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ABSTRACT 

This work shows a modular architecture based on FPGA’s 
to solve the eigenvalue problem according to the Jacobi 
method. This method is able to solve the eigenvalues and 
eigenvectors concurrently. The main contribution of this 
work is the low execution time compared with other 
sequential algorithms, and minimal internal FPGA 
consumed resources, mainly due to the fact of using the 
CORDIC algorithm. Two CORDIC modules have been 
designed to solve the trigonometric operations involved. A 
parallel CORDIC architecture is proposed as it is the best 
option to compute the eigenvalues with this method. Both 
CORDIC modules can work in rotation and vector mode. 
The whole system has been done in VHDL language, 
attempting to optimize the design.  

1. INTRODUCTION 

The calculation of eigenvalues and eigenvectors is a 
problem that appears in many practical applications of 
different scientific areas (artificial vision, digital signal 
processing, power electronics, etc.). Concretely this work is 
applied in the PCA algorithm of artificial vision (Principal 
Component Analysis). In any case, the proposed solution 
can be extended to any other application that needs to solve 
the eigen problem. The only condition that must be fulfilled 
is that the input matrix must be symmetrical and with 
elements belong to the real type, which happens in many 
practical applications. Respect the maximum matrix size in 
our work is limited to the FPGA resources. The usual 
maximum matrix size does not go over 20x20 in practical 
applications using PCA. In any case, the proposed hardware 
solution presented herein for the calculation of eigenvalues 
and eigenvectors, allows easily modifying the HW design 
to matrices of greater size. 
 The developed solution has the advantage to use distinct 
HW modules that run in parallel, with a minimum data 
dependency between the different modules, achieving a 
high speed computation of the eigenvalues and eigenvectors 

for an input matrix.  
 The rest of the paper is divided into the following 
sections. Section 2 describes the fundamental aspects of the 
Jacobi method for computation of eigenvalues and 
eigenvectors and their possible implementation in a Systolic 
Array. The use of CORDIC structures to compute the 
Jacobi algorithm is developed in Section 3. Then, Section 4 
is devoted to present the HW design. Finally several results 
and conclusions are briefly discussed in Sections 5 and 6. 

2. METHOD OF JACOBI TO SOLVE THE EIGEN 
PROBLEM 

The classic Jacobi method (1846) is based on the obtaining 
of the first diagonal (D) of an original matrix (A) by means 
of a sequence of rotations or iterations [1].  

TVDUA ⋅⋅=  (1)
where U and V are orthogonal matrices. Diagonal D 
contains the Singular Values Decomposition (SVD) of the 
original matrix. Working with Hermitian matrices, the 
singular values are equal to the eigenvalues. Thus, for this 
case, the expression (1) can be reformulated as: 

TUDUA ⋅⋅=  (2)
where the orthogonal matrix U comes to be the matrix of 
eigenvectors.  
 For each iteration, the matrix values outside the 
diagonal are diminished. To make null these outer values, 
the number of necessary iterations would be infinite. The 
end of the iteration process takes into account a threshold 
value in order to consider that the matrix has been 
diagonalized. 
 If the initial matrix has a size of nxn  elements, several 
authors as in [2] propose a systolic architecture of 
processors based on the Jacobi method, which will handle 
matrices of 2x2 elements. Two different HW architectures 
based in systolic arrays must be implemented, one for 
eigenvalues and another for eigenvectors. 
 In the case of eigenvalues, initially each processor is 
loaded with a 2x2 matrix from the original matrix. There 
are two types of processors Pi,j according to the position 
that occupies within the systolic array. Thus, one type will 
be the Diagonal Processor (DP) corresponding to those 
systolic processors in which i(rows)=j(columns) and Non-
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Diagonals Processors (NDP) to systolic array processors in 
which i≠j. 
 Each processor computes the formula given by (3):  
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angle α. Expression (3) has two rotation angles (αii, αjj) due 
to considering two processor types, the rotation angles for R 
will be different. For DP’s the rotation angles αi,i and αj,j 
must eliminate the off-diagonal values. Thus, making equal 
αi,i to αj,j in (3), the rotation angle αi,i is formulated in (4).  
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 The rotation angles needed in the NDP processors 
will be always different. The rotation angles for a NDP 
processor come from the DP of row (i), Pi,i, and DP of 
column (j),Pj,j. The NDP's transfer its partial results 
obtained in each iteration to the DP's in order to eliminate 
the transmitted element.  
 When each processor has computed the operations of 
expression (3) with its corresponding angles, the obtained 
partial results in each processor must be carefully 
rearranged transferring them between the different 
processors. After looping nn log  iterations computing the 
described process, the final result is a diagonal matrix [2].  
 The matrix of eigenvectors (B(k)) associated to the 
eigenvalues of A, is also based on the decomposition of the 
matrix in matrices of 2x2 elements. In this case, the input 
matrix to be subdivided is the identity matrix [2]. 
Successive iterations will be applied, until finding the 
eigenvectors associated. In this case there is no difference 
between DP's and NDP's processors, since once the first 
rotation is accomplished in the first iteration, no processor 
will handle symmetrical matrices. The proposal in [2] is to 
implement a new processor array of size n/2×n/2, where the 
equation to compute for each processor (5), is different 
from the one given for eigenvalues (3). 
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where Bi,j correspond to one systolic eigenvector processor 
(VP), which also is loaded with matrices of 2x2 elements. 
After the same number of iterations that in the eigenvalues 
proccesors, the resulting matrix is the eigenvectors matrix 
associated to the eigenvalues calculated by the other stage. 

3. USE OF CORDIC TO ACCOMPLISH THE 
JACOBI METHOD. 

The CORDIC (COordinate Rotation DIgital Computer) 
algorithm has been widely used in FPGÁs as a tool to 
resolve many mathematical operations [3]. In particular, for 

the Jacobi method, it can be used to make the calculation of 
the angle in the DP's, (4), the double rotation in the NDP's 
and DP's (3) and the simple rotation in the VP's as shown in 
expression (5) [4]. 
 Computing the rotation angle for each DP is solved by 
means of the arc tangent formula as previously exposed (4). 
This inverse trigonometric operation can be resolved by 
means of CORDIC [3] using circular coordinates and 
vector mode. Really, computing αi,i

(k) consists on obtaining 
the resulting angle of the rotation of a vector. 
 Considering the double rotation for the DP’s and 
NDP’s, and the simple rotation for the VP’s, also CORDIC 
can be a good approximation method to compute these 
operations using CORDIC modules with rotation mode.  

4. IMPLEMENTATION DESIGN  

According to the previous section, the Jacobi method 
managing 2x2 matrices [2], represents a regular design 
suitable for implementation in reconfigurable HW such as 
FPGA’s [5]. The requirement in area resources of the 
FPGA is too large if both systolic architectures are 
implemented (one for eigenvalues and another one for 
eigenvectors), that are based on processors with CORDIC 
modules that use a high number of internal resources. For 
example, a serial CORDIC module of 16 bits, generated 
with the tool Xilinx Core Generator occupies up to 400 
slices and the number of necessary CORDIC modules for 
an input matrix of 6x6 elements is 57. The main goal of our 
proposal design must be reduce the maximum number of 
CORDIC modules needed. This reduction can be applied 
from two points of view: 
• Multiplexing the CORDIC modules while computing 

double rotations, reducing the number of modules 
CORDIC but increasing the execution time. 

• Taking advantage of the symmetric property of the input 
matrix, to reduce the number of symmetrical 
processors. Thus the systolic array would be 
transformed into a triangular array (only processors in 
the diagonal and the lower or upper part of the 
diagonal). 

 Even with these types of optimization, the resources 
used in the implementation represent an excessive number 
of internal resources. Applying both considerations, the 
number of necessary CORDIC modules for an input matrix 
of 6x6 elements would descend from 57 to 15 units (in this 
case supposes a reduction of 73%). The number of slices 
associated to these CORDIC modules would occupy up to 
6000 slices. Other authors [5] presents an architecture with 
several modifications from the solution given in [2] where 
the total number of slices for a matrix of 6x6 and with data 
of 16 bits reaches the 9900 slices. As shown, the large 
amount of necessary resources makes worth to look for 
other alternatives. 
 We will exploit the sequential property of each one of 
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Fig. 1. Operating sequence made inside one iteration of the eigenvalue/eigenvector computing process. 

the iterations in the Jacobi method (data load, angles 
computation, double rotation in eigenvalues and simple 
rotation in eigenvectors, reordering of partial results and 
data interchange). Our proposal design is shown in Fig. 2. 
The main modules of the design are the following: 
• ROM memory: Based on the processing steps involved 

by the Jacobi method, an instruction set has been 
codified, decoded by the FSM module. Each one of the 
bits of the instruction is associated to a control signal 
that configures the system in order to accomplish each 
one of the stages of the Jacobi method. 

• Dual Port memory (DPM): It stores the data of the 
input matrix as well as the variable data of each 
iteration, with side ports X and Y. 

• CORDIC modules: There exist two different types 
(A/B) both using circular coordinates. The module A 

will only work in the rotation mode while module B 
works in both rotation and vector mode. It is enough to 
compute the rotation angle with only one module while 
maintaining the maximum computing speed of the 
whole system. In both cases, the CORDIC architecture 
used is parallel with m stages, (equal to the size of the 
input data). The maximum value of m is limited to 18 
bits due to the use of embedded FPGA multipliers that 
will apply the correction factor in the output of the 
CORDIC module. If one desires to increase the size of 
the input data, an extension in the block of the 
correction factor must be made by means of the use of 
more multipliers. 

• FSM: Reads the information from the ROM memory in 
order to generate the necessary control signals as well 
as the address data for the Dual-Port Memory (DPM). 

• FIFO memories: these memory modules store the 
eigenvectors temporarily when the data bus of the 
DPM is busy while storing the eigenvalues. 

• Block 1: This module generates the input data for 
CORDIC B using the data from other blocks 
computing the rotation angle (numerator and 
denominator of (4)). 

• Block 2: It implements the synchronism block between 
the feedback data and interchange between the first and 
second rotation. 

In order to obtain the maximum speed, CORDIC 
modules that execute in all the processing steps have a 
pipelined architecture with P stages, obtaining a pipelined 
design. 

The operation sequence of one iteration showing the 
pipeline contents is presented in Fig. 1. The total execution 
time (TTotal) is the sum of the time to load the initial values 
(TL ini), the computing time for the eigenvalues and 
eigenvectors (Tc) and the latency of extracting all the data 
stored in the pipeline (TL extract), being TL ini y TL extract much 
smaller than the effective computing time (see Fig. 1). TL ini 
is the time spent to load the input matrix for the eigenvalues 
and the identity matrix for the eigenvectors given by (6). 

The computing time Tc is calculated as the number of 
iterations by the time of each iteration, TID (7). This time 
depends on the length of pipeline (P) for the CORDIC 
processors. In each iteration, according to the described 
architecture, the first step made is the calculation of the 
rotation angles. This is made using only module CORDIC 

ROM
(pseudocode)

FSM

addressdata

addr X

addr Y

WEX

WEY

REG

CORDIC
B

ZINYINXIN

ZOUTYOUTXOUT

REG REG

FIFO X FIFO Y

DUAL
PORT

(X)

DUAL
PORT

(Y)

REG

CORDIC
A

ZINYINXIN

YOUTXOUT

REG REG

Y write Bus

ANGLESZ read Bus

X write Bus

Z write
Bus

Block 2
Syncronism

Y write Bus

X write Bus

MUX MUX

MUX

X read Bus

Y read Bus
BLOCK

1

Mode

 
Fig. 2. Developed system to solve eigenvalues and 

eigenvectors based on the Jacobi method.
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Table 1. Comparation between FPGA and PC execution time. 
FPGA – 19  Iterations PC – 32 bits 

Matriz 
Size Bits Error  

[%] Slices TTotal 
 [us] Bits Itera

tions 
Error 
[%] 

TTotal 
 [us] 

8x8 18 0.304 1300 15.06 64 5 0.204 25.06
10x10 18 0.324 1400 16.53 64 5 0.124 36.53
12x12 18 0.373 1500 18.25 64 5 0.273 48.25
16x16 18 0.432 1800 24.15 64 5 0.332 64.15

B, reason why it requires PND=n/2 operations. Once the 
rotation angles are obtained the computing of two rotations 
can be started for all the processors in the eigenvalues 
stage. Since the eigenvalues matrix is symmetrical there is a 
total of PEIGVAL (8) rotation processors. After each rotation it 
is necessary to include a delay cycle to synchronize the 
modules of the presented architecture. 

TL ini = ½[n(n + 1)]TCLK + n2TCLK = ½(3n2 + n)TCLK (6)

TID=(PDiag + P) + (P + 1)+ (P + PNDiag + 1) 
= 23

8
62

+++ Pnn  (7)

PEIGVAL=½[(n/2)2+n/2] (8)

5. RESULTS 

The system shown in Fig. 2, has been implemented in a 
Virtex II-Pro, XC2VP7, which has 4928 slices and 44 
hardware multipliers. The design has been implemented 
with different word widths, matrix sizes and applying 
different types of rounded in the multipliers output of the 
CORDIC correction factor. 

The maximum operating frequency reaches 110 MHz. 
Modifying the number of bits for the input data does not 
change largely the operating times, except for 2 extra 
pipeline steps for data widths greater than 18 bits.  

Respect to the results accuracy, for 8x8 input matrix, 

Fig. 3 shows the average quadratic error between the 
obtained eigenvectors using the function eig of Matlab 
(using floating point data) and the results obtained by the 
implemented design in the FPGA. The eigenvalue error is 
slightly lower than eigenvector error. In the worst case 
(truncation error, 16 bits) the error is under 1.4 %. 
According to Fig. 3 the number of occupied slices is 
between 1306 for 16 bits, truncating, and 2512 for 24 bits, 
rounding.  

Table 1 shows the processing times using a PC (PIV-
2.66 GHz) to obtain a similar accuracy as the one obtained 
by the FPGA design. The program is written in C, using 
double data types (floating point with 64 bits). According to 
the information of that table, we can say that our proposal 
in the best case, decreases the PC execution time around a 
60% with a 0.43% data error. 

6. CONCLUSIONS 

The presented HW architecture based on the Jacobi 
method given in [2] solves the calculation of eigenvectors 
and eigenvalues inside a FPGA, with high accuracy, taking 
low execution time and using a reduced number of internal 
resources. Besides, the execution time is lower than an 
optimal algorithm to solve the eigen problem in a PC. 
Other important contribution of this work is the low 
number of internal resources consumed (see Fig. 3). 
 These features are the main contributions of this paper, 
improving remarkably other results from similar works [5]. 
The modularity of the proposed system allows an easy 
adaptation to different matrix sizes. It can be used in any 
application, as long as the input matrix is square, real and 
symmetrical. 
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