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Abstract— This paper presents a way to achieve robot
positioning using visual information from cameras placed
in the environment. The goal is to obtain both the global
position and a not fixed amount of features from the robot.
There will be defined a algorithm that implements 3D
reconstruction at the same time the position of the robot
is updated. The problem statement is equivalent to visual
SLAM process and therefore all definitions are made in
a top-down Bayesian process. This document presents a
novel study of robot positioning simultaneous with 3D recon-
struction, with one camera and unknown robot landmarks,
which will be easily expanded to a multicamera process. It’s
assumed that odometric information is always present in the
system, so it will be used in both estimation and initialization
phases.

I. INTRODUCTION

This paper addresses the problem of using known
and calibrated cameras in robot positioning tasks. These
cameras form an “Intelligent Room” [3] in which some
agents are able to be controlled by the environment.

Our proposal is to bring all the intelligence and com-
plexity from the robot to the environment. Indeed in the
case of vision systems it has some advantages. All the
cameras can be easily calibrated, even with no human
supervision and all the space requirements for visual
processing hardware disappear.

Robotics agents only have to bring low level sensors for
emergency tasks and a wireless link with the environment.
Such external knowledge allows its interaction with other
robots, as in robot cooperation or platooning, to be easier
than individual interaction.

Any robot in this framework should be recognized
by the environment not because of complex structure
recognition, instead it will be recognized as an individual
agent because of its properties of be controlled. The only
requirement of the system should be this controllability of
robotic agents against the environment. This work starts
with the assumption that no 3D robot model is know
and of course unknown metric landmarks are available
on it. In the case of monocular vision it will be necessary
to bring the system an accurate motion model, which is
in many cases a 3D structure independent information.
Although with multiple camera algorithms this can be
avoided, and can be replaced with a Gaussian model, the
odometric information is always present so it is not easy
to discard. As is known form ’dead reckoning’ solutions
it could be very accurate in some short trajectory.
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The method of positioning is equivalent to a SLAM [8]
[5] process in the way that the position and orientation
is obtained thanks to the relation of a chosen center of
movement and a dynamic amount of natural landmarks
which compounds the observation process. This relation
is formulated in a probability framework, searching for
the true a posteriori distribution which relates the position,
orientation and relative position of all landmarks with the
image of the last. This is the reverse problem of visual
and classical SLAM [4] in which as the sensor is inside
the movement model, all static objects are suitable to be
used as landmark mapping.

As we will formalize later, the state vector is com-
posed of position, orientation of the robot and several
information of its structure; which is in this case the
only possible group of landmarks. This novel algorithm
could be placed as a method of 3D object reconstruction,
so it brings 3D information of points belonging to the
robot structure. Because of that it should be named
Simultaneous Localization and Reconstruction (SLAR).

The paper is organized as follows: First it’s presented
the motion model of the system, which will be used for
the estimation part of SLAR process. This model will
necessary include odometry error modelling. The Section
IIT shows the observation process of natural landmarks
which will be used for correction. Once the observation
process and system process is available, the SLAR process
is described in section IV and V, including initialization
process for one and several cameras and the recursive
Bayesian inference of the probabilistic approach. In sec-
tion VI several numerical results are presented as a vali-
dation process of all theory exposed. Finally conclusions
and future works will close this document.

II. MOTION MODEL

In this section some definitions are presented about
the motion model used as the state vector transition. As
is usual in all works in statistical robot positioning, the
robot model correspond with a Discrete Markov Process
"x” which evolves trough time k € + with a transition
equation f.

zp = f(zp—1,ur) ke T (D

The vector xj, is composed of position r; and orienta-
tion q:
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Vector 7, represents the position 7 =
(rz,. Tyx 7T2k) in the Euclidean space relative
to a coordinate origin which will be established later.

Orientation vector g has four dimensions and is repre-
sented by a unit quaternion vector. There exist numerical
advantages in using a quaternion instead of rotation ma-
trix. Therefore it will be worth to sacrifice one dimension
for this representation. As unit quaternion, the usual
Euclidean norm of this vector should be always unity.

q};~qk.:1 vk >0 3)

The orientation is also referred to one axis of the coordi-
nate origin.

In representation of (1) vector ’uy
system at time 'k’

Additional parameters could be included in the state

vector, as angular speed *w € 3’ and linear speed "v €
3>

s

is an entry of the

This vector is shared by all types of models that will
be described next.

A. Non Holonomic robot model

Non Holonomics robots have a motion model in which
linear velocity direction depends on orientation and so the
system could be defined as follows.

Tk Te—1 + Ary,
G | _ | -1 © q((wr—1 + Q) AT)
= 4
Wk wr—1 + Qi
Vg V-1 + Vi

Now v has one dimension and represent the speed in
the direction fixed by gy.

1

_ _ 0
A’I“k, :vaT(qk) 1@ o (qk:) 1@% = 0
0

SO = O

)

This model consists of 11 parameters at this point. If

we restrict the rotation model to a plane, as is usual in

a wheeled robot, the number of parmeters fall to 6. This

will be the model that should be use in the results and
posterior conclusions.

B. Odometric Error Model

In next sections the odometric model should be used as
estimation process, and as was mentioned before it is also
going to be used as a initialization process in the case of
one camera.

This study is going to be focused on the wheeled
structure defined by 6 parameters for a non holonomic
robot moving in the plane Z = 0. Besides a classical
differential model will be used. It’s easy to identify such
a robot motion with the simplified model by relating w

and v with the angular speed of both wheels (wl wr)
which are observed by odometric information.

R, R,
()=r@) r=(& W) o

Where D is the distance between wheels and R, the radius
of each wheel.

Describing (wl wr) as a Gaussian process
N (&, &r, ), vector (w  v) will be also Gaussian:

(‘;) = N(T (L"i ) ,TTT) )

The aim at this point is to transfer odometric known
noise to states in process described in (4). Since this
process is essentially non-linear it cannot be assumed that
vector xj, is also Gaussian. However, as in future sections
will be explained the idea is to find the additive Gaussian
process which at least preserve up to second moments of
the statistical distribution. Supposing that this is possible
the system process across the time can be represented as:

xp = fap—1,ur) + Wi ()

The entry of system ’uy’ represents odometry informa-
tion free of noise. Vector W)’ represents an equivalent
N(0, 2w ) noise.

If ©9 = N(&o,%,,) then without correction the
Markov Process evolve in the following way:

Oy = f(zeo1,ur) Sx, = o Sxp 1 Jh + T Swi
©))
Where °J,, and ’J,,  represent respectively Jacobians
of the non-linear process ’f’. So without correction the
odometric noise is accumulative. This result is well known
in the extensive literature [7] and is very important to
take into account when pure estimation points are taken
as entries in optimization algorithms.

III. OBSERVATION PROCESS

As is stated previously, several points from robot sur-
face will be used to do the positioning correction at the
same time these points are reconstructed. One of the most
important starting conditions of this paper is to avoid
artificial and known landmarks in the robot. This means
that no information about robot surface is available at any
starting point.

Natural features to track is a classical issue in vision
processing. There are some outstanding works [1] that
allow not only to track a feature in the scene, but
also make a dissimilarity measure of how good is that
landmark.

In this paper a simple 'Harris’ [2] detector of corners
is applied to the image of the robot extracted from the
background. With the proper threshold a first amount of
points is obtained.

The process of tracking between two adjacent frames
is done with ’Mahalanobis’ distance between landmark
position estimation "y 1’ and measure ’y’ in the new
frame ’k’.
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d = (e = Grp—1)" Pty Wk — Grpe—1)  (10)

Where *P,, |,  is the estimated covariance matrix of
the landmark. This distance allows to track a feature
if an estimation is obtained by identification the new
landmark, as the nearest ’d,. To improve the ’Harris’
corner detector a dissimilarity technique should be used
to discard ’bad’ features during the process. In [1] a
dissimilarity technique is defined by using little patch
of textures around the feature and obtaining an affine
model that satisfies in a certain grade the transformation
between frames. In this case this measure should be
treated carefully, because the robot turns quickly and such
a model probably will discard too many landmarks. Some
spherical and cylindrical transformation models could be
used instead.

IV. SIMULTANEOUS LOCALIZATION AND
RECONSTRUCTION

The SLAM algorithm used in this work is equivalent to
used in similar problems using robot localization with on
board cameras. There is a lot of research done in vision
SLAM by now and the solution to on board camera has
known problems and well discussed behavior. However
in our case there are a lot of new conditions that must
be taken into account such as closeness of landmarks,
cluttering and the limited amount of them.

The problem statement in a top Bayesian structure can
be redefined eventually as follows: Let the unobserved
vector of states {Xj;k € } be modelled as a Markov
process of initial distribution p(Xy) and a transition
equation p(Xg|Xx—1). The observations {Yy;k € }
are assumed to be conditionally independent given the
process X}, and of marginal distribution p(Yy|X}).

All distributions correspond and are related with the
process and observation transitions:

Xi = f(Xk—1, W)

11
Yi = h(Xy, Vi) (an

Frame k+n

Fig. 1.
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Where W), and V}, are in this case two uncorrelated and
mutually independent Gaussian processes which represent
the uncertainly in both measures and estimation.

As all Bayesian inference problems the main goal is
to obtain the true and optimal a posteriori distribution
p(Xk|Y1.,) that allows the best estimation of the process
given the observations.

A. Augmented State Vector

State vector X is made up of two parts. The first
one, namely xj, represent the state vector described in
(4) and is related with robot positioning. The second part
consists of a number M’ of known points m’, that belong
to the robot structure and are related directly with the
observation process.

X, = (axk mi mi o ... mfcw) mi e * (12)

As a SLAM process, the number of landmarks should
be dynamic; therefore new ones are added to the vector
in k > 0.

Landmarks are fixed across time because represent
coordinate values of points that belong to robot structure
relative to robot position 7.

The augmented state vector evolves in time as is seen

in (13).

xp = f(xp—1,Wa,)
my = my + W,y

Usually the noise that correspond to fixed time land-
marks W,,: is forced to be zero. However in some
situations it should be controlled to let some landmarks
move from its value over time.
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B. Observation Model of Fixed Landmarks

The observation process is composed of the image
of a reduced set of landmarks from which exists a
component ¥y of the observation vector Y}, that represents
the projection of these landmarks in the image frame.
C={my | 3yé€Yyy=nh(m)}

Let m® be a fixed landmark that belongs to the state
vector X. The position of m’ in the global coordinate
system of the camera,namely ¢* implies using the actual
position and orientation of the robot.

(Q()z> = () ® <72’> ® qr, + (i) (14)

The projection of ¢’ in the camera frame finish the
observation model which will be defined as the function
“h(xy, mt)

) ) h(zy, m')
Y. = h(Xk) +Vi h= . (15)
h(zy, m™M)

C. Unscented Kalman Filter Approach

To find a solution for the Bayesian inference proposed,
it will be necessary to use techniques that would be able
to manage with non linear processes. Using particle filters
it is possible to calculate the true a posteriori distribution
with any required level of detail. However is not of our
interest higher moments of the distribution or its shape.
Besides particle filter is still a high computational cost
solution,so it is not suitable for the entire SLAM process.

Another solution is to take the best approximation of
Gaussian process and propagate trough time as a Kalman
Filter. To obtain the Gaussian equivalent, many authors
[4] [8] use the famous Extended Kalman Filter (EKF).
This algorithm has well known behavior and problems
due to first order assumption which produce inconsistent
estimations.

To solve the EKF inconsistence problem the 'Un-
scented Kalman Filter’ (UKF) appears to be a good
solution and is known to maintain good estimations up to
second order in statistics. Unlike the EKF, the UKF does
not approximate the non-linear process and observation
models, it obtains an estimation of first and second
order statistics sampling the true non-linear functions. The
Sampling method is called Unscented Transform and it’s
detailed description can be found in literature [6].

Although it is not the intention of this paper describe
with detail a classic algorithm, it’s convenient to establish
general definition of prediction and correction steps.

1) Initialization: Using the definition of (11) the start-
ing point consist of the statistics at k = 0 of all

Calculate Optimal Sampling Points (Sigma Points)
and weights "W’ for each process through system
dynamics and observations.

X1 WY i=1.Ny (17)
Qi k-1 WlX i =1.Ny
Rik—1 W i=1.Ny
Time update estimation:
X1 = f(Ah—1, Q1)
Nx
Xpror = 2 W Xk
i=0
Pogpr = WYX = X)(X - X)7]
V=1 = M1, Ri-1) (18)
Nx
Yigeer = O Wik
i=0
(19)

3) Measurement update equations

Pyv, = WY - V)Y -Y)7]
Py, = WX -X)(¥-Y)"]
K. = PamPyy,
X, = Xk|k71 + K (Y —quc—l)
Py = Pypo1+ KiPyy, Kj

(20)

For easier representation some subscripts are being
omitted in covariance representations.

Finally the complete process evolve as follows:

1) At time k — 1 the robot and some landmarks are
described by augmented vector Xj.

2) Some commands are sent to the robot to bring it to
a new position at time k.

3) Trough UKF estimation process, there are available
the expected position of the image of the landmarks.
Therefore Yk‘k,l and Py, |y, are used in (10) to
obtain new vector of observations Y.

4) Once measures are available the UKF corrects the
estimation of state vector and its covariance for the
next sampling time X and P,

5) If new landmarks are detected, they are incorporated
to state statistics by any of the methods that will be
described in next section.

processes. V. INITIALIZATION PROCESSES

A The process described to achieve the localization of
Xo = E[Xo] the robot can be generalized independent of what kind
Py = E[(Xo _XO)(XO _XO)T] of state or observation process is defined. The only
Q = E[WWT] (16)  4ctions that can not be observation model independent
R=E[VVT] are the initialization processes and new landmark addition

over time. This section discusses both process for single

2) Prediction at k camera and multiple camera problem.
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A. New Landmark Initialization with Single View

Localization process described in this paper requires
an efficient and quick dynamic landmark addition to state
vector. Opposite to the batch methods it will be necessary
not to break the top-down Bayesian approach made in
SLAM process. From UKF, position and orientation of
robot are obtained, which in addition of image correspon-
dences will triangulate the new landmark position.

To obtain a full Bayesian approach, a ’particle filtering’
triangulation process similar to [4] is implemented.

1) From the image of a new landmark detected ’y™’
the optical ray X (A™) that passes trough optical
center and ’y™’ is obtained.

2) A parallel state vector is initiated with ’A,’ as
state component. The real value of *A™” must lie in
the interval (0, Z,,4.) being Z,,q. the maximum
expected distance the robot will be from camera.
So the a priori statistics correspond to an uniform
distribution in this interval.

k=M1 + W 1)

3) From the results of UKF, for each movement of the
robot, the observation function y;, = h™(\¢, 2;) can
be obtained.

4) Using a ’Bootstrap Particle Filter’ and Gaussian
assumption for p(yi|A\x) the a posteriori distribution
P(Ak|Yko:k) approximation is obtained.

5) The shape of the a posteriori distribution will be
sharper and more unimodal over time. When the
uncertainly reach a limit imposed by y; variance,
the landmark can be introduced in SLAM process
with the covariance and mean obtained by the
particle filter.

B. New Landmark Initialization with Multiple View

Initialization of a new Landmarks with multiple camera
is directly made thanks to (23) and the values of all
parameters from the UKF SLAM process.

Once the triangulation is made for a point ’X;’ the new
landmark coordinates for the augmented state vector are
obtained by referencing the coordinates obtained to the
origin of coordinates of the robot, using known position
’r;” and orientation ’qy’.

(T,Sz) = (@) © (Xi (1 Tk) o)™ (22

To obtain the uncertainly associated to the new land-
mark it’s necessary to obtain joint statistics for 'm;’ in
terms of uncertainly in ’7;’, 'gx’ and uncertainly in the
triangulation process. The new covariance matrix that will
be used in SLAM can be obtained easily by using the
’Unscented Transform’ into the non-linear function (22).

C. Initial State Vector: Single camera approach

Initialization process means to obtain a real knowledge
about robot motion according to a prior model. It can be
considered as a vision based robot calibration procedure
and therefore is by itself a hard problem. Here it will be
treated briefly because it’s not on the focus of this paper.

Initial state vector X is defined by selected motion
model and an initial amount of points from robot structure
to be used as landmarks.

The proposed solution is based on obtaining an al-
gorithm that takes advantage of information given by
odometry sensors. The main idea is to fusion this informa-
tion with camera projection to obtain reasonable accuracy
in fewer frames than a structure recovery from corre-
spondences approach. As odometry uncertainly grows
across time, it should be necessary to design a weighted
optimization algorithm.

Besides an efficient optimization algorithm, robot path
during initialization is also a sensitive issue. Not all paths
results in a good or even an unique solution. Conditions to
reach a stable value for initialization could be enumerated:

1) As odometry uncertainly grows quickly across time,
a minimum odometry error path is required.

2) Path should be a combination of angular and linear
speed. Only angular or linear paths do not bring
enough information for calibration.

3) Depending on application, robot motion will be
constrained.

D. Initial State Vector: multiple camera approach

In this section the multiple camera approach for ini-
tialization process is discussed. Trough point correspon-
dence and calibrated cameras the true 3D coordinates
of a point are obtained directly. Therefore to simplify
all issues about multiple camera constraints, a general
triangulation function is defined. For N, cameras and a set
of point correspondences ’(y1,..yn. )’ the true Euclidean
coordinates are obtained.

To assure a odometry independent algorithm a simple
and very fast strategy will be a good choice to obtain
motion parameters.

1) Making the robot turn around its axis, ’r(’ is easily

determined by identification of all circumferences.
Let X; ; € 3 the 3d coordinates of a point belong-
ing to robot. According to motion, independent of k
value, it should lie in a circumference of unknown
radius.

For a set of IV, points the optimization algorithm
should obtain the set of radius R; for each point
and the center of rotation. The cost function will
be as follows:

N o VT(X ) _ B2
62 = Z Z (X%] 7“0) (R‘i(;;] 7“0) RZ (24)

2) Once ’'ry’ is obtained, the orientation vector is
trivially obtained from a straight movement

VI. SIMULATION AND NUMERICAL RESULTS

Obtaining a faithful method that can be used to test
the system proposed in this paper is not an easy task.
To assure a good performance indicator, it’s necessary
to have the real values of robot positioning in every
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frame captured. Also robot landmarks should be com-
pared to real values measured in the robot, and the
real odometric noise should be modelled. We propose a
different approach to validate algorithms and obtain the
exact error introduced in the whole system results. Also it
should be possible to use different light sources, camera
configurations and robot appearance. Such an amount
of advantages are reached thanks to a photorealistic 3D
modelling software which is used to simulate full scene.
It includes controlled light sources, camera modelling,
and all the occlusion and precision effects that will be
obtained using real images. Besides, the path along the
robot is navigated can be easily defined by the user with
a trajectory spline curve.

Using this type of simulation some experiments are
made to obtain robot position and orientation. See figures
(4) and (5).

VII. CONCLUSIONS

This paper has presented a novel method of robot
localization by using the information taken from external
vision sensors. Besides the process of localization, the
3D coordinates of points used as dynamic landmarks
belonging to robot surface are obtained. To reach the
goals of the paper a full Bayesian inference problem is
defined (SLAR), allowing the use of powerful statistical
inference techniques as ’visual SLAM’ already discussed
for onboard cameras problems, in the ’Intelligent Room’
approach here proposed. Also, initialization process are
defined for one and several cameras, which complete the
main contributions of this paper.

However some hard inconveniences are not treated at
detail and should be the main focus in future work The
most important are the following:

e A deep study of hard occlusion detection and mod-
elling should be included.

e Minimum data evaluation and design of a robust
process.

e Multiple camera SLAR with epipolar,trifocal and
quadrifocal constraints.

o Multiple robot extension of the algorithm.
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