
IMPLEMENTATION IN FPGAS OF JACOBI METHOD TO SOLVE THE EIGENVALUE
AND EIGENVECTOR PROBLEM

Ignacio Bravo*, Pedro Jiménez, Manuel Mazo, José Luis Lázaro, Alfredo Gardel

Department of Electronics. University of Alcala.
Ctra. Madrid – Barcelona km 33.600. 28871 Alcala de Henares (Madrid) – Spain.

http://www.depeca.uah.es / ibravo@depeca.uah.es

ABSTRACT

This work shows a modular architecture based on FPGA’s
to solve the eigenvalue problem according to the Jacobi
method. This method is able to solve the eigenvalues and
eigenvectors concurrently. The main contribution of this
work is the low execution time compared with other
sequential algorithms, and minimal internal FPGA
consumed resources, mainly due to the fact of using the
CORDIC algorithm. Two CORDIC modules have been
designed to solve the trigonometric operations involved. A
parallel CORDIC architecture is proposed as it is the best
option to compute the eigenvalues with this method. Both
CORDIC modules can work in rotation and vector mode.
The whole system has been done in VHDL language,
attempting to optimize the design.

1. INTRODUCTION

The calculation of eigenvalues and eigenvectors is a
problem that appears in many practical applications of
different scientific areas (artificial vision, digital signal
processing, power electronics, etc.). Concretely this work is
applied in the PCA algorithm of artificial vision (Principal
Component Analysis). In any case, the proposed solution
can be extended to any other application that needs to solve
the eigen problem. The only condition that must be fulfilled
is that the input matrix must be symmetrical and with
elements belong to the real type, which happens in many
practical applications. Respect the maximum matrix size in
our work is limited to the FPGA resources. The usual
maximum matrix size does not go over 20x20 in practical
applications using PCA. In any case, the proposed hardware
solution presented herein for the calculation of eigenvalues
and eigenvectors, allows easily modifying the HW design
to matrices of greater size.
 The developed solution has the advantage to use distinct
HW modules that run in parallel, with a minimum data
dependency between the different modules, achieving a
high speed computation of the eigenvalues and eigenvectors

for an input matrix.
 The rest of the paper is divided into the following
sections. Section 2 describes the fundamental aspects of the
Jacobi method for computation of eigenvalues and
eigenvectors and their possible implementation in a Systolic
Array. The use of CORDIC structures to compute the
Jacobi algorithm is developed in Section 3. Then, Section 4
is devoted to present the HW design. Finally several results
and conclusions are briefly discussed in Sections 5 and 6.

2. METHOD OF JACOBI TO SOLVE THE EIGEN
PROBLEM

The classic Jacobi method (1846) is based on the obtaining
of the first diagonal (D) of an original matrix (A) by means
of a sequence of rotations or iterations [1].

TVDUA ⋅⋅= (1)
where U and V are orthogonal matrices. Diagonal D
contains the Singular Values Decomposition (SVD) of the
original matrix. Working with Hermitian matrices, the
singular values are equal to the eigenvalues. Thus, for this
case, the expression (1) can be reformulated as:

TUDUA ⋅⋅= (2)
where the orthogonal matrix U comes to be the matrix of
eigenvectors.
 For each iteration, the matrix values outside the
diagonal are diminished. To make null these outer values,
the number of necessary iterations would be infinite. The
end of the iteration process takes into account a threshold
value in order to consider that the matrix has been
diagonalized.
 If the initial matrix has a size of nxn elements, several
authors as in [2] propose a systolic architecture of
processors based on the Jacobi method, which will handle
matrices of 2x2 elements. Two different HW architectures
based in systolic arrays must be implemented, one for
eigenvalues and another for eigenvectors.
 In the case of eigenvalues, initially each processor is
loaded with a 2x2 matrix from the original matrix. There
are two types of processors Pi,j according to the position
that occupies within the systolic array. Thus, one type will
be the Diagonal Processor (DP) corresponding to those
systolic processors in which i(rows)=j(columns) and Non-

* Project SILPAR (Ministerio de Ciencia y Tecnología ref:
DPI2003-05067) and "Cátedra de control electrónico en
transportes" founded by LOGYTEL and RENFE.

1-4244-0 312-X/06/$20.00 c©2006 IEEE.

Authorized licensed use limited to: Univ de Alcala. Downloaded on September 10, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

Diagonals Processors (NDP) to systolic array processors in
which i≠j.
 Each processor computes the formula given by (3):

)()()(
,

)()(
,

)1(k
ii

k
ij

Tk
jj

k
ij RPRP αα ⋅⋅=+ (3)

where i,j=1, 2… ,n/2, k=0,…, nn log and)(αR is the so-

called rotation matrix 







− αα

αα
cossin
sincos

 considering a rotation

angle α. Expression (3) has two rotation angles (αii, αjj) due
to considering two processor types, the rotation angles for R
will be different. For DP’s the rotation angles αi,i and αj,j
must eliminate the off-diagonal values. Thus, making equal
αi,i to αj,j in (3), the rotation angle αi,i is formulated in (4).

()
()

() ()k
ml

k
ml

k
mlk

ii aa

a
tg

12,122,2

2,12
,

2
)2(

−−

−

−
=α (4)

 The rotation angles needed in the NDP processors
will be always different. The rotation angles for a NDP
processor come from the DP of row (i), Pi,i, and DP of
column (j),Pj,j. The NDP's transfer its partial results
obtained in each iteration to the DP's in order to eliminate
the transmitted element.
 When each processor has computed the operations of
expression (3) with its corresponding angles, the obtained
partial results in each processor must be carefully
rearranged transferring them between the different
processors. After looping nn log iterations computing the
described process, the final result is a diagonal matrix [2].
 The matrix of eigenvectors (B(k)) associated to the
eigenvalues of A, is also based on the decomposition of the
matrix in matrices of 2x2 elements. In this case, the input
matrix to be subdivided is the identity matrix [2].
Successive iterations will be applied, until finding the
eigenvectors associated. In this case there is no difference
between DP's and NDP's processors, since once the first
rotation is accomplished in the first iteration, no processor
will handle symmetrical matrices. The proposal in [2] is to
implement a new processor array of size n/2×n/2, where the
equation to compute for each processor (5), is different
from the one given for eigenvalues (3).

())()(
,

)(
,

1
,

k
jj

k
ji

k
ji RBB α⋅=+ (5)

where Bi,j correspond to one systolic eigenvector processor
(VP), which also is loaded with matrices of 2x2 elements.
After the same number of iterations that in the eigenvalues
proccesors, the resulting matrix is the eigenvectors matrix
associated to the eigenvalues calculated by the other stage.

3. USE OF CORDIC TO ACCOMPLISH THE
JACOBI METHOD.

The CORDIC (COordinate Rotation DIgital Computer)
algorithm has been widely used in FPGÁs as a tool to
resolve many mathematical operations [3]. In particular, for

the Jacobi method, it can be used to make the calculation of
the angle in the DP's, (4), the double rotation in the NDP's
and DP's (3) and the simple rotation in the VP's as shown in
expression (5) [4].
 Computing the rotation angle for each DP is solved by
means of the arc tangent formula as previously exposed (4).
This inverse trigonometric operation can be resolved by
means of CORDIC [3] using circular coordinates and
vector mode. Really, computing αi,i

(k) consists on obtaining
the resulting angle of the rotation of a vector.
 Considering the double rotation for the DP’s and
NDP’s, and the simple rotation for the VP’s, also CORDIC
can be a good approximation method to compute these
operations using CORDIC modules with rotation mode.

4. IMPLEMENTATION DESIGN

According to the previous section, the Jacobi method
managing 2x2 matrices [2], represents a regular design
suitable for implementation in reconfigurable HW such as
FPGA’s [5]. The requirement in area resources of the
FPGA is too large if both systolic architectures are
implemented (one for eigenvalues and another one for
eigenvectors), that are based on processors with CORDIC
modules that use a high number of internal resources. For
example, a serial CORDIC module of 16 bits, generated
with the tool Xilinx Core Generator occupies up to 400
slices and the number of necessary CORDIC modules for
an input matrix of 6x6 elements is 57. The main goal of our
proposal design must be reduce the maximum number of
CORDIC modules needed. This reduction can be applied
from two points of view:
• Multiplexing the CORDIC modules while computing

double rotations, reducing the number of modules
CORDIC but increasing the execution time.

• Taking advantage of the symmetric property of the input
matrix, to reduce the number of symmetrical
processors. Thus the systolic array would be
transformed into a triangular array (only processors in
the diagonal and the lower or upper part of the
diagonal).

 Even with these types of optimization, the resources
used in the implementation represent an excessive number
of internal resources. Applying both considerations, the
number of necessary CORDIC modules for an input matrix
of 6x6 elements would descend from 57 to 15 units (in this
case supposes a reduction of 73%). The number of slices
associated to these CORDIC modules would occupy up to
6000 slices. Other authors [5] presents an architecture with
several modifications from the solution given in [2] where
the total number of slices for a matrix of 6x6 and with data
of 16 bits reaches the 9900 slices. As shown, the large
amount of necessary resources makes worth to look for
other alternatives.
 We will exploit the sequential property of each one of

Authorized licensed use limited to: Univ de Alcala. Downloaded on September 10, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

Fig. 1. Operating sequence made inside one iteration of the eigenvalue/eigenvector computing process.

the iterations in the Jacobi method (data load, angles
computation, double rotation in eigenvalues and simple
rotation in eigenvectors, reordering of partial results and
data interchange). Our proposal design is shown in Fig. 2.
The main modules of the design are the following:
• ROM memory: Based on the processing steps involved

by the Jacobi method, an instruction set has been
codified, decoded by the FSM module. Each one of the
bits of the instruction is associated to a control signal
that configures the system in order to accomplish each
one of the stages of the Jacobi method.

• Dual Port memory (DPM): It stores the data of the
input matrix as well as the variable data of each
iteration, with side ports X and Y.

• CORDIC modules: There exist two different types
(A/B) both using circular coordinates. The module A

will only work in the rotation mode while module B
works in both rotation and vector mode. It is enough to
compute the rotation angle with only one module while
maintaining the maximum computing speed of the
whole system. In both cases, the CORDIC architecture
used is parallel with m stages, (equal to the size of the
input data). The maximum value of m is limited to 18
bits due to the use of embedded FPGA multipliers that
will apply the correction factor in the output of the
CORDIC module. If one desires to increase the size of
the input data, an extension in the block of the
correction factor must be made by means of the use of
more multipliers.

• FSM: Reads the information from the ROM memory in
order to generate the necessary control signals as well
as the address data for the Dual-Port Memory (DPM).

• FIFO memories: these memory modules store the
eigenvectors temporarily when the data bus of the
DPM is busy while storing the eigenvalues.

• Block 1: This module generates the input data for
CORDIC B using the data from other blocks
computing the rotation angle (numerator and
denominator of (4)).

• Block 2: It implements the synchronism block between
the feedback data and interchange between the first and
second rotation.

In order to obtain the maximum speed, CORDIC
modules that execute in all the processing steps have a
pipelined architecture with P stages, obtaining a pipelined
design.

The operation sequence of one iteration showing the
pipeline contents is presented in Fig. 1. The total execution
time (TTotal) is the sum of the time to load the initial values
(TL ini), the computing time for the eigenvalues and
eigenvectors (Tc) and the latency of extracting all the data
stored in the pipeline (TL extract), being TL ini y TL extract much
smaller than the effective computing time (see Fig. 1). TL ini
is the time spent to load the input matrix for the eigenvalues
and the identity matrix for the eigenvectors given by (6).

The computing time Tc is calculated as the number of
iterations by the time of each iteration, TID (7). This time
depends on the length of pipeline (P) for the CORDIC
processors. In each iteration, according to the described
architecture, the first step made is the calculation of the
rotation angles. This is made using only module CORDIC

ROM
(pseudocode)

FSM

addressdata

addr X

addr Y

WEX

WEY

REG

CORDIC
B

ZINYINXIN

ZOUTYOUTXOUT

REG REG

FIFO X FIFO Y

DUAL
PORT

(X)

DUAL
PORT

(Y)

REG

CORDIC
A

ZINYINXIN

YOUTXOUT

REG REG

Y write Bus

ANGLESZ read Bus

X write Bus

Z write
Bus

Block 2
Syncronism

Y write Bus

X write Bus

MUX MUX

MUX

X read Bus

Y read Bus
BLOCK

1

Mode

Fig. 2. Developed system to solve eigenvalues and

eigenvectors based on the Jacobi method.

Authorized licensed use limited to: Univ de Alcala. Downloaded on September 10, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

Table 1. Comparation between FPGA and PC execution time.
FPGA – 19 Iterations PC – 32 bits

Matriz
Size Bits Error

[%] Slices TTotal
 [us] Bits Itera

tions
Error
[%]

TTotal
 [us]

8x8 18 0.304 1300 15.06 64 5 0.204 25.06
10x10 18 0.324 1400 16.53 64 5 0.124 36.53
12x12 18 0.373 1500 18.25 64 5 0.273 48.25
16x16 18 0.432 1800 24.15 64 5 0.332 64.15

B, reason why it requires PND=n/2 operations. Once the
rotation angles are obtained the computing of two rotations
can be started for all the processors in the eigenvalues
stage. Since the eigenvalues matrix is symmetrical there is a
total of PEIGVAL (8) rotation processors. After each rotation it
is necessary to include a delay cycle to synchronize the
modules of the presented architecture.

TL ini = ½[n(n + 1)]TCLK + n2TCLK = ½(3n2 + n)TCLK (6)

TID=(PDiag + P) + (P + 1)+ (P + PNDiag + 1)
= 23

8
62

+++ Pnn (7)

PEIGVAL=½[(n/2)2+n/2] (8)

5. RESULTS

The system shown in Fig. 2, has been implemented in a
Virtex II-Pro, XC2VP7, which has 4928 slices and 44
hardware multipliers. The design has been implemented
with different word widths, matrix sizes and applying
different types of rounded in the multipliers output of the
CORDIC correction factor.

The maximum operating frequency reaches 110 MHz.
Modifying the number of bits for the input data does not
change largely the operating times, except for 2 extra
pipeline steps for data widths greater than 18 bits.

Respect to the results accuracy, for 8x8 input matrix,

Fig. 3 shows the average quadratic error between the
obtained eigenvectors using the function eig of Matlab
(using floating point data) and the results obtained by the
implemented design in the FPGA. The eigenvalue error is
slightly lower than eigenvector error. In the worst case
(truncation error, 16 bits) the error is under 1.4 %.
According to Fig. 3 the number of occupied slices is
between 1306 for 16 bits, truncating, and 2512 for 24 bits,
rounding.

Table 1 shows the processing times using a PC (PIV-
2.66 GHz) to obtain a similar accuracy as the one obtained
by the FPGA design. The program is written in C, using
double data types (floating point with 64 bits). According to
the information of that table, we can say that our proposal
in the best case, decreases the PC execution time around a
60% with a 0.43% data error.

6. CONCLUSIONS

The presented HW architecture based on the Jacobi
method given in [2] solves the calculation of eigenvectors
and eigenvalues inside a FPGA, with high accuracy, taking
low execution time and using a reduced number of internal
resources. Besides, the execution time is lower than an
optimal algorithm to solve the eigen problem in a PC.
Other important contribution of this work is the low
number of internal resources consumed (see Fig. 3).
 These features are the main contributions of this paper,
improving remarkably other results from similar works [5].
The modularity of the proposed system allows an easy
adaptation to different matrix sizes. It can be used in any
application, as long as the input matrix is square, real and
symmetrical.

7. REFERENCES

[1] Wilkinson J.H. “The algebraic eigenvalue problem”. Oxford
Science Publications. 1999. ISBN: 0198534183.

[2] Brent R.P., Luk F.T., Van Loan C. “Computation of the
Singular Value Descomposition Using Mesh-Connected
Processors”. Journal of VLSI and Computer Systems,
Volume I, Number 3. pp 242-270. 1983

[3] Andraka R. “A survey of CORDIC algorithms for FPGA
based computers”. Proceed. of the International symposium
on Field Programmable Gate Arrays, pp: 191 – 200. 1998.

[4] Cavallaro J.R., Luk, F.T.. “CORDIC arithmetic for an SVD
processor”. Journal of Parallel and Distributed Computing,
no5, pp: 271-290. 1998.

[5] Ahmedsaid, A.; Amira, A.; Bouridane, A.; “Accelerating
MUSIC method on reconfigurable hardware for source
localisation”. Proceed. of the Intern. Symposium on Circuits
and Systems (ISCAS). Vol. 3, pp.:III - 369-72, 2004.

Fig. 3.Area resources and accuracy along the total number of
bits and rounded type used for 8x8 input matrix.

Authorized licensed use limited to: Univ de Alcala. Downloaded on September 10, 2009 at 07:48 from IEEE Xplore. Restrictions apply.

