,j(τ) is maximized will correspond with the time difference of arrival
(TDOA) between the two microphones. Note that the range of possible TDOA values is limited
by the physical separation between the pair of microphones, |τ | ≤ 1

c‖mi −mj‖, where c is the
speed of the sound in air. Therefore, the TDOA estimate is calculated as

τ̂i,j = arg max
|τ |≤Dij

Ri,j(τ) , (2)

where Di,j = 1
c‖mi −mj‖ is the distance between the microphones i and j.
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3.2 Time Delay Based Approaches

The former TDOA estimation is the base of the TDOA approaches. These methods are based
on a two-step procedure. First, they estimate the pairwise TDOA using some variant of GCC.
In a second step, the time-difference of arrival information is combined with knowledge of the
microphones’ positions to generate a Maximum Likelihood (ML) spatial estimator made from
hyperboloids intersected in some optimal sense [6, 18].

The main problem of these methods is their robustness. In other words, since only the
pairwise TDOA estimates are used in the second stage, an accurate estimation of the time delay
is essential for a good performance of these methods.

Coherent noise and multi-path due to reverberation are the two major sources of error in time
delay estimation, so that different approaches have been proposed to deal with them. A basic
method consists in making the GCC function more robust by de-emphasizing the frequency-
dependent weighting. Particularly, choosing the weighting function Ψij(ω) as:

Ψij(ω) =
1

|Xi(ω)X∗j (ω)| =
1

|Xi(ω)| |Xj(ω)| , (3)

leads to the GCC-PHAT method, which has been empirically proved to reduce the influence of
multipath in the GCC of a signal arriving to two different microphones in a reverberant acoustic
environment. The Phase Transform (PHAT) [23, 42] has received considerable attention as the
basis of speech source localization systems due to its robustness in real world scenarios [46].

Also, after the first step, the TDOA estimation can be estimated by taking advantage of the
redundancy in TDOA measurements [22,34], and then proceed with the second step. For instance,
in [44], the algebraic properties of a kind of matrices constructed from TDOA measurements are
used in order to remove outliers in the TDOA estimations.

3.3 Steered-Beamformer-Based Locators

The previously described two-stage process requiring time-delay estimation prior to the actual
local location evaluation is suboptimal. The TDOA estimation procedure represents a significant
data reduction, hence it degenerates the maximum theoretical localization performance.

Beamforming based techniques [19], attempt to estimate the position of the source, by maxi-
mizing or minimizing a spatial statistic associated with each position. For instance, in the Steered
Response Power (SRP) approach, which is the simplest beamforming method, the statistic is
based on the signal power received when the microphone array is steered in the direction of a
specific location. Therefore, the position of the source is supposed to be consistent with the
position corresponding with the maximum estimated signal power.

Let q = (qx, qy, qz)
> be a generic target location at which we steer the microphone array.

Then the resulting beamformed signal when the array is steered to q is defined as (also including
the frequency domain expression):

y (t,q) =

N∑

n=1

xn (t+ τn(q))
F←→ Y (ω,q) =

N∑

n=1

Xn(ω)ejωτn(q), (4)

where τn(q) is the propagation delay between mn and q, which is calculated as τn(q) = 1
c‖q−

mn‖. The set of signals x1(t), · · · , xN (t) are aligned compensating the propagation delays from
the target position q to each microphone mn. Usually the delay-and-sum beamformer, is general-
ized applying some adaptive filtering Hn(ω) to the signals received by the microphones, yielding
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the filter-and-sum beamformer:

Y (ω,q) =

N∑

n=1

Hn(ω)Xn(ω) ejωτn(q) . (5)

As stated above, the Steered Response Power (SRP) can be expressed as the output power of
the signal received from a filter-and-sum beamformer of N elements, but it can also be expressed
in terms of the GCC [18]:

P (q) =

∫ ∞

−∞
|Y (ω,q)|2 dω =

=

N∑

i=1

N∑

j=1

∫ ∞

−∞
Hi(ω)H∗j (ω)Xi(ω)X∗j (ω) ejω∆τij(q) dω

= 2π

N∑

i=1

N∑

j=1

Ri,j (∆τij(q)) ,

(6)

were ∆τij(q) = (τi(q)− τj(q)) is the time difference of arrival between the signals arriving at
microphones i and j, after being generated by a source placed at q, and Hi(ω)H∗j (ω) = Ψij(ω).
A particular case of SRP is when GCC-PHAT is used in equation (6) yielding SRP-PHAT, which
is a widely used algorithm for speaker localization.

Assuming that xn(t) is a baseband signal with bandwidth ω0 (Xn(ω) = 0, ∀ω > ω0) equa-
tion (6) can be expressed as follow:

P (q) = 2Nω0 +

N∑

i=1

N∑

j=1
j 6=i

∫ ω0

−ω0

Xi(ω)X∗j (ω)

|Xi(ω)||Xj(ω)| e
jω∆τij(q) dω , (7)

In equations (6) and (7), the terms where i = j represent the power received by each single

microphone. These terms have a trivial solution (
∫ ω0

−ω0

Xi(ω)X∗
j (ω)

|Xi(ω)||Xj(ω)|dω = 2ω0 ,∀i = j) which

doesn’t depend on the steering position, so they only represent a known offset (2Nωo) that can
be easily removed from equation (7). Without loss of generality, we will not take this offset term
into account hereinafter (this will imply the appearance of negative values in P (q)).

To ease further mathematical development, we group the microphones in different pairs,
described as elements in a set P = {p1,p2, . . . ,pNP }, where pj = {mj1 ,mj2} is composed of
two three-dimensional vectors, mj1 ∈M and mj2 ∈M, with mj1 6= mj2 , describing the spatial
location of the microphones in pair j. If all microphone pairs are allowed then NP = N(N−1)/2.

Equation (7) can be rewritten taking into account the contributions of each pair of micro-
phones:

P (q) =

NP∑

j=1

[∫ ω0

−ω0

2

(
Xj1(ω)X∗j2(ω)ejω∆τ(pj ,q)

)

|Xj1(ω)||Xj2(ω)| dω

]
=

= 4π

NP∑

j=1

Rj1,j2 (∆τ(pj ,q)) = 4π

NP∑

j=1

Rj (∆τ(pj ,q)) ,

(8)

where ∆τ(pj ,q) = (τj1(q)−τj2(q)) is the difference in arrival times of the acoustic signal to reach
the microphones in pair pj (mj1 and mj2), that is, the required delay to steer the microphone
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(a) Hyperboloid with
equal TDOA for a given

pair of microphone.

(b) Intersection of two
hyperboloids for two
pairs of microphones.

(c) Intersection of the
hyperboloids cut by a

plane

(d) Real SRP-PHAT
map with hyperbolas

superimposed

Figure 1: Geometric interpretation of GCC based approaches

pair pj to the location q. Hereafter Rj = Rj1,j2 will be employed to refer to the GCC-PHAT of
the pair of microphones pj .

SRP-PHAT is usually defined as a reference standard for source localization, because of its
simplicity and robustness in reverberant and noisy environments, being a widely used algorithm
for speaker localization [3, 8, 15,20,21,43]

The main drawback of beamforming methods is their high computational cost, provided that
they sample all potential positions of the space, labeling all local maxima as position candidates
for acoustic sources. Hence there is a trade-off between the computational cost and the number
of sampled positions, Q, which is proportional to the desired resolution and the dimension of the
explored region. The grid, Q = {q1,q2, · · · ,qQ}, is defined as the set of Q sampled positions.

4 Redundancy of PHAT based approaches

As stated above, PHAT is one of the preferred techniques due to its excellent performance in low
noise, reverberant environments [46]. Nevertheless, in this section we will show that PHAT based
approaches are suboptimal since they produce quite redundant results. There are two kinds of
redundancy: 1) Geometric, which is inherent to how SRP is formed and doesn’t provide extra
information and hence it should be removed; 2) temporal redundancy, which has been deeply
studied in [42] and can be used to increase the robustness in localization as we will show in
section 6.

4.1 Geometric redundancy

Assume that only one microphone pair, e.g. pair pj , is placed in the environment, thus the SRP-
PHAT power estimation at a generic position, r, can be calculated as P (r) = 4πRj(∆τ(pj , r))

If we define qr as any location for which ∆τ(pj ,qr) = ∆τ(pj , r), the corresponding cross-
correlation values Rj(∆τ(pj ,qr)) will be identical to Rj(∆τ(pj , r)). For a microphone pair, it
can be easily demonstrated [1] that the geometric place of points qr is one of the sheets of a
two-sheeted hyperboloid of revolution, whose foci are located at the microphone locations, as
shown in Fig. 1a. Since Rj(τ) is a good approximation of the likelihood function of TDOA
between two microphones [23, 46], its hyperbolic spread version Rj(∆τ(pj , r)) can be regarded
as the spatial likelihood function for the position of the source.

Additional pairs will generate new spatial likelihood functions and it will allow us to dis-
ambiguate the actual position of the acoustic source. Time Delay Based Approaches intersect
the maximum likelihood hyperboloid calculated for each pair of microphones [11] (figure 1b).
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On the other hand, SRP-PHAT combines all those functions yielding a global spatial likelihood
function which is more robust. Nevertheless, hyperbolic spreading of GCC functions can be
still appreciated in SRP-PHAT maps, especially when only a few pairs of microphone are used.
In Fig. 1d the hyperbolas corresponding to the maximum likelihood TDOA estimator for each
microphone pair have been superimposed to the SRP-PHAT map which has been calculated at
a plane located 61cm above the microphone locations as shown in figure 1c. When the number
of microphone pairs used is high, it becomes harder to identify each pair contribution within the
SRP-PHAT map.

Hence, the first conclusion is that while SRP-PHAT combines all the corresponding GCC-
PHAT in a robust manner, it is very redundant. Besides, the contribution of each pair of micro-
phones is unrecoverable from SRP-PHAT making difficult solving ambiguities. Since SRP-PHAT
is constructed using equation (8) , it is evident that the pairwise GCC-PHAT contains equiva-
lent information to SRP-PHAT. Hence the vector φ = [R1(t1), R2(t2), · · · , RNP (tNP )]T , which
concatenates all the correlations, is usually is a more compact way to represent the informa-
tion available in P (q) and also keeps clear the contribution of each microphone pair. Moreover,
the number of required samples in Rj(tj) only depends on the distance between microphones
(|tj | < 1

c‖mj1 −mj2‖), and the sampling frequency, not on the size of the grid.

4.2 Temporal Redundancy

In [42] we derive an analytic model for accurately predicting the behavior of the GCC-PHAT
correlation for wideband signals, taking into account both the room geometry and the microphone
array topology. We also show that such model is independent of the spectral content of the
recorded signals, for both anechoic and reverberant conditions.

For simplicity, at this point, let us consider the anechoic propagation scenario in [42] wherein
a single source generates a baseband signal with bandwidth ω0. In that case, the signal at mi-
crophone n can be represented as a time-shifted and attenuated version of X(ω), i.e. Xn(ω) =
αnX(ω)e−jωτn(r) where αn is a microphone dependent attenuation factor, and τn(r) is the prop-
agation delay between mn and r, which is calculated as τn(r) = 1

c‖r−mn‖.
In the former scenario, the resulting GCC-PHAT described by equations (1) and (3) for the

pair pj can be approximated as a sinc function (sinc(x) = sin(x)
x ), as shown below [42]:

R̄j(tj , r) =
1

2π

∫ ω0

−ω0

Xj1(ω)X∗j2(ω)

|Xj1(ω)| |Xj2(ω)| e
jωtj dω ≈

=
1

2π

∫ ω0

−ω0

e−jω(τj1 (r)−τj2 (r)) ejωtj dω =

=
ω0

π
sinc (ω0 (tj −∆τj(r))) ,

(9)

where ∆τj(r) = (τj1(r)− τj2(r)) is the time-difference-of-arrival (TDOA) between the micro-
phones j1 and j2. It is noteworthy that, for any two microphones, only a small set of TDOAs are
physically feasible as |∆τj(r)| ≤ 1

c‖mj1 −mj2‖. This model has also been successfully employed
to derive a new technique of calibration in diffuse noise [41].

In the next sections we describe additional effects that can be taken into account: discretiza-
tion and reverberation.
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Figure 2: Example

4.2.1 Discretization effects

So far, continuous time signals have been considered. Nevertheless, in real systems, discretization
and windowing of the physical signal are mandatory. Assuming the Nyquist criterion is fulfilled
and a that the analysis window size is large enough, discretization effects lead the following
expression [42]:

R̄j(kj , r) =
1

NF

M0∑

l=−M0

e
−j

2π∆τj(r)

NF Ts e
j
2πkj
NF

=
1

NF

sin
(

2π(M0+0.5)
NFTs

(kjTs −∆τj(r))
)

sin
(

π
NFTs

(kjTs −∆τj(r))
) ,

(10)

where NF is the number of samples of the window after zero padding and Ts = 1
fs

is the sampling

period, kj = tj/Ts and M0 is the DFT index corresponding to the signal bandwidth ω0:

M0 =

⌊
ω0TsNF

2π

⌋
=

⌊
f0NF
fs

⌋
. (11)

4.2.2 Reverberation

Reverberation effects can be also modeled if the room geometry is known. Nevertheless, since this
knowledge is not always available, we have not considered it in this work. The interested reader
is encouraged to refer to [42], where this and other effects have been exhaustively described.

4.2.3 Examples

In Fig. 2a we show the SRP-PHAT map measured in a slice located at the speaker’s mouth height
for a frame where only one speaker was active (the position of the speaker has been marked with
a green dot). Analyzing this figure, it can be clearly seen how the acoustic energy produced
by the speaker is spread over the space, making it difficult to accurately localize the speaker.
Nevertheless, such behavior is not at random, but can be predicted combining equations (8)
and (10). As an example, the predicted SRP for a speaker in some position is shown Fig. 2b, the
similarities between both, the measured and predicted SRP-PHAT map are more than evident.

The temporal redundancy is even more evident in the vector φ. As an example, in figure 2c
the vector φ = [R1(t1), R2(t2)]T corresponding to figure 2a is shown, where the samples belonging
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to R1(t1) and R2(t2) have been plotted in different color, blue and orange respectively. Besides,
the generative model for the ground truth created from equation (10) has been superimposed in
a black solid line.

Figure 2c makes evident that the model correctly predicts behaviors due to the direct path
propagation. According to [42], the rest of the artifacts are caused by the multipath and can
be modeled as a linear combination of sinc functions. Nevertheless, as stated before, multipath
effects are hard to predict (even more when the geometry of the room is unknown) but can be
discarded using the pairwise redundancy [44].

5 Multiple Sources

In this section we will study the multi-source case, which is quite more intricate due the cross-
correlation terms between each sources. Let us assume, without loss of generality, that s sources
located at the positions r1, · · · , rs are active at the same time. The signal at the microphone n
is then the sum of the contribution from each source, i.e. Xn(ω) =

∑s
a=1Xa,n(ω) where Xa,n(ω)

is the Fourier Transform of the contribution of the source a at the microphone n.
Thus, the GCC-PHAT obtained in a multisource scenario has the following expression:

R̄j(tj , r1, · · · , rs) =
1

2π

∫ ω0

−ω0

∑s
a=1

∑s
b=1Xa,j1(ω)X∗b,j2(ω) ejωtj∣∣∣∣

s∑
a=1

Xa,j1(ω)

∣∣∣∣
∣∣∣∣
s∑
b=1

Xb,j2(ω)

∣∣∣∣
dω . (12)

Assuming anechoic propagation for each source, i.e. Xa,n(ω) = Xa(ω)e−jωτn(ra) where Xa(ω)
is the signal emitted by the source a, the numerator of equation (12) can be rewritten as:

s∑

a=1

s∑

b=1

Xa,j1(ω)X∗b,j2(ω) ejωtj =

s∑

a=1


|Xa(ω)|2 +

1

2

∑

b6=a
Cj,a,b(ω)


 e−jω(tj−∆τj(ra)) =

=

s∑

a=1

Ψj,a(ω)e−jω(tj−∆τj(ra)) , (13)

where Cj,a,b(ω) = Xa(ω)X∗b (ω)e−jω(τj1 (ra)−τj1 (rb)) + Xb(ω)X∗a(ω)e−jω(τj2 (rb)−τj2 (ra)) is a term
related to the cross-correlation between Xa(ω) and Xb(ω).

On the other hand, the denominator of equation (12) can be rewritten as:

∣∣∣∣∣
s∑

a=1

Xa,j1(ω)

∣∣∣∣∣

∣∣∣∣∣
s∑

b=1

Xb,j2(ω)

∣∣∣∣∣ =
2∏

i=1




s∑

a=1



|Xa(ω)|2 +

∑

b 6=a
Re
(
Xa(ω)X∗b (ω)e−jω(τji (ra)−τji (rb))

)







1
2

.

(14)

When the coherence [10] between each source is small, i.e:

s∑

a=1

|Xa(ω)|2 >
s∑

a=1

∑

b 6=a
Re
(
Xa(ω)X∗b (ω)e−jω(τji (ra)−τji (rb))

)
, (15)

and applying first-degree taylor polynomial of square root (
√

1 + x ≈ 1 + x
2 ), equation (14) can

be approximated to:

s∑

a=1



|Xa(ω)|2 +

1

2

s∑

b 6=a
Re (Cj,a,b(ω))



 =

s∑

a=1

Re (Ψj,a(ω)) , (16)
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Therefore, from equations (13) and (16),we can rewrite equation (12) as:

R̄j(tj , r1, · · · , rs) ≈
1

2π

∫ ω0

−ω0

∑s
a=1 Ψj,a(ω)e−jω(tj−∆τj(ra))

∑s
a=1 Re (Ψj,a(ω))

dω . (17)

Finally, if all the interfering signals have similar spectral density, then equation (17) becomes
independent of the spectral content of the sources. Thus, GCC-PHAT can be modeled as the
sum of s sinc functions:

R̄j(tj , r1, · · · , rs) ≈
s∑

a=1

βa sinc (ω0 (tj −∆τj(ra))) , (18)

where βa is a coefficient that weight the contribution of each source.
It is important to note that the more sources in the scene, the more restrictive equation (15)

becomes. Nevertheless, the former condition is always satisfied for less than three sources.

100 200 300 400 500 600

-0.5

0

0.5

1

1.5

Figure 3: Example of a correlation

In Figure 3 we show an example of two obtained correlations for multiple (three) speakers.
The sample of each correlation have been represented in different colors (blue and orange). The
generative model for the ground truth and the contribution of each speaker has been superposed
in solid and dotted black line respectively.

As in figure 2c, some other peaks appear due multipath, moreover, since the number of sources
has increased the number of reflections is also bigger. Thus, more redundancy (i.e, more pairs
of microphones) is needed to determine correctly the position of the sources in a multisource
scenario.

6 Sparse Localization

As stated in section 3.3 using SRP-PHAT has been historically useful since it has an easy
interpretation. Nevertheless SRP-PHAT has also some drawbacks that we have discussed along
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section 4, 1) it doesn’t take into account temporal redundancy, 2) it is not possible to recover the
contribution from each pair of microphones, 3) the number of measurements, Q, is proportional
to the desired resolution and the dimension of the explored region.

As consequence of the first issue point, some uncertainty may appear, for example one might
believe that another speaker is present at the bottom left corner in Fig. 2a (corresponding to the
high values of the SRP-PHAT function in the lower hyperbola).

The two last weaknesses of SRP can be solved using the previously introduced vector φ
which concatenates all the correlations. As stated above, it is evident from equation (8) that φ
contains information that is equivalent to that contained in SRP-PHAT, while removing spatial
redundancy. Note that, unlike SRP, the number of samples in φ does not depends on the desired
spatial resolution (i.e. Q), but it relies on the sampling rate and the number of microphone pairs.

6.1 Problem statement

The aim of this work is to propose a new localization algorithm which uses temporal redundancy
for improving accuracy, keeping the number of microphones low. To do this, we will fit the
acquired data with a model generated from equation (10). If all the sources satisfy the properties
discussed in section 5, then we have seen that the correlation is approximately linear. Therefore,
it yields the following non-convex optimization.

minimize
a1,··· ,ak,q1,··· ,qk

∥∥∥∥∥φ−
k∑

i=1

ai φ̄(qi)

∥∥∥∥∥

2

. (19)

where φ̄(qi) = [R̄1(t1,qi), R̄2(t2,qi), · · · , R̄NP (tNP ,qi)]
T is the predicted response for a source

located at position qi.
Assuming that the position of the sources are constrained to a finite set Q = {q1,q2, · · · ,qQ}

of Q positions, the former problem can be reformulated as:

min
a
‖φ− Φ a‖2 s.t. ‖a‖0 ≤ k , (20)

where k (k ≤ Q) is the maximum number of speakers and Φ = [φ̄(q1), · · · , φ̄(qQ)] is a matrix
which contains the models for each of the possible locations.

Consequently, the support of the optimal a, a∗, is related to the estimated position of the
sources. Thus, if i ∈ supp(a∗) then, our method estimates that a source is placed at qi.

The problem described by equation (20) is hard to solve since it is NP-Hard and non-convex.
Despite its theoretical complexity, several methods and approximations have been proposed so
far, and of special relevance are those methods based on using the l1 norm as a convex relaxation
of the l0 norm [39,40]. This relaxation transforms equation (20) into the following:

min
x
‖φ−Φa‖2 + λ‖a‖1 (21)

where λ is the Lagrange multiplier and has a direct relationship with k. Problem (21) is convex,
thus convergence is guaranteed and can be solved in polynomial time.

The problem of finding a least squares estimation subject to a l1 restriction has been in-
dependently presented and popularized under the names of Least Absolute Shrinkage Selection
Operator (LASSO) [37] and Basis Pursuit Denoising [13], being object of intensive study. In the
past few years numerous optimization methods have been proposed, some of them adapted to
specific problems.

Solving the relaxed problem (21) does not necessary imply finding the solution to the original
l0 problem. The closeness and validity of l1 relaxations has been extensively studied [39]. In
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some problems, the structure of matrix Φ and the expected degree of sparsity in the solution can
make l1 relaxations to be exact. For general linear systems, as it is the case in this paper, where
matrix Φ has no apparent structure, l1 relaxation empirically tends to impose only approximate
sparse solutions.

6.2 Single source case

When we previously know that only one source is active, i.e k = 1, the problem described in
equation (19) can be drastically simplified:

min
a,q

∥∥φ− a φ̄(q)
∥∥2

= min
a,q
‖φ‖2 − 2aφ̄(q)>φ+ a2

∥∥φ̄(q)
∥∥2

. (22)

In order to find the solution of equation (22), first we will look for the optimal value of a:

a∗ =
φ̄(q)>φ∥∥φ̄(q)

∥∥2 , (23)

and then, replacing it again in equation (22), we will obtain a new formulation of the problem:

min
q
‖φ‖2 −

(
φ̄(q)>φ

)2
∥∥φ̄(q)

∥∥2 = max
q

(
φ̄(q)>φ

)2
∥∥φ̄(q)

∥∥2 , (24)

which only depends on the position of the source, q.
Note that the problem described by equation (24) is non-convex. Nevertheless, we can get a

convex approximation constraining the position of the source, q, to a finite setQ = {q1,q2, · · · ,qQ}
of Q positions:

max
q

(
φ̄(q)>φ

)2
∥∥φ̄(q)

∥∥2 s.t. q ∈ Q . (25)

Consequently, the localization problem can be interpreted as a simple atom selection problem:
we are looking for the atom φ̄(qi), qi ∈ Q which better fits the measured data, φ. It is equivalent
to solve the following problem:

max
i

∣∣∣φ̂>i φ
∣∣∣ , (26)

where φ̂i = φ̄(qi)/‖φ̄(qi)‖ is the unitary vector with the same direction as the atom φ̄(qi).
Problem (26) has a straightforward solution, which allows an efficient solution.

As we will see later on, the proposed algorithm for single source is faster than SRP-PHAT
and achieve better performance in localization.

6.3 Solution refinement

In order to make the localization problem convex, we had to discretize the search space. Con-
vexity is a very convenient property since it avoids the convergence of the algorithms in local
minimums, and provides efficient solutions. On the other hand, a non-convex optimization prob-
lem as equation (19) will reach the global optimal solution only if it is correctly initialized.

It seems a good idea using the solution of convex problem (21) (the equation (26) in single
source scenario) as the initialization of the non-convex problem (19). As we will see in the
next section, by doing this we have improved the localization performance in the single source
scenario.

As future work, we will thoughroughly evaluate this method in a multi-source scenario, and
we will perform an in-depth study about the maximum resolution an limits of this method.
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Figure 4: IDIAP Smart Meeting Room: experimental details.

7 Experiments and discussion

In this section, we will present some preliminary experimental results obtained in a real environ-
ment using the AV16.3 database recordings [25].

7.1 Experimental setup

The AV16.3 database is an audio-visual corpus recorded in the Smart Meeting Room of the IDIAP
research institute, in Switzerland. The IDIAP Meeting Room consists on a 8.2mx3.6mx2.4m
rectangular room containing a centrally located 4.8mx1.2m rectangular table, on top of which
two circular microphone arrays of radius 0.1 meters are located, each of them composed by 8
microphones. The centers of the two arrays are separated by 0.8m and the origin of coordinates
is located in the middle point between the two arrays.

For the single source scenario, we are using only 4 or 8 microphones (out of the 16 available
in the AV16.3 data set), grouped in two or four microphone pairs. The selected microphone pairs
configurations are shown in Figure 4c, in which microphones with the same color are considered
as belonging to the same microphone pair.

Possible speakers’ locations are distributed along a L-shaped area around the table as seen
in Figures 4a and 4b. A detailed description of the meeting room, can be found in [28].

For multisource scenario, more microphones pairs are needed in order to avoid uncertainties.
Thus we have made use of all available pair of microphones.

The audio recordings are synchronously sampled at 16 KHz, and the complete database along
with the corresponding annotation files containing the recordings ground truth is fully accessible
on-line at [24]. It is composed by several sequences or recordings with varying number of speakers
involved and their activity.

7.2 Single Source Results

In this experiment we have employed the sequence seq01-1p-0000 in the aforementioned database.
In this sequence, since the height of the source’s is constant (0,61 above the microphones on the
table) we can restrict the experiment to a 2D scenario. Consequently, the grid Q is composed
of the uniformly sampled locations in an regular grid contained in a plane 61 cm above the
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Table 1: Results for SETUP A

SRP Projection Projection + refinement

Average Localization error (mm) 1010 1034 988

Average Fine Localization error (mm) 292 220 217

Pcor(%) 42.82 39.29 40.69

.

Table 2: Results for SETUP B

SRP Projection Projection + refinement

Average Localization error (mm) 767 727 695

Average Fine Localization error (mm) 287 200 209

Pcor(%) 59.15 57.10 59.23

.

microphone arrays. The resolution of the grid (i.e the minimum distance between two locations)
was 10cm.

The sequence duration is 208 seconds in total, which has been divided in 320 ms frames with
a frame shift of 80ms. The total number of frames labeled was 1219.

In table 1, we show the results obtained for the method described in section 6.2 using the
setup-A (two pair of microphones). The first column refers to the results obtained with SRP-
PHAT. On the other hand, the results obtained after applying the algorithm described in sec-
tion 6.2 are displayed in the second column of the table (“Projection”). The ’Average Fine
Localization error’ refers to the average localization error of those estimation with localization
error less than 0.5 m. Finally PCor is the percentage rate of fine estimations.

The proposed algorithm performs very similar to SRP-PHAT. Nevertheless it obtains a sig-
nificant error reduction in the fine error, keeping a similar Pcor.

It is also important to note that the results obtained by simple projection can be improved
via the refinement step described by equation (19) (particularizing k = 1). These results are
shown in the last column of the table (“Projection +refinement”).

The results obtained using the Setup-B (4 pairs of microphones) are consistent with the
previous results, as shown in table 2.

7.3 Multi-source results

As we have previously seen, the multi-source case is quite more intricate than single source case.
Under the assumptions considered in section 5, we can assume than the total response is the
sum of the responses for each source.

In this section we will show some representative frames of the sequence seq37-3p-0001 in
AV16.3 database. The aim is to provide a glance of the behavior of the algorithm described in
a multisource scenario.

In figures 5 and 6 we show the solution of the problem (21) when two and three speakers
are active respectively. In all image microphones have been represented as black dots (shaped in
circles in the center of the images).

In both cases, the left figure is the obtained SRP-PHAT where the real positions of the
speakers have been represented with a green dot. Although we can distinguish a beam for each
source, the position of the sources is unclear since the maximum of the beam is spread.
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Figure 5: Two sources example
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Figure 6: Three source example

On the other hand, in the right side figures we represent the projection of the solution of
equation (21) on the xy plane. Such solution is much more sparse than SRP-PHAT and moreover
all the non-zero elements (colored squares) are concentrated around the speakers’ locations (red
circles).

Since for these examples 120 different correlations have been used, it is not possible to rep-
resent all the correlations in a single figure. Thus we consider more informative to show the
SRP-PHAT generated from the proposed model (images in the middle). The reader can verify
the similarities between the proposed model an the measured SRP-PHAT.

The results obtained are still preliminary. Generating metrics and compare them with other
methods is still a pending work.

8 Conclusions

In this paper, we have proposed a novel method to localize active acoustic sources using sparse
constraints. We have extended the generative model proposed in [42] to multiple sources, and
demonstrated that under reasonable conditions, small coherence between sources and similar
spectral density, GCC-PHAT has a linear behaviour. According to the former point, we propose
a linear generative model for the measured GCC-PHAT functions for several pair of microphones.

Localization is performed via regression analysis with sparse constraints, assuming that only
few sources are active at the same time. We also propose a convex relaxation of the localization
problem in order to make it computationally tractable.

Finally, we have performed some experiments with real data in single and multi-source sce-
nario getting preliminary but promising results.
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ABSTRACT

We propose a novel formulation of the generalized cross correlation
with phase transform (GCC-PHAT) for a pair of microphones in dif-
fuse sound field. This formulation elucidates the links between the
microphone distances and the GCC-PHAT output. Hence, it leads
to a new model that enables estimation of the pairwise distances
by optimizing over the distances best matching the GCC-PHAT ob-
servations. Furthermore, the relation of this model to the coher-
ence function is elaborated along with the dependency on the sig-
nal bandwidth. The experiments conducted on real data recordings
demonstrate the theories and support the effectiveness of the pro-
posed method.

Index Terms— Generalized cross correlation, Phase transform,
Diffuse sound field, Pairwise distance estimation, Microphone array
calibration

1. INTRODUCTION

Microphone arrays are widely used to enable high-quality distant
audio acquisition. They are an essential part of a plethora of distant
technologies ranging from source localization and separation to dis-
tant speech recognition [1, 2, 3] and from sound field analysis and
monitoring to virtual reality and surveillance [4, 5]. A fundamen-
tal pre-processing step to enable the array of microphones to func-
tion in synergy consists of the gain, clock and position calibration.
In this paper we address the problem of microphone array position
calibration or extracting the relative geometry or the shape of the
microphone array.

The prior art often rely on activation of known signals to esti-
mate the pairwise microphone distances. This approach is referred to
as self-calibration. Sachar et al. [6] presented an experimental setup
using a pulsed acoustic excitation generated by five domed tweeters.
The transmit times between speakers and microphones were used to
find the relative geometry. Raykar et al. [7] used a maximum length
sequence or chirp signal in a distributed computing platform. The
time difference of arrival of the microphone signals were then com-
puted by cross-correlation and used for estimating the microphone
locations. Since the original signal is known, these techniques are
robust to noise and reverberation.

In an alternative approach to alleviate the requirement for a
known signal, Chen et al. [8] introduced an energy-based method
for joint microphone calibration and source localization. The energy
of the signal is computed and a nonlinear optimization problem
is formulated to perform maximum likelihood estimation of the

source-sensor positions. This method requires several active sources
for accurate localization and calibration. Pollefeys and Nistre pro-
posed a method for direct joint source and microphone localization
which requires matrix factorization and solving linear equations [9].
In a different approach, McCowan et al. [10] proposed a calibration
method which does not require activation of a particular signal. This
approach relies on the characteristics of a diffuse sound field. A
diffuse field can be roughly described as an acoustic field where
the signals propagate with equal probability in all directions with
the same power. The diffuse field is verified for meeting rooms and
car environments [11, 12] and it enables application of well-defined
mathematical models for analysis of the acoustic field recordings.
A particular property related to diffuse field recordings is the co-
herence function between pairwise microphone signals which is
defined by a sinc function of the distance between the two mi-
crophones. Thereby, we can estimate the pairwise distances by
least-squares fitting the computed coherence with the sinc function.

In this paper, we derive a new model based on generalized cross
correlation with phase transform (GCC-PHAT) for a diffuse sound
field. This model elucidates the links between the output of GCC-
PHAT and the distance between the microphone pairs. The rela-
tion between GCC-PHAT and the coherence has been previously
discussed in [13, 14] where PHAT filtering is used as an estima-
tor of the coherence between two signals. The global coherence
field described in [15], has a virtually identical formulation to the
steered response power with phase transform [16], which can be ex-
pressed in terms of GCC-PHAT [17]. Both rely on using the classi-
cal beamforming techniques in order to build an acoustic power map
of the room, which has been reported in [18] to coincide with the
maximum likelihood estimation of the position of the source under
low noise and high reverberation conditions. In [19], a novel GCC-
PHAT model is established for a point source, being validated with
both synthetic and real data. Based on the statistical analysis model
of a diffuse sound field, we derive an extension of the GCC-PHAT
model for a diffuse field. We present the procedure for estimating
the pairwise distance from the GCC-PHAT function of the micro-
phone recordings and elaborate its relation to the coherence-based
approach [10].

The rest of the paper is organized as follows: The definition
of GCC-PHAT and its model for the point sources is stated in Sec-
tion 2, showing its behavior with respect to the source direction of ar-
rival and the model extension for a diffuse sound field. In Section 3,
the procedure for pairwise distance estimation is presented and con-
trasted with the alternative technique based on coherence fitting. The
experimental evaluation on real data recordings is conducted in Sec-
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tion 4, and the conclusions are drawn in Section 5.

2. GCC-PHAT IN DIFFUSE SOUND FIELD

In this section, we explain the new GCC-PHAT model for a point-
source that establishes the links between the microphone array ge-
ometry and the GCC-PHAT output. We derive its extension for a
diffuse sound field.

2.1. Generalized Cross-Correlation

The generalized cross-correlation (GCC) has been widely used for
time-difference-of-arrival estimation and it is the basis for many
acoustic source localization algorithms. The GCC of the signals
recorded by two microphones is defined as:

R(τ) =
1

2π

Z +∞

−∞
Ψij(ω)Xi(ω)X∗j (ω) ejωτ dω, (1)

where Xi(ω) and Xj(ω) denote the signals recorded by micro-
phones i and j in Fourier domain; ω is the angular frequency, [.]∗

stands for the conjugate transpose operation, and j =
√
−1. The

weighting function Ψij(ω) is designed to optimize a given perfor-
mance criteria. Many different functions have been proposed in
the literature depending on the context, and among all of them, the
phase transform (PHAT), defined as:

Ψij(ω) =
1

|Xi(ω)X∗j (ω)| =
1

|Xi(ω)| |Xj(ω)| , (2)

has been found to perform very well for acoustic localization in
reverberant environments, leading to the GCC-PHAT method [20]
(also known as the crosspower-spectrum phase [15]). The PHAT
can be seen as a filter which discards the amplitude and preserves the
phase of the signal. The advantage of using it is that no assumptions
are made about the signal or room conditions, which are typically
unknown. This procedure has received considerable attention due to
its simplicity and robustness in real world scenarios [18].

2.2. Analytic Model for a Point Source

The authors of [19] derive an analytical model for accurately pre-
dicting the behavior of the SRP-PHAT power maps for wideband
signals, taking into account both the room geometry and the micro-
phone array topology. They also show that the model is independent
of the spectral content of the recorded signals, for both anechoic and
reverberant conditions.

We consider a scenario where a single source is present and gen-
erates a baseband signal with bandwidth ω0, thus Xi(ω) = 0,
∀ω > ω0. Assuming a free-space propagation model and discard-
ing the distance dependent attenuation which is not relevant to our
purposes, the signal at microphone j can be represented as a time-
shifted version of Xi(ω), i.e. Xj(ω) = Xi(ω)e−jωτp where τp is
the time-difference of arrival between the two microphones.

From the model proposed in [19], and considering the anechoic
propagation case, it is easy to show that when GCC-PHAT is applied
to the signals captured by the microphone array, the resulting corre-
lation can be approximated as a sinc function (sinc(x) = sin(x)

x
),

through

R point-source
PHAT (τ, τp) ≈ 1

2π

Z ω0

−ω0

ejω(τ−τp) dω

=
ω0

π
sinc (ω0 (τ − τp)) . (3)

It may be noted that τp depends on the position of the source signal
and it is limited by the distance d between two microphones such
that τp ∈

ˆ−d
c
, d
c

˜
with c being the speed of sound.

2.3. Extension to the Diffuse Sound Field

A diffuse field is defined as an acoustic field consisting of a super-
position of an infinite number of sound waves traveling with random
phases and amplitudes such that the energy density is equivalent at
all points. More precisely, all points in the field radiate equal power
and random phase sound waves, with the same probability for all
directions, and the field is homogeneous and isotropic [21]. The
analytic studies to model the diffuse sound field often rely on the
statistical approach by considering an infinite number of free propa-
gation plane waves, referred to as the plane wave model. In the plane
wave model, a diffuse field is characterized as the superposition of a
large set of plane waves impinging from all directions.

The spatial uniformity in a diffuse field can be expressed through
integration of waves arriving from all directions [22, 23]. For two
microphones, integrating over all directions is equivalent to integrat-
ing over all possible time-differences of arrival τp ∈

ˆ−d
c
, d
c

˜
[22].

Therefore, the GCC-PHAT obtained in a diffuse field can be approx-
imated by the GCC-PHAT model for a single source through the
integration of uncorrelated sources arriving uniformly at all possible
time-differences of arrival:

R diffuse
PHAT (τ, d) ≈

Z d
c

− d
c

R point-source
PHAT (τ, τp)

c

2d
dτp

=
c

2πd
(Si (ω0 (τ + d/c))− Si (ω0 (τ − d/c))) , (4)

where Si(x) =
R x
0

sinc(t) dt is the sine integral. The model ex-
pressed by (4) only depends on the distance between microphones
d, and the signal bandwith ω0. Furthermore, for large enough ω0,
the model can be approximated by a scaled version of the rectangu-
lar function:

Π
“ cτ

2d

”
=

8<: 0 : |τ | > d
c

1
2

: |τ | = d
c

1 : |τ | < d
c

(5)

Fig. 1 demonstrates an example of the model and the real data mea-
surements, for two different bandwidth values. Note that the values
of |τ | > d

c
do not provide relevant information about the distance be-

tween the two microphones while they nevertheless introduce some
noise. Hence, it is easy to increase the signal-to-noise ratio by dis-
carding those τs which do not have physical meaning based on the
prior knowledge on the dimensions of the room or the physical setup.

3. MICROPHONE ARRAY CALIBRATION

In this section, we explain how the model of GCC-PHAT in diffuse
sound field can be exploited to estimate the pairwise distance be-
tween two microphones for microphone array geometry calibration.

3.1. Distance Estimation Based on GCC-PHAT Model

The GCC-PHAT function for the signals of two microphones is ob-
tained from (1)–(2) thus R PHAT(τ) denotes the output based on the
real data recordings. From the GCC-PHAT model expressed in (4),
the distance between microphones can be estimated by fitting the
model as:

d̂ = arg min
d,K

τmaxX
τ=−τmax

“
KR PHAT(τ)−R diffuse

PHAT (τ, d)
”2

, (6)
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Fig. 1. The proposed GCC-PHAT model (4) contrasted with the measured GCC-PHAT on real data recordings in a diffuse sound field recorded at the room
described in Section 4.1. The dependency on the signal bandwidth is demonstrated: the left graphic uses f0 = 10 kHz and the right one uses f0 = 23.9 kHz.
We can see that for larger f0 the model gets closer to the ideal case expressed in Eq. (8). Moreover we can see that the model fitting is better for smaller f0
which is related to the fundamental limitations of a diffuse sound field for pairwise distance estimation [24].

where τ is discretized according to the sampling frequency and
τmax = dmax

c
. dmax indicates the expected maximum pairwise dis-

tance between any two microphones in the array, and can be es-
timated using geometrical considerations regarding the maximum
room dimensions and the expected array geometry and locations.
The additional parameter K > 0 is necessary since, in real scenar-
ios, the model overestimates the amplitude of the correlation, which
is lower due to the noise. Stacking the components for all values of
τ , we obtain:

R PHAT , [R PHAT(−τmax), . . . , R PHAT(τmax)] ,

R diffuse
PHAT (d) ,

h
R diffuse

PHAT (−τmax, d), . . . , R diffuse
PHAT (τmax, d)

i
,

and after being Euclidean normalized, we obtain R̂ PHAT and R̂ diffuse
PHAT .

It it straightforward to show that, for discrete τ , minimizing the
quadratic error

`
KR PHAT(τ)−R diffuse

PHAT (τ, d)
´2

is equivalent to min-
imizing the angle between the normalized vectors. Hence, denoting
the inner product between two unit vectors by 〈., .〉, we can rewrite
Eq. (6) as:

d̂ = arg max
d

D
R̂ PHAT, R̂

diffuse
PHAT (d)

E
(7)

Given all the (offline-calculated) unitary vectors R̂ diffuse
PHAT (d), the one

that is better aligned with the R̂ PHAT computed from the data can be
found efficiently, indicating an estimate of the pairwise distance d.

3.2. Relation to the Coherence

The GCC-PHAT and coherence are two terms which are closely in-
terconnected [13, 14]. The coherence of two signals is defined as the
cross spectrum normalized by the square roots of the auto spectra. It
has been shown that the real-part of the coherence of the signals at
each frequency in a diffuse sound field is a sinc

`
ωd
c

´
function of the

microphone distances [25]. This property is exploited by McCowan
et al. to estimate the microphone pairwise distances [26].

In this section we show that the model introduced in equation (4)
is, in fact, a low-pass filtered version of the inverse Fourier transform
of the coherence-based approach [26]. Based on Eqs. (3) and (4), the

GCC-PHAT model for the diffuse sound field can be written as:

R diffuse
PHAT (τ, d) ≈

Z ω0

−ω0

Z d
c

− d
c

ejω(τ−τp)
c

2d
dτp dω

=

Z ω0

−ω0

c

2dωj

“
ejω(t+

d
c
) − ejω(t−

d
c
)
”

dω

=

Z ω0

−ω0

sinc

„
ωd

c

«
ejω dω

(8)

Hence, we can see that the GCC-PHAT model for a diffuse sound
field is the Fourier transform of the sinc (real-part of the coherence)
ideally filtered at ω0. Since the proposed model is the inverse Fourier
transform of the coherence-based model, removing high values of
τ in the GCC-PHAT calculation, implies removing fast changes in
the coherence and lead to denoising the coherence; Fig. 2 demon-
strates an example of the denoising effect achieved via suppressing
the time coefficients corresponding to τ > τmax. As we will see
during the experimental evaluation presented in Section 4, the GCC-
PHAT model in a diffuse sound field outperforms the coherence-
based approach [26], while improving the computational cost.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed tech-
nique for pairwise distance estimation using real data recordings col-
lected at the Idiap smart meeting room.

4.1. Acoustic Recording Setup

We use the geometrical setup of the MONC corpus to record the
sound field in a meeting room [27]. The enclosure is a 8 × 5.5 ×
3.5 m3 rectangular room and it is moderately reverberant. It contains
a centrally located 4.8×1.2 m2 rectangular table. Nine microphones
are located on a planar area parallel to the floor at a height of 1.15 m:
Eight of them are located on a circle with diameter 20cm and one
microphone is at the origin. The microphones are Sennheiser MKE-
2-5-C omnidirectional miniature lapel microphones. The floor of
the room is covered with carpet and surrounded with plaster walls
and two big windows; the room is mildly reverberant with a rever-
beration time less than 200 ms. The room is almost silent and no
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Fig. 2. The frame-based coherence measured using the real data and the the-
oretical sinc model in the original form (top) and after time filtering (bottom)
based on suppression of the GCC-PHAT output at the large time intervals that
do not correspond to the physical setup.

sound source is generated; there is ambient noise due to the street
and computer fans. The sampling rate is 48 kHz. The experiments
are conducted using c = 343 m/s that corresponds to 20◦ Celsius
temperature of the room.

4.2. Analysis Parameters

The recordings are processed frame by frame in frames of 4096
samples (85.3 ms) after applying the Tukey window. The FFT is
calculated using 8192 samples (after zero-padding). The maximum
distance between microphones was restricted to 1.5m, so that all τ
in GCC-PHAT corresponding to longer distances were not consid-
ered. The set of possible distances are discretized within the range
of [0.05, 1.5] m with one millimeter resolution.

Since the diffuse noise is expected to be broadband and with
equal power in all frequencies, ω0 = 2πf0 has been in fact deter-
mined by the antialiasing filter (f0 = 23.9 KHz). A more restrictive
filtering allows a better fitting, as demonstrated in Fig. 1.

4.3. Pairwise Distance Estimation Performance

Fig. 3 shows the estimation error of pairwise distances for the two
models; the bars represent the 99% confidence interval, assuming
a normal distribution. The improvement of the proposed model in
terms of pairwise distance estimation is statically significant, but it
does not lead to better results in the calibration of the position of the
microphones based on multidimensional scaling method [28].

4.4. Numerical Approximation for the Proposed Model

The mathematical approximation is suitable as Matlab R© provides a
symbolic implementation for the sine integral which can be some-
times quite slow. We suggest using the numerical approximation
described in [29, p. 231]:

Si (x) ≈

8<:
PN−1
n=0

(−1)nx2n+1

(2n+1)(2n+1)!
: |x| ≤ 1

π
2
− f(x) cos(x)− g(x) sin(x) : x > 1

f(−x) cos(x)− g(−x) sin(x)− π
2

: x < 1
(9)

which has a low error (|ε(x)| < max{ 1
(2N+1)2!

, 3 × 10−7}), and it
can speed up the implementation of the proposed model. Functions
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Fig. 3. Comparison between the average error in distance estimation using
the proposed GCC-PHAT model (7) and the McCowan’s coherence-based
method [10].

f(x) and g(x) are calculated as 1 :

f(x) =
1

x

„
x8 + a1x

6 + a42 + a3x
2 + a4

x8 + b1x6 + b42 + b3x2 + b4

«
(10a)

g(x) =
1

x2

„
x8 + c1x

6 + c42 + c3x
2 + c4

x8 + d1x6 + d42 + d3x2 + d4

«
(10b)

The above approximation speeds up the process more than one mil-
lion times. The time that it takes to perform pairwise distance es-
timation using each frame is 40 times faster than real time. The
new GCC-PHAT model is also 30 times faster than the alternative
coherence-base approach.

5. CONCLUSIONS

In this paper, a new model for GCC-PHAT in diffuse sound field
is proposed which establishes the links between GCC-PHAT output
and the microphone array geometry. To estimate the pairwise dis-
tances, the GCC-PHAT is computed for a pair of microphone signals
and the distance that generates the best fitting model is estimated. It
was shown that this model is in fact equivalent to an inverse Fourier
transform of an ideally filtered coherence of the two signals. The
experiments conducted on real data recordings demonstrate the ef-
fectiveness of the proposed approach for pairwise distance estima-
tion. Furthermore, it suggests a simple denoising scheme for the
coherence function via suppression of the GCC-PHAT activation at
the time intervals which do not meet the physical constraints. The
model was shown to perform significantly faster than the coherence-
based counterpart and it is applicable for real time calibration setups.
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Application to Robust Denoising with Missing Data
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and Afsaneh Asaei, Senior Member, IEEE

Abstract—Measuring the Time delay of Arrival (TDOA) be-
tween a set of sensors is the basic setup for many applications,
such as localization or signal beamforming. This paper presents
the set of TDOA matrices, which are built from noise-free
TDOA measurements, not requiring knowledge of the sensor
array geometry. We prove that TDOA matrices are rank-two
and have a special SVD decomposition that leads to a compact
linear parametric representation. Properties of TDOA matrices
are applied in this paper to perform denoising, by finding
the TDOA matrix closest to the matrix composed with noisy
measurements. The paper shows that this problem admits a
closed-form solution for TDOA measurements contaminated with
Gaussian noise which extends to the case of having missing
data. The paper also proposes a novel robust denoising method
resistant to outliers, missing data and inspired in recent advances
in robust low-rank estimation. Experiments in synthetic and real
datasets show significant improvements of the proposed denoising
algorithms in TDOA-based localization, both in terms of TDOA
accuracy estimation and localization error.

Index Terms—TDOA estimation, TDOA denoising, skew-
symmetric matrices, matrix completion, missing data

I. INTRODUCTION

T IME delay of arrival (TDOA) estimation is an essential
pre-processing step for multiple applications in the con-

text of sensor array processing, such as multi-channel source
localization [1], self-calibration [2] and beamforming [3]. In
all cases, performance is directly related to the accuracy of
the estimated TDOAs [4].

Estimating TDOA in noisy environments has been subject
of study during the last two decades [5]–[7], and is still an
active area of research, benefiting from current advances in
signal processing and optimization strategies [8]–[11].

Typically, the TDOA between a single pair of sensors is
obtained by measuring the peak of the generalized cross-
correlation (GCC) of the received signals on each sensor [12],
which are assumed to be generated from a single source. Many
factors, such as the spectral content of the signal, multipath
propagation, and noise contribute to errors in the estimation
of the TDOA.
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Given a set of sensors, TDOA measurements can be ob-
tained for every possible pair of sensors. This is commonly
known as the full TDOA set or spherical set [13]. This paper
studies how to reduce noise and errors from the full TDOA set.
The intuition behind this denoising is to exploit redundancy
of the full TDOA set. For n sensors, the full set of n(n−1)/2
measurements can be represented by n − 1 values, which
are referred to as the non-redundant set. This problem has
been studied in the past, showing that one can optimally
obtain the non-redundant set when TDOA measurements are
contaminated with additive Gaussian noise. This is known as
the Gauss-Markov estimator [14]. However, in more realistic
scenarios errors are not Gaussian and some of the TDOA
measurements may contain outliers. In these cases the Gauss-
Markov estimator performs poorly.

This paper presents the TDOA matrix, which is created
by the arrangement of the full TDOA set inside a skew-
symmetric matrix, and studies the algebraic properties of this
matrix, showing that it has rank 2 and a SVD decomposition
with n − 1 degrees of freedom. Such matrices have been
previously defined in the literature [15], but their properties
and applications have not been studied until now.

These algebraic properties are used in this paper to per-
form denoising under different scenarios, which include the
presence of missing TDOA measurements and outliers. These
denoising algorithms are tested in the context of speaker local-
ization with microphone arrays, using synthetic and publicly
available real datasets. Our denoising algorithms are able to
recover accurate TDOA values for high rates of missing data
and outliers, significantly outperforming the Gauss-Markov
estimator in those cases. All the proposed methods don’t
require knowledge of the sensor positions, so that they can
also be used for calibration [2].

The main contributions of this work are threefold: i) Def-
inition of the algebraic properties of TDOA matrices. ii) A
closed-form solution for TDOA denoising for Gaussian noise
and the presence of missing data. iii) Novel robust-denoising
methods for handling additive correlated noise, outliers and
missing data.

A. Notation

Real scalar values are represented by lowercase letters
(e.g. δ). Vectors are by default arranged column-wise and are
represented by lowercase bold letters (e.g. x). Matrices are
represented by uppercase bold letters (e.g. M). Lower-case
letters are reserved to define vector and set sizes (e.g. vector
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x = (x1, · · · , xn)> is of size n), and x> denotes transpose of
vector x. Calligraphic fonts are reserved to represent generic
sets (e.g. G) or functions applied to matrices (e.g. P(X)). The
l2 norm ‖ · ‖2 will be written by default as ‖ · ‖ for simplicity,
and ‖ · ‖F is the Frobenius norm, while | · | is reserved to
represent absolute values of scalars. The l0 norm of a matrix,
written ‖·‖0, is defined as the number of non-zero elements of
the matrix. A ◦B is the Hadamard product between A and B,
defined as the entrywise multiplication of the corresponding
matrices. tr(·) is the trace function.

We also define the normalized unitary vector 1̂ as
1̂ = (1, . . . , 1)

>
/
√
n, and the null vector 0̂ as

0̂ = (0, . . . , 0)
>, both of them having size n. Finally,

1 = n 1̂ 1̂> is a n × n matrix with all elements equal to
1, Dx is a n× n diagonal matrix where its main diagonal is
the vector x, and I is the identity matrix.

B. Paper Structure

The rest of the paper is distributed as follows. Section II
describes the related work and Section III the problem state-
ment. In section IV TDOA matrices are described along
with a derivation of their properties. TDOA denoising in
Gaussian noise case is addressed in section V, also providing
a closed-form solution. In sections VI and VII we propose
novel algorithms for robust handling of noise and missing
data, respectively. Section VIII combines the proposals of
the previous two sections into an unified algorithm. We also
provide an extensive experimentation to validate the proposed
algorithms using both synthetic (Section IX) and real data
(Section X). Finally, conclusions are drawn in section XI.

II. RELATED WORK

TDOA estimation is an essential first step for multiple
applications related to 1) localization, 2) self-calibration and
3) beamforming (among others):

1) Localization: widely used in radar, sonar and acoustics,
since no synchronization between the source and sensor is
needed. The TDOA information is combined with knowledge
of the sensors’ positions to generate a Maximum Likelihood
spatial estimator made from hyperboloids intersected in some
optimal sense. A linear closed-form solution of the former
problem, valid when the TDOA estimation errors are small, is
given in [16].

2) Self-calibration: since knowing the position of sensors is
mandatory for localization techniques, some strategies have
been also proposed in order to calibrate them using only
TDOA measurements. In [2], [17], the TDOA problem is
converted in a Time of Arrival (TOA) problem estimating the
departure time of signals. Then, self-calibration techniques for
TOA can be employed. The main drawback of this approach is
that the conversion step from TDOA to TOA is very sensitive
to outliers and correlated noise.

3) Beamforming: precise TDOA estimations is also critical
for beamforming techniques and its applications. In [3], for
example, additional steps are proposed for selecting the ap-
propriate TDOA value among the correlation peaks, and also
dealing with TDOA outliers. These steps include a Viterbi

decoding based algorithm which maximizes the continuity
of the TDOA estimations in several frames. However, the
TDOA selection criteria is just based on their distance to
surrounding TDOA values and their GCC-PHAT values, thus
not attempting to benefit from the actual redundancy of the
TDOA measurements.

Hence, an accurate estimation of TDOA is essential for a
good performance of any of the former applications based on
these measurements.

Typically, when only two sensors are employed, the peak
of the generalized cross-correlation (GCC) function of the
signals of two sensors is a good estimator for the TDOA,
for reasonable noise and reverberation levels [12].

When more than two sensors are used (n > 2), there are
n(n − 1)/2 different TDOA measurements from all possible
pairs of sensors, forming the full TDOA set or spherical
set [13]. However, all those TDOA measurements are redun-
dant. In fact, usually one sensor is considered the reference
sensor, and only the subset of n − 1 TDOA measurements
which involve that sensor are considered. That non-redundant
set is the set of measurement used by the majority of TDOA-
based positioning algorithms proposed in the literature [16],
[18]–[22]. Nevertheless, an optimal (denoised) version of the
non-redundant set can be estimated from the redundant set
using a Bayesian Linear Unbiased Estimator (BLUE), also
known as the Gauss-Markov estimator [14].

A closed-form solution for the BLUE estimator is provided
in [23], also proving that it is equal to the standard least
squares estimator, and that it reaches the Cramer-Rao lower
bound for positioning estimation. However, all the results in
that work are based on the assumption of additive Gaussian
noise, which is unrealistic in many practical applications [24],
and doesn’t yield good results when correlated noise is present
as a consequence, for instance, of multipath propagation.
Additionally, the experimental results shown in their work are
only applied to synthetic data, thus not allowing to assess the
performance of their proposal in real scenarios (in section X
we show the limitations of their method when evaluated on
real data).

A least-squares solution to TDOA denoising is proposed
in [25]. It is based on projecting the non-redundant set
of TDOA measurements into a set of “feasible” bivectors
(rank 2, antisymmetric tensors) that show the same geometric
properties of TDOA matrices. This denoising is also optimal
for Gaussian noise but as in [24] the experimental analysis is
based on simulated data and it does not cope with missing
data or the presence of outliers in the TDOA measurements.

Periodicity in correlated signals, coherent noise and multi-
path due to reverberation are the major sources of non-
Gaussian error in TDOA estimation. Different approaches have
been proposed to deal with them. A basic method consists
in making the GCC function more robust, de-emphasizing
the frequency-dependent weighting. The Phase Transform
(PHAT) [26] is one example of this procedure which has
received considerable attention as the basis of acoustic source
localization systems due to its robustness in real world scenar-
ios [27], [28]. Other approaches are based in blind estimation
of multi-path (room impulse response) [29] but they need a
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good initialization to perform well.
Some previous works have also proposed more complicated

structures in order to represent TDOA redundancy, while not
imposing strong assumptions on the noise distribution. In [30]
a representation based on graphs allows to disambiguate if a
peak in correlation was generated by the direct path or by
reverberation applying an efficient search algorithm among all
possible combinations. However, they do not explicitly attempt
to provide improved TDOA estimations by exploiting their
redundancy.

Also different matrix representations have been used in
the bibliography regarding TDOA formulation. For example
[31] uses a representation slightly different to the TDOA
matrices we describe here, but such representation does not
have the algebraic properties that TDOA matrices have, and
their authors do not address an study in this sense.

So, to the best of our knowledge, there are no previous
reported work dealing with improving TDOA estimations by
exploiting their redundancy, while not imposing Gaussian
noise restrictions, not requiring the sensor positions, and being
able to deal with the presence of outliers and missing mea-
surements (errors that will severely impact the performance of
applications based on TDOA measurements). In this paper we
show that TDOA matrices are a powerful tool that combined
with recent advances in robust low-rank estimation, are able
to generate novel solutions for these problems.

III. PROBLEM STATEMENT

Hereafter, we assume only one source located at the
position r = (rx, ry, rz)

>, and n sensors synchro-
nized between them and placed in different positions
si = (six, siy, siz)

>, i ∈ [1, n].
Given this setup, we will assume that the source is emitting

an unknown signal x(t). Then, the signal received by the sen-
sor i, xi(t), is without loss of generality, a delayed and attenu-
ated version of x(t) (direct propagation) in addition to a signal
gi(t) which summarizes all the adverse effects, i.e. noise,
interference, multipath, etc. Thus, xi(t) = x(t − τi) + gi(t),
where τi = ‖r − si‖2/c is the time of arrival (TOA) of the
signal x(t) at the sensor si, being c the propagation speed.

Assuming that TOA cannot be estimated directly, the time
delay of arrival (TDOA) between the sensors i and j is
estimated by correlating the received signals xi(t) and xj(t)
(typically using the Generalized Cross-Correlation GCC [26]).

IV. TDOA MATRICES

In this section we define TDOA matrices, and develop
their main properties. In a nutshell, given any TDOA matrix
M, we show that: i) M is rank 2 (Theorem 1), ii) M can
be decomposed as M =

(
x 1̂> − 1̂ x>

)
with x = M 1̂

(Lemma 1) and iii) the previous decomposition is bijective
(Theorem 2).

These properties are the foundations of the denoising algo-
rithms that we present in sections V and VI, and the missing
data recovery proposal described in section VII, plus their
combination described in section VIII.
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Fig. 1: Example of three different geometrical configurations (grey, green
and blue) of 4 sensor with identical TDOA matrix.

A. Definition of TDOA matrices

Definition 1. A TDOA matrix M, is a (n×n) skew-symmetric
matrix where the element (i, j) is the time difference of arrival
(TDOA) between the signals arriving at sensor i and sensor
j:

M = {∆τij} =




0 ∆τ12 · · · ∆τ1n
∆τ21 0 · · · ∆τ2n

...
...

. . .
...

∆τn1 ∆τn2 · · · 0


 (1)

with ∆τij = (τi − τj), where τi is the time of arrival of the
signal x(t) at the sensor si.

We will also express M in terms of its
columns as M = (m1,m2, · · · ,mn), being
mi = (∆τ1i,∆τ2i, . . . ,∆τni)

>.
We denote as MT (n) to the set of TDOA matrices of size

n× n.
Notice that there is a bijection between the full TDOA set

and the corresponding TDOA matrix. Nevertheless expressing
TDOA measurements as a matrix has important advantages,
that we will discover throughout this article.

Note also that in the former definition, knowing the sensor
array geometry is not required. For a given geometry, all the
feasible TDOA matrices (those that are consistent with that
particular geometry) are a subset of MT (n). Studying the
properties of such subset is out of the scope of this paper
and the interested reader can refer to [8], [9], [32] for further
details.

Additionally, given a particular TDOA matrix, there are
infinite number of sensors geometries which match with it.
Left side of Fig. 1 shows that, given a set of TOAs (τ1,..., τn)
compatible with the set of TDOA measurements, the micro-
phones can be situated in any place along the circumference
(sphere in the 3D case) with center in the source (dotted
lines), preserving its correspondent TOA (and therefore, its
TDOA). Right side of Fig. 1 shows that there are an infinite
number of TOA sets that comply with a given set of TDOA
measurements.

B. Rank of TDOA matrices

Theorem 1. Let M ∈MT (n), then M is rank 2 or 0 (trivial
case).
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Proof: The matrix M can be expressed as:

M = T−T>, (2)

where T is a rank 1 matrix defined as:

T =



τ1 · · · τ1
...

. . .
...

τn · · · τn


 , (3)

Applying the well known inequality:

rank(A + B) ≤ rank(A) + rank(B), (4)

we can deduce that rank(M) ≤ 2.
Moreover, since the rank of any skew-symmetric matrix

must be even, rank 1 is not feasible. So we can conclude that,
excepting the case that M is the zero matrix (trivial case), the
rank of M is 2. This completes the proof.

Note that the formerly referred as ’trivial case’ only occurs
when the time of arrival is the same for all the sensors, i.e
sensors are geometrically placed on a sphere with center in
the source.

Rank deficiency of TDOA matrices means that their rows
and columns are linearly dependent. That is consistent with the
fact that, in the noise-free case, the full TDOA set can be gen-
erated from the non-redundant set using linear equations [23].
In fact, in a TDOA matrix, the column j is the TDOA non-
redundant set when the sensor j is the reference for TDOA
measurements. Hereafter, and without loss of generality, we
will consider the first sensor as the reference for the non-
redundant set.

C. Bijective mapping for TDOA matrices

Next, we show a particular representation of TDOA matrices
with n− 1 parameters that describes their spectral properties
and also forms the base for our denoising algorithms.

Theorem 2. Let H ⊂ Rn be a n − 1 dimensional subspace
of Rn such that span(1̂) * H , then there always exits an
isomorphism between MT (n) and H of form:

φH : H −→ MT (n)

z 7−→ z 1̂> − 1̂ z>

Proof: Theorem 2 states that a bijective linear map exists
between MT (n) an a n− 1 dimensional subset of Rn. Since
the matrix T in (3) can be rewritten as T = z 1̂>, where
z = (τ1, · · · , τn)>, we can define the following linear map:

φ : Rn −→ MT (n)

z 7−→ z 1̂> − 1̂ z>

that is clearly surjective but not injective. That is, any vector
z′ = z + α 1̂ represents the same TDOA matrix. Indeed, the
kernel of φ is the linear subspace of Rn generated by 1̂.

Since we are looking for an isomorphism, we will restrict
the domain of φ to ensure injectivity. It yields φH , where
H ⊂ Rn is a hyperplane of Rn not containing ker(φ). Note
that φH is bijective as H ⊂ Rn keeps the surjectivity of φ
and, since ker(φH) = {0}, the function is also injective.

Hereafter, we will only consider the particular case of φH
for the hyperplane H = ker(φ)⊥. It yields the following
expression for any M ∈MT (n):

M =
(
x 1̂> − 1̂ x>

)
, x ⊥ 1̂ ,x ∈ Rn (5)

Choosing x perpendicular to 1̂ is very convenient, since it
simplifies φ−1H as shown in the Corollary 2.1, and it can also
be used for calculate the singular value decomposition (SVD)
of any M ∈ MT (n), as discussed in IV-C1. This leads to a
parametric representation of M that has important properties
that we will exploit later for TDOA denoising.

Corollary 2.1. Given any M ∈ MT (n), the corresponding
vector x ∈ Rn, perpendicular to 1, can be calculated as:

x = M 1̂. (6)

Corollary 2.2. M ∈MT (n) can also be expressed as:

M =
1√
n

(Dx 1− 1Dx) , 1̂ ⊥ x̂, (7)

since x 1̂> = Dx 1/
√
n and 1̂ x> = 1Dx/

√
n,

1) Singular Value Decomposition: Because M ∈ MT (n)
is a skew-symmetric matrix of rank 2, it has the following
singular value decomposition (SVD) [33, Supplementary ma-
terial]:

M = (û2,−û1)

(
σ 0
0 σ

)
(û1, û2)

>
= σ (û2,−û1) (û1, û2)

>
,

(8)
where û1 and û2 are orthonormal vectors and σ ≥ 0. Note
that the SVD decomposition of M is not unique. Given any
orthogonal 2×2 matrix R, the vectors (v̂1, v̂2) = (û1, û2) R
also represent a valid SVD decomposition:

M = σ (v̂2,−v̂1) (v̂1, v̂2)
>

= σ (û2,−û1) (û1, û2)
>
. (9)

Among all possible SVD decompositions of M note that
Theorem 2 guarantees that always exists one where û1 = 1̂.
In such case SVD decomposition can be computed from (5)
as stated in the following theorem:

Lemma 1. Given M ∈MT (n), it admits the following SVD
decomposition:

M = σ
(
û,−1̂

) (
1̂, û

)>
with û =

M 1̂

‖M 1̂‖
σ = ‖M 1̂‖

(10)

Note that, according the previous lemma, not all rank 2
skew-symmetric matrices are TDOA-Matrices. In fact, if v̂1

and v̂2 in (9) are not coplanar with 1̂ (i.e. (1̂>v̂1)v̂1 +
(1̂>v̂2)v̂2 6= 1̂), then the resulting matrix is rank 2 and skew-
symmetric but not a TDOA matrix.

V. TDOA DENOISING

In this section we propose a denoising strategy to deal
with Gaussian noise in the estimated TDOA measurements,
deriving a closed form solution for the proposed optimization
problem. This solution is also compared with the Gauss-
Markov Estimator.
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A. Denoising Strategy

We assume now that each TDOA measurement is contami-
nated with uncorrelated Gaussian noise nij = −nji, such that
∆τ̃ij = ∆τij + nij . Therefore, the measured TDOA matrix
M̃ = {∆τ̃ij} is also a skew-symmetric matrix, sum of a noise-
free M ∈ MT (n) and a skew-symmetric matrix containing
noise N = {nij}:

M̃ = M + N. (11)

Because of the noise, M̃ /∈ MT (n) and thus Theorem 1
is no longer satisfied. Consequently, the rank of M̃ may be
higher than two. Nevertheless, we will show that we can
take advantage of the structure of TDOA matrices in order
to denoise the measured data.

For denoising, we propose finding the closest
M∗ ∈ MT (n), to the measured matrix M̃, in the sense
of the Frobenius norm. This approach yields the following
optimization problem:

M∗ = arg min
M∈MT (n)

∥∥∥M̃−M
∥∥∥
2

F
. (12)

B. Closed-Form Solution

Theorem 3. Problem (12) has the following closed form
solution: M∗ = (M̃1+ 1 M̃)/n

Proof: From (5), the denoising problem (12) is equivalent
to the following constrained convex optimization problem:

minimize
x

∥∥∥M̃−
(
x 1̂> − 1̂ x>

)∥∥∥
2

F

subject to 1̂> x = 0.
(13)

Using the definition of Frobenius norm ‖A‖2F = tr(AA>),
and trace properties tr(AB) = tr(BA) and tr(A) = tr(A>)
we rewrite the cost as:

∥∥∥M̃−
(
x 1̂> − 1̂ x>

)∥∥∥
2

F
=

= tr

([
M̃−

(
x 1̂> − 1̂ x>

)] [
M̃−

(
x 1̂> − 1̂ x>

)]>)

= 2
(
x> x− x> 1̂ 1̂> x− 1̂> M̃> x + 1̂> M̃ x

)
+

+ tr
(
M̃ M̃>

)
= f

(
x; M̃

)
. (14)

To solve the constrained problem (13) we use the method of
Lagrange multipliers, resulting in the following unconstrained
equivalent:

x∗ = arg min
x,λ

[Λ (x;λ)] , (15)

where λ is the Lagrange multiplier and

Λ (x;λ) = f
(
x; M̃

)
+ λ1̂> x. (16)

We find extrema in (16) by taking first derivatives with
respect to both x and λ and solving the following system:

∇Λ (x;λ) = 0̂ ⇒
{

4x>
(
I− 1̂ 1̂>

)
+ 21̂>

(
M̃− M̃>

)
+ λ1̂> = 0̂>

1̂> x = 0

x∗ =

(
M̃− M̃>

)
1̂− λ1̂

2

λ∗ =
1̂>
(
M̃− M̃>

)
1̂

21̂> 1̂
. (17)

Given that the objective function is strictly convex, the
solution to the system is unique, and therefore because the
proposed solution (x∗ and λ∗) satisfies the equations of a
critical point, it is the global minimum

Since M̃ is skew-symmetric (M̃−M̃>) = 2M̃. Therefore,
(17) becomes:

x∗ =
2M̃ 1̂− λ1̂

2
= M̃ 1̂ (18a)

λ =
21̂> M̃ 1̂

21̂> 1̂
= 21̂> M̃ 1̂ = 0. (18b)

In (18b) we use the fact that 1̂>A 1̂ = 0 for A being a skew-
symmetric matrix. Also, it is interesting to note from (18a)
that x∗ follows the same expression as the one stated in (5)
for x in the noise-free case.

A compact expression for M∗ can be easily derived from
(18a) via (5):

M∗ =
(
1̂, M̃ 1̂

)(
−M̃ 1̂, 1̂

)>
= M̃ 1̂ 1̂> + 1̂ 1̂> M̃ =

= (M̃1+ 1 M̃)/n. (19)

This completes the proof.
Since Lemma 1 relates (5) with SVD, the proposed denois-

ing approach can be considered as a version of Eckart-Young-
Mirsky Theorem [34], [35] constrained to TDOA matrices.

C. Equivalence with the Gauss-Markov Estimator

By operating in (19), each element (i, j) of the denoised
matrix M∗ is obtained as follows:

M∗ = {∆τ∗ij} =

{
1

n

(
n∑

k=1

∆τik + ∆τkj

)}
. (20)

The closed-form in (20) is identical to the one reported in
[23, eq.(14)] as the Gauss-Markov estimator of the TDOA
measurements, so that all the properties there can be extrapo-
lated to this work. This is not surprising as the least-squares
cost of (12) is optimal for Gaussian noise. The same denoising
result was found in [25] by projecting TDOA measurements
into the set of “feasible” bivectors in a least-squares sense.
Under the assumption of Gaussian noise, we can conclude
that [23], [25] and our denoising result in (20) are completely
equivalent.

VI. ROBUST TDOA DENOISING

In some application scenarios, the assumption of uncorre-
lated white noise made in section V is fully unrealistic. In
cases where the noise is correlated with the signal, measure-
ments are prone to contain outliers in the TDOA measurements
due to spurious peaks in the correlation. For such cases, a more
complete model for the measured matrix is:

M̃ = M + N + S, (21)
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where M ∈ MT (n), N is a skew-symmetric matrix contain-
ing Gaussian noise, much like in (11), and the new matrix
S models the addition of all the outliers. Since the number
of outliers is usually small as compared with the number of
measurements, we will assume S to be sparse and unknown.

In order to denoise M̃, we propose solving the following
optimization problem, finding both matrices M and S:

minimize
M,S

∥∥∥M̃−M− S
∥∥∥
2

F

subject to M ∈MT (n)

‖S‖0 < 2k,

(22)

where k is the maximum number of outliers supposed to be
present in the TDOA measurements.

Robust denoising in (22) is a non-convex optimization
problem with constraints that are not even differentiable. This
kind of optimization problems have been explored in Robust
PCA (RPCA) [36] or robust low-rank factorizations such
in GoDec [37]. Despite TDOA matrices are low-rank, these
algorithms are not well suited here as they do not include all
the algebraic constraints in TDOA matrices.

In order to solve (22), we propose an iterative algorithm, in-
spired in GoDec. It consists of an alternation method in which
M and S are obtained in turns, with close-form solutions for
these two steps (we use a subindex t to denote the iteration
count):





Mt = arg min
M∈MT (n)

∥∥∥M̃−M− St−1
∥∥∥
2

F

St = arg min
‖S‖0<2k

∥∥∥M̃−Mt − S
∥∥∥
2

F

(23)

The first sub-problem of (23) is the same as our denoising
problem in (12), therefore Mt can be updated via (19). Then,
St is updated via entry-wise hard thresholding of M̃ −Mt.
Thus:





Mt =
(
M̃− St−1

)
1̂1̂> + 1̂1̂>

(
M̃− St−1

)

St = P2k

(
M̃−Mt

) (24)

where Pl(X) is an function which generates a matrix with the
same size of X, preserving the l elements of X with the largest
absolute value, and making the rest of elements zero. Note
that, since X is skew symmetric in our application, the result
provided by P2k(·) is also skew symmetric. The convergence
to a local minimum of this algorithm is guaranteed in similar
circumstances as GoDec [37], as the solutions to both sub-
problems in (24) are solved globally.

So, the proposed robust denoising algorithm is shown in
Alg. 1.

Algorithm 1 Robust denoising.

Require: M̃, k, ε
Ensure: M ∈MT (n), ‖S‖0 < 2k,

1: M0 = 0 ; S0 = 0 ; t = 0
2: while ‖M̃−Mt − St‖2F /‖M̃‖2F > ε do
3: t = t+ 1
4: Mt = (M̃− St−1)1̂1̂> + 1̂1̂>(M̃− St−1)
5: St = P2k(M̃−Mt)
6: end while
7: return Mt, St

From now on, we will refer to this algorithm as Robust
DeN.

VII. MISSING DATA RECOVERY

A. Recovery Strategy

In real scenarios, there may be situations where some of
the elements of M̃ might not be available (for instance, due
to communications failure) or even when they are available,
there are reasons to avoid using them (for example, due
to a priori knowledge of unreliable measurements, or when
calculating the whole redundant set is computationally too
demanding) [32]. In such cases, we want to be able to avoid
some measurements, thus performing estimations when part
of the values in M̃ are missing.

In this section, we address the matrix completion problem
([38], [39]) for TDOA matrices. We assume that in a measured
TDOA matrix M̃, some of its elements are unknown, and
the rest are contaminated with additive Gaussian noise. We
take advantage of the redundancy present in TDOA matrices
to estimate a complete denoised TDOA matrix including the
missing entries.

The matrix completion problem is stated as follows:

M∗ = arg min
M∈MT (n)

∥∥∥L ◦
(
M̃−M

)∥∥∥
2

F
, (25)

where L is a symmetric binary matrix whose element (i, j) is
1 if the TDOA between the sensor i and j is known, being 0
otherwise. For convenience and without loss of generality, the
elements on the main diagonal of L will be set to 1.

Solving (25) is equivalent to finding the full TDOA matrix
whose elements best fit the available elements of M̃. Note that,
L ◦ (M̃−M) = (M̃L −L ◦ M), where M̃L = (L ◦ M̃) is
the result of setting the unknown elements of M̃ to zero.

B. Closed-Form Solution

Theorem 4. The problem (25) has the following closed form
solution: M∗ =

(
Dβ + L̄

)−1
M̃L 1 + 1M̃L

(
Dβ + L̄

)−1
where Dβ =

(
I ◦ LL>

)
is a n × n diagonal matrix with

βββ =
(
n− β̄1, · · · , n− β̄n

)>
=
√
nL 1̂ as its main diagonal.

β̄i is the number of missing measurements with the sensor i.

Proof: Using Corollary 2.2, problem (25) is rewritten as

minimize
x

∥∥∥∥M̃L −
L ◦ (Dx1− 1Dx)√

n

∥∥∥∥
2

F

subject to 1̂> x = 0.

(26)
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Since 1 is the identity element of the hadamard product and
Dx is a diagonal matrix, we can rewrite (26) as:

minimize
x

∥∥∥∥M̃L −
(DxL− LDx)√

n

∥∥∥∥
2

F

subject to 1̂> x = 0.

(27)

Operating in a similar manner to (14) we get:
∥∥∥∥M̃L −

(DxL− LDx)√
n

∥∥∥∥
2

F

=
2

n
tr
(
DxLL>Dx

)
−

− 2

n
tr (DxLDxL) +

2√
n

tr
([

M̃L − M̃>
L

]
DxL

)
+

+ tr
(
M̃LM̃>

L

)
. (28)

Using the identity x∗ (A ◦ B) y = tr
(
Dx
∗ADyB>

)
we get:

∥∥∥∥M̃L −
(DxL− LDx)√

n

∥∥∥∥
2

F

=
2

n
x>

(
I ◦ LL>

)
x

− 2

n
x>

(
L ◦ L>

)
x + 2 1̂>

([
M̃L − M̃>

L

]
◦ L>

)
x+

+ tr
(
M̃LM̃>

L

)
= g

(
x; M̃, L

)
(29)

and finally:
∥∥∥∥M̃L −

(DxL− LDx)√
n

∥∥∥∥
2

F

=

2

n

(
x>Dβ x− x> L x + n 1̂>

(
M̃L − M̃>

L

)
x
)

+

+ tr
(
M̃LM̃>

L

)
= g(x; M̃, L). (30)

It is important to note that equations (14) and (30) are iden-
tical when there is no missing data in M̃ (i.e L = 1 = n 1̂ 1̂>

and Dβ = n I).
We use the method of Lagrange multipliers to express (26)

as the following unconstrained optimization problem:

Λ (x;λ) = g
(
x; M̃, L

)
+ λ1̂> x. (31)

By taking derivatives we obtain the following system:

∇Λ (x;λ) = 0̂ ⇒
{

2
nx> (Dβ − L) + 1̂>

(
M̃L − M̃>

L

)
+ λ1̂> = 0̂

1̂>x = 0.
(32)

Since 1̂>x = 0 implies that 1x = 0̂, we substitute in (32)
obtaining:

2

n

(
Dβ + L̄

)
x =

(
M̃L − M̃>

L

)
1̂− λ1̂, (33)

where
(
L̄ = 1− L

)
(logical not operator over all elements of

L). Note that: (Dβ + L̄) is symmetric and, furthermore, 1̂ is
one of its eigenvectors.

(
Dβ + L̄

)
1̂ =

βββ + β̄̄β̄β√
n

= n1̂. (34)

Therefore, if the two terms of (33) are multiplied on the right
by 1̂> we get:

2 1̂>x = 1̂>
(
M̃L − M̃>

L

)
1̂− λ. (35)

Then applying to (35) the fact that

1̂>x = 0 and 1̂>(M̃L − M̃>
L )1̂ = 0, (36)

we can conclude that λ = 0. Thus, the solution of (26) is:

x∗ = n
(
Dβ + L̄

)−1
M̃L1̂. (37)

Finally, the solution of problem (25) can be calculated from
(37) using (5):

M∗ =
(
Dβ + L̄

)−1
M̃L 1 + 1M̃L

(
Dβ + L̄

)−1
(38)

This completes the proof.
From now on, we will refer to this algorithm as MC. It

is noteworthy to comment that the matrix (Dβ + L̄) contains
important information about the recoverability of missing data:
if it is full-rank, then the solution of (25) is unique and if
(Dβ + L̄) is rank-deficient, missing data is not recoverable
uniquely without any further assumption.

Furthermore, in the absence of missing data,
n(Dβ + L̄)−1 = I, hence the matrix completion solution in
(38) becomes the solution of the denoising problem stated in
(19).

VIII. ROBUST TDOA DENOISING WITH MISSING DATA

In this section we aim to combine the results of sections VI
and VII, addressing the more general case in which both out-
liers and missing data are considered. Therefore, the problem
is a combination of (22) and (25) defined as:

minimize
M,S

∥∥∥L ◦
(
M̃−M− S

)∥∥∥
2

F

subject to M ∈MT (n)

‖S‖0 < 2k

S = L ◦ S.

(39)

In the same way as in section VI, (39) can be solved
by alternatively solving the following two subproblems until
convergence:

Mt = arg min
M∈MT (n)

∥∥∥L ◦
(
M̃−M− St−1

)∥∥∥
2

F
(40a)

St = arg min
‖S‖0<2k

∥∥∥L ◦
(
M̃−Mt

)
− S

∥∥∥
2

F
. (40b)

The subproblem (40a) is equivalent to the missing
data problem solved in section VII but considering
M̃L = (L ◦ M̃−St−1). Therefore, according to Theorem 4,
it has a closed form solution:

M∗
t = (Dβ + L̄)−1(L ◦ M̃− St−1)1+

+ 1(L ◦ M̃− St−1)(Dβ + L̄)−1. (41)

Since (40b) is of the same form as the second subproblem in
(23), it can also be solved by entry-wise hard thresholding of
L ◦ (M̃−Mt).

The pseudocode shown in Alg. 2 summarizes the proposed
algorithm for the general case.
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Algorithm 2 Robust denoising with missing data.

Require: M̃, L, k, ε
Ensure: M ∈MT (n), ‖S‖0 < 2k,

1: Dβ = I ◦ LL>

2: Q = (Dβ + L̄)−1

3: M0 = 0 ; S0 = 0 ; t = 0
4: while ‖M̃−Mt − St‖2F /‖M̃‖2F > ε do
5: t = t+ 1
6: Mt = Q(L ◦ M̃− St−1)1+ 1(L ◦ M̃− St−1)Q
7: St = P2k(M̃−Mt)
8: end while
9: return Mt, St

Note that in line 2 the matrix Q = (Dβ + L̄)−1 can be
precalculated in order to get an efficient implementation of
the algorithm.

From now on, we will refer to this algorithm as Robust
DeN+MC.

IX. EXPERIMENTS WITH SYNTHETIC DATA

In this section computer simulations will be used to compare
the proposed algorithms with some of the alternatives existing
in the state of the art.

For evaluating the Robust DeN and Robust DeN+MC
algorithms, two different metrics will be used:
• The Signal-to-Noise-Ratio SNR [dB] of the

non-redundant set referenced to the first sensor
(10 log(

∑n
i=1 ‖∆τi1‖2/

∑n
i=1 ‖∆τ∗i1 −∆τi1‖2)). This

is an application independent metric (where ∆τ∗i1 is
the estimation of ∆τi1), that will allow assessing the
proposal improvements in the TDOA measurements per
se.

• The localization error, measured as the average distance
between the source ground truth position and the position
estimated using any given localization algorithm based on
TDOA estimations (such as [16] in our case). This is an
application dependent metric, that will allow assessing
the actual benefits of the proposal in an example of
a real task. Note that our proposal is not restricted
to localization and can be used in other applications
that could benefit from denoised TDOAs (such as self-
calibration or beamforming).

A. Experimental setup

For all the synthetic data experiments, a set of 10 sen-
sors (which implies 45 different sensor pairs) and 1 source
were randomly located. Therefore, 45 different TDOA mea-
surements were generated per experiment, and independent
Gaussian noise was added to them, using the same variance
for all the measurements.

The sensor locations were uniformly distributed in a cube
of 1 meter side, and the source positions were uniformly
distributed in a 2 meter side cube. The propagation speed
of the signal was set to 343.313 m/s. In all the experiments
where it’s required, ε is set to 10−10. To increase the statistical
significance of the results, they are provided as averages of 20
independent runs.

Fig. 2: Robust denoising in synthetic data: SNR in dB, higher is better.

B. Evaluation of Robust TDOA Denoising

In this first experiment, we evaluated the performance of
the Robust DeN algorithm proposed in section VI, imposing
that some TDOA values were outliers. To simulate this, we
randomly chose some measurements (between 0 and 10) and
replaced them with a zero-mean Gaussian distributed noise,
with a standard deviation of 0.1 ms. It is worth mentioning
that the outlier values calculated that way are not related at all
to the real TDOAs, thus being true outliers. The parameter k
of the proposed algorithm, which fixes the maximum number
of identifiable outliers, was set to 8.

1) SNR Improvements Evaluation: Fig. 2a shows the SNR
values for the Robust DeN algorithm when modifying the
noise standard deviation and the number of outliers, compared
with that obtained by the Gauss-Markov estimator (Fig. 2b),
and also when only the non-redundant set is used, i.e. not
using the redundancy of TDOA measurements (Fig. 2c).

As predicted in section V, when no outliers are present, the
performance of the Robust DeN algorithm is the same as
Gauss-Markov (see row 0 in Figs. 2a and 2b), hence it reaches
the Cramer-Rao Bound [23], while being much better than
using no redundancy. Nevertheless, the proposed algorithm
clearly outperforms the other two approaches when outliers
are present in the measurements (rows 1 through 10 in the
graphics of Fig. 2).

2) Source Localization Improvements Evaluation: The op-
timized non-redundant set provided by the algorithms applied
in Section IX-B1 were used in a localization algorithm using
[16]. The average localization errors (in mm) are shown in
Fig. 3. Again, the Robust DeN algorithm performs as Gauss-
Markov when there are no outliers, but is clearly superior when
outliers are present.

It is also worth mentioning that the behaviour of the robust
denoising keeps the improvements at roughly the same level
for increasing number of outliers present, thus validating
the ability of the algorithm to pinpoint and eliminate their
presence.

C. Evaluation of Missing Data Recovery

In this second experiment, we evaluated the capability of
the MC algorithm proposed in section VII to recover missing
values. For our purposes, the missing TDOA measurements
were also chosen randomly but, in contrast to the previous
experiment, the matrix positions of the missing measurements
were known.
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Fig. 3: Robust denoising in synthetic data: Localization error in mm (using
[16]), lower is better.

Fig. 4: Missing data recovery in synthetic data: SNR in dB, higher is better.

Fig. 5: Missing data recovery in synthetic data: Localization error in mm
(using [16]), lower is better.

Fig. 4 and Fig. 5 show, respectively, the SNR values, and the
localization error for the MC algorithm, when modifying the
noise standard deviation and the percentage of missing TDOA
values in the TDOA matrix, as compared with using only the
non-redundant set (missing values were set to zero).

From the figures, it can be clearly seen that the proposed
algorithm can take advantage of the knowledge about which
measurements were missing, achieving even better results than
when the positions of the outliers were unknown. For example,
removing 50% of the full TDOA set of measurements implies
23 missing values of 45 measurements , much more than the
maximum of 10 outliers evaluated in Fig. 2, while keeping
good performance.

D. Evaluation of Robust TDOA Denoising with Missing Data

In this third experiment, we evaluated the capability of the
Robust DeN+MC algorithm proposed in section VIII to face
both outliers and recover missing values.

To provide a wide range of evaluation scenarios, we defined:
i) Two conditions related to noise, namely low and high. The
former corresponds to a standard deviation of 10−3 ms., and
the latter to 0.2 ms. ii) Two conditions related to the presence
of outliers, imposing the existence of 2 or 6 outliers. iii) A
variable number of missing TDOA measurements, defined as
a percentage of missing TDOA values in the TDOA matrix.

In all cases, the number of outliers is fixed among the full
TDOA set and then, some measurements are discarded, i.e.
some of the discarded measurements may be outliers. Note
that this is consistent with the real case, where it is not possible
to anticipate where the outliers are.

Fig. 6 and Fig. 7 show, respectively, the SNR values, and
the localization error for different algorithms, and for different
evaluation scenarios.

As it can be seen in Fig. 6a, 6c, 7a, and 7c, when there
are a low number of outliers (2 in this case), the best results
are obtained for lower k values. However, when the number of
outliers increase, (Fig. 6b, 6d, 7b and 7d, low k values perform
worse. So, we can conclude that k must be a number as low
as possible, but higher than the number of actual outliers.

Nevertheless, it is worth to observe the behaviour of Fig. 6b,
6d, 7b and 7d (with more outliers) when the percentage
of missing data increases. It can be clearly seen that the
lines corresponding to different values of k are crossing
among them. This seems to indicate that as the missing data
percentage increases, the number of outliers that we are able
to detect decreases.

Anyway, the results obtained by the Robust DeN+MC
algorithm outperforms the Gauss-Markov estimator, asymp-
totically approaching it when the noise is very high. Note also
that for high values of noise, the noise and the outliers are
practically indistinguishable.

X. EXPERIMENTS WITH REAL DATA

The aim of this section is to evaluate whether the im-
provements obtained in section IX using synthetic data are
actually found in real environments. To do this, the proposed
algorithms have been evaluated using audio recordings from
the AV16.3 database [40], an audio-visual corpus recorded in
the Smart Meeting Room of the IDIAP Research Institute, in
Switzerland. The same metrics and localization algorithm of
the previous section has been employed.

Additionally, the proposed Robust DeN algorithm is
compared with other recent state-of-the-art methods in sec-
tion X-D. In that case, we have employed the same framework
used in [8], wherein many methods were already compared.
In order to make the comparison as fair as possible, in this
part the localization algorithm will be the same as in [8].

A. Experimental Setup

The IDIAP Meeting Room (shown in Fig. 8) is a
8.2m× 3.6m× 2.4m rectangular space containing a centrally
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Fig. 6: Algorithm evaluation in synthetic data: SNR in dB.
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Fig. 7: Algorithm evaluation in synthetic data: Localization error in mm ([16] is used for source position estimation from the optimized TDOA values).
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Fig. 8: IDIAP Smart Meeting Room: experimental details.

located 4.8m × 1.2m rectangular table, on top of which two
circular microphone arrays of 10cm radius are located, each
of them composed by 8 microphones. The centers of the two
arrays are separated by 80cm and the origin of coordinates is
located in the middle point between the two arrays. A detailed
description of the meeting room can be found in [41].

The audio recordings are synchronously sampled at
16 KHz, and the complete database along with the corre-
sponding annotation files containing the recordings ground
truth (3D coordinates of the speaker’s mouth) is fully accessi-
ble on-line at [42]. It is composed by several sequences from
which we are using sequence 01, with a single male speaker
generating digit strings in 16 positions (which can be seen

as small circles in Fig. 8b), distributed along the room. The
sequence duration accounts for 208 seconds in total, with 823
ground truth frames.

The TDOA measurements ∆τ̃ij , from which the measured
TDOA matrix M̃ is built, where estimated using the highest
peak of the GCC-PHAT function[26].

As in a real scenario outliers are common but difficult to
anticipate or enforce, the sweep over noise levels and the
number of outliers that we performed with synthetic data are
not feasible. Therefore, in our experiments with real data,
we will only provide the SNR values and localization errors
obtained after using each algorithm.

B. Evaluation of Robust TDOA Denoising

In this experiment, all the microphone pairs have been
considered, hence 120 TDOA values have been computed for
each frame.

In table I we show an example of the results for the Robust
DeN algorithm with k = 10. As it also happened with synthetic
data, in this case the proposed algorithm outperforms the
Gauss-Markov estimator, yielding great improvements in both
SNR and localization precision. Fig. 9 shows that the selection
of k is not very critical in this dataset as improvements over
Gauss-Markov are obtained for a wide range of k.

These results are the baseline for the experiments with
missing data described in the next subsection.
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TABLE I: Robust denoising performance in real data

SNR (dB) Average Localization error (mm)

Robust DeN 27.46 354
Gauss-Markov 23.19 515
Only non-redundant set 17.83 858
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Fig. 9: Results for real data with missing TDOA measurements.

C. Evaluation of Robust TDOA Denoising with Missing Data

In the second experiment with real data, we randomly
remove a set of TDOA measurements. Fig. 9 shows the ob-
tained results. The dotted lines correspond to the performance
(SNR and localization error) achieved by the Gauss-Markov
estimator when there are no missing measurements. The solid
lines with circular marks are the results obtained by the MC
algorithm described in section VII.

On the other hand, the solid lines with
squared/triangular/diamond marks correspond with the
results of the Robust DeN+MC algorithm presented in
section VIII. The different colors/shapes indicate different
values of the hyperparameter k.

Fig. 9 highlights the relevance of the proposed robust-
denoising algorithm (Robust DeN+MC) in real-scenarios,
with important improvements over its non-robust version (MC):
higher than 4dB absolute improvement in terms of SNR, and
around 30% relative improvement (15 cm absolute) in terms
of localization precision.

We again observe that as the percentage of missing data
increases, the lines corresponding to different values of k are
crossing among them. This behaviour is very similar to that
found in the synthetic experiments above (refer to Fig. 6 and
Fig. 7) for a high number of outliers, what suggests that this
is the case in the real experiment, also serving as a validation
for our simulation conclusions.

It is also noteworthy that, in order to get the best result, the
maximum number of outliers k should be decreased when the
number of missing measurements increases.

D. Comparison with Other Methods in a Localization Task

In this section we made use of the code and real data of
the gtde MATLAB toolbox [8], [43]. In this toolbox, real
recordings were performed under noisy conditions in a 4x4x4
(m) room, in which an array of 4 microphones forming a

tetrahedron of 20 cm side has been placed. Sound waves
coming from a loudspeaker placed at 189 different locations
1.7 m away from the array were recorded at 48 KHz.

Table II shows the results of the different algorithms on
the localization task. The first 5 columns refer to the results
of the Robust DeN algorithm for 5 different values of the
parameter k. The rest of the columns show the results of a
selection of the algorithms implemented and evaluated in [8]
(the nomenclature has been kept and the results are essentially
the same).

From [8], we selected three multilateration methods (gener-
ically referred to as x-mult) which are implementations of the
algorithm described in [44]. These methods require to be ini-
tialized with the distance r to the source1. They were selected
because they also make use of the redundancy between all
the correlations, using the same input as the Robust DeN
algorithm. We also compare our proposal with the branch
& bound (b&b) method proposed by the authors of [8], as
this is the one with the best performance in that work. The
interested reader may refer to [8] for further details about the
used methods, and the results of some other methods as well.

The Robust DeN algorithm is the only one of the eval-
uated algorithms that does not require information about the
array geometry to perform denoising of the TDOA estimations.
The localization algorithm (i.e converting TDOA to angles),
implemented in [43], was used after all the methods in order
to make the comparison as fair as possible.

The first row in table II shows the percentage of localization
measurements with an angular error lower than 30o, the second
row shows their mean angular error, and the third row their
standard deviation.

To complement the data of Table II, we have also evaluated
the execution timing details of the evaluated algorithms, with
the results shown in Table III.

Table II shows that the Robust DeN algorithm performs
better than the x-mult algorithms. Note that this happens even
when the input data is the same, and neither the geometry
of the array, nor the distance to the source r are used for
denoising in our proposal. In what respect to computational
demands, our proposal is over 50 times faster.

Comparing with the b&b algorithm, our proposal is close
to its performance, which is also an important result provided
that (again) we do not use the array geometry for denoising,
and our execution time is over 110 times faster.

XI. CONCLUSIONS

This paper has studied the properties of TDOA matrices,
showing that they can be effectively used for solving TDOA
denoising problems. In particular, the paper has investigated
challenging scenarios where the TDOA matrix is contaminated
with Gaussian noise, outliers and where a percentage of the
measurements are missing. The paper shows that denoising
in the presence of Gaussian noise and missing data can
be solved in closed-form. This result is important, as it is
the basis of an iterative algorithm that can also cope with

1n-mult, t-mult and f-mult, use r values of 0.9m, 1.7m and 2.5m
respectively, following [8].
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TABLE II: Real data performance comparison between Robust DeN and selected algorithms in [8] (marked with ∗) (T60 ≈ 0.5s)

Robust DeN
n-mult∗ t-mult∗ f-mult∗ b&b∗

k = 0 k = 1 k = 2 k = 3 k = 4

% Measurements with angular error < 30◦ 23.78% 24.12% 25.20% 25.71% 23.52% 13.99% 17.38% 17.91% 27.60%
Mean angular error 17.21 16.44 16.60 16.78 17.66 17.08 16.05 15.25 16.89
Standard deviation of angular error 7.52 7.44 7.52 7.52 7.38 7.31 7.80 7.78 7.50

TABLE III: Average execution time (s) and standard deviation for each
method (evaluated on 9435 trials).

Robust DeN x-mult b&b

Mean time (s) 0.024 1.255 2.649
Std (s) 0.0011 0.086 0.339

outliers. The paper has tested the proposed algorithms in the
context of acoustic localization using microphone arrays. The
experimental results, both on real and synthetic data have
shown that our algorithms successfully perform denoising
(up to 30% of improvement in localization accuracy) with a
high rate of missing data (up to 50%) and outliers, without
knowing the sensor positions. This is important as it opens its
application to tasks where the sensors geometry is unknown.
Interestingly, in real datasets our robust denoising algorithm
is systematically better than the Gauss-Markov estimator even
when there is no missing data. This is also an important
result as it proves that the assumption of Gaussian noise does
not hold in real cases, while our robust model is capable of
automatically discard erroneous measurements. The proposed
robust denoising method has also been compared with other
methods in the literature on a localization task. Our results
are very similar to the state of the art, even though we do not
require knowing the array geometry in the denoising stage.
Furthermore, our proposal is significantly less computationally
demanding.

As for future work, we plan to further test our denoising
algorithms in applications where the position of the sensors is
unknown in advance, such in self-localization and beamform-
ing.
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Universidad Politécnica de Madrid, Madrid, Spain,
in 1992 and 2001 respectively. From 1990 to 2007
he was a member of the Speech Technology Group
and held different teaching positions at Universidad
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