
Architecture Based on FPGA’s for Real-Time
Image Processing

Ignacio Bravo, Pedro Jiménez, Manuel Mazo, José Luis Lázaro,
and Ernesto Mart́ın

Electronics Department. University of Alcalá.
Alcalá de Henares (Madrid), Spain

{ibravo, pjimenez, mazo, lazaro, ernesto}@depeca.uah.es
http://www.depeca.uah.es

Abstract. In this paper an architecture based on FPGA’s for real time
image processing is described. The system is composed of a high res-
olution (1280×1024) CMOS sensor connected to a FPGA that will be
in charge of acquiring images from the sensor and controlling it too. A
PC sends certain orders and parameters, configured by the user, to the
FPGA. The connexion between the PC and the FPGA is made through
the parallel port. On the other hand, the resolution of the captured im-
age, as well as the selection of a window of interest inside the image,
are configured by the user in the PC. Finally, a system to make the
convolution between the captured image and a nxn-mask is shown.

1 Introduction

One of the most important goals in vision-applications is the description of a
certain scene in an automatic way. Description is understood as the localization
and identification of the objects in the scene, depending on their features [1].
The main handicap in vision applications is the high computational cost that
the algorithms that extract those features of the scene it implies. Nowadays, the
large size images makes the number of operations needed increase considerably.
Moreover, if real time performing is desired, execution-time of algothim must be
as low as possible.

Usually, the platforms used to implement these algorithms are systems based
on sequential programs. These are not, however, the most suitable elements for
this kind of applications from the performance point of view, so, the search for
new image processing systems is justified. In this sense, most of the vision sys-
tems can be divided in three levels, attending to the computational features: low
level (such as filtered or convolutions), medium level (such as image segmenta-
tion) and high level (such as matching algorithms) [2].

It is, thus, important to select the necessary hardware platform depending on
the complexity of the processing tasks. Since a conventional PC cannot carry
out a bit operations concurrently, the system performance on a PC for image
processing would be very poor. However, an ad-hock hardware design platform
may overcome this problem. On the contrary, the kinds of operations to be done

K. Bertels, J.M.P. Cardoso, and S. Vassiliadis (Eds.): ARC 2006, LNCS 3985, pp. 152–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Architecture Based on FPGA’s for Real-Time Image Processing 153

keeping high performance are relatively simple (filtering, image decompression,
etc.). If it is desired to implement more complex algorithms, they must be re-
formulated in order to exploit the characteristics of the platform where they are
implemented.

In this work a platform based on a FPGA and intended for vision applica-
tions is presented. It will be in charge of: capturing images provided by a high
resolution sensor, applying a convolution with a mask over that image and fur-
ther transmission of that preprocessed image to a PC by USB bus. The whole
architecture is depicted in the figure 1.a).

The sensor chosen is the MT9M413, by Micron [3]. This monochrome sensor
has as best feature the high speed that it can reach: 500fps with a 1280x1024
pixel-resolution. Its internal architecture permits connection with an external
controller, allowing other operations to be carried out, as exposition-time con-
figuration or choosing the desired window, by means of a set of control-signals.

The rest of the chapter is organized as follows: chapters 2 and 3 describe
general remarks and a block diagram of the proposed design. Finally, a re-
sults section where time-relations and consumed resources inside the FPGA are
shown.

a) b)

Fig. 1. a) Block-diagram of the developed real-time image-processing system. b) Block-
diagram of the implemented system.

2 System Description

As it has been already said, one of the goals of this work has been the design of
a specific architecture for image processing. The whole system is controlled by a
FPGA of the Virtex II-Pro family, by Xilinx (XC2VP7) - aVirtex II Pro device
has been chosen because of its versatility. This FPGA is mainly in charge of:

PC-parallel port of communication: It is only used to configure some para-
meters of the CMOS sensor (exposition time, window selection, status, etc).
It is used used for this purpose due to its high speed and simplicity. Hence,
an interface or parallel-port controller has been implemented in the FPGA
which manages properly the data lines and the control lines of the paral-
lel port. A PC will communicate with the FPGA through the parallel port

154 I. Bravo et al.

using a set of registers implemented in the FPGA. The global controller of
the FPGA (see Fig.1.b) will be in charge of handle the information from/to
each register.

Memory controller: The system includes 8 Mbytes of external SDRAM mem-
ory where captured images, and further processed ones, are stored. The main
feature of this kind of memories is the need of continuous refresh. Other
features of these memories are: data-bus width: 32 bits, maximum clock fre-
quency: 125MHz, memory internal configuration: 4 banks x 512K x 32bits
(8MB), manual refresh control and different access modes dependin g on the
data-burst size to be read and written. The memories have CAS, RAS and
WE control signals to manage the writing, reading and refreshing processes.
The memory controller has also been designed using VHDL.

USB controller: This other communication channel is used to transmit proce-
ssed images. The FPGA has been connected to an external USB-transceiver,
the GT3200 by SMSC, in order to send images at high speed. This solution
provides a simple communication channel between the FPGA and the PC.
The transceiver implements the USB 2.0 protocol so, the maximum data
transfer speed rate could reach 480Mbps (60MBps). The interface designed
in the FPGA has been developed from the one shown in www.opencores.org
[4]. The maximum speed supported by this bus permits transfering images
without any problems. For all these reasons, the use of this channel to send
processed images from the FPGA to the PC is suitable.

Image processing: In this case, a convolution with a squared nxn-elements
mask is made. The mask size is configurable in compilation time but its
values are assigned by the user at execution time. This block can be repli-
cated or made more complex as long as the process algorithms require or
the FPGA resources allow.

Image-capture and CMOS sensor controller: The sensor used has some
control signals that must be enabled from the FPGA. Besides, apart from
the image processing block, and depending on the desired image size, an
average or decimating of the captured image is made. Two solutions have
been designed for our proposal in case that the size of the desired window is
smaller than the maximum size:
a) The first one has been making a decimate (D) of value 8, 4, 2 or 1. This

option is the simplest one to realize as the system keeps only one row
and one pixel out of D rows and D pixels respectively. In this way, the
final size of the image is reduced by a DxD factor. However, this choice
presents the serious drawback of excessive aliasing.

b) The second option consists in implementing a module (binning block)
that averages the samples that are desired to be decimated. If this choice
is taken an average of all the decimated samples will be done so that a
result affected by less aliasing is obtained, in respect with the previous
case.

Both choices are selectable by the user. Its internal structure can be seen in
figure 2.a).

Architecture Based on FPGA’s for Real-Time Image Processing 155

a) b)

Fig. 2. a) Internal structure of the CMOS sensor controller and the image capturing
system of the developed system. b) Convolution process between an image and a 3x3
mask.

3 Image Processor

Once the image has been captured, and a decimate or an average has been carried
out, the image is processed. In this work, a system able to make a convolution
a mask formed by the coeffients of n × n elements has been developed. These
coefficients may be changed by the user through the parallel port. The maximum
convolution-mask size depends on the resources of the FPGA and it must be
specified during design time.

The new approach proposed is a block based on the use of some FIFO memo-
ries, which allows generating an output pixel at each clock cycle once the inicial
latency has passed (see Fig. 2.b). The block stores every complete row of the
image in a FIFO, so each pixel is ready to use when the calculation of the
convolution for each row takes place [5].

This way the latency of the system is minimized and at the same time the
use of the memory is optimized as data do not need to be stored to computed
the convolution. As it is shown in Fig. 2.b, once the last pixel of the image has
arrived multiplication by the last coefficient of the mask (Cm,m) is done, as well
as the sum (first term in the sum in (1)) with the accumulated rest from the
whole previous convolution operation (1).

Ri,j = Pm,m · Cm,m

M∑

k=1

m−1∑

l=1

Ck,l · Pi+k−m,j+l−m (1)

Where the second term in (1) is what it has been called accumulated result
of the MAC-operation. The lapse of time since the the camera delivers the last
pixel of the image, until the last convolution is performed generating the last
result, is call latency (Li), and is calculated as:

Li = (X · m + m + 1) × TCLK + W · TCLK (2)

156 I. Bravo et al.

The first term corresponds to the time needed to process all the remaining
points after the last pixel has been captured, and W is the processing-system
depth. Here, the pixel capture-time, the multiplication and the sum are included.
Finally, TCLK is the period of the system clock-signal.

4 Results and Conclusions

In this section, an example of a captured and further processed image is shown,
as well as an analysis of the resources and the time consumed by the system.

A 1024x1024 size image has been taken and a 4x4 binning has been carried
out so that the final size becomes 256x256 pixels (see Fig. 3.a). Further, a con-
volution with an edge-detection specific mask is applied to the image (see Fig.
3.b). Thanks to the binning operation the image size can be efficiently reduced
without loosing too much resolution. In this case the mask C is the 3x3 Laplacian
operator, normalized to integer values. This mask is specially useful for image
edge-detection.

In table 2 the results form the point of view of the resources consumed for a
Virtex Pro (XC2VP7) with 4928 Slices are shown.

The maximum frequency allowed is over 100 MHz but, however, the global
clock of the system runs at 100 MHz, so the system has been tested for this
frequency. For this value the memory has 2 cycles latency.

Table 1. Consumed-resources summary of the binning-based design for a XC2VP7

Consumed slices 1084 slices (21 %)

Capture: 130 Slices
Binning: 344 Slices
Convolution: 444 Slices
Max. freq: 166,66 M:z
RAM blocks: 6 (3 FIFO’s)
Multipliers: 9 hardware multiplier

T = Tcapture + Ltotal , where Tcapture = 132 × 1024 × TCLKCAMARA (3)

Ltotal = Lcapture +Lbinning +Lconv = 10TCLK +4TCLK +(
n

B

2
+4)×TCLK (4)

Where LTOTAL is the total latency time, being TCLKCAMERA the camera clock-
period, n, the maximum square-matrix size (1024) TCLK the FPGA clock period
and B the binning factor. Hence, for B = 4 (256×256 size of the output image),
TCLK = 100 MHz and TCLKCAMERA = 10 MHz, the system spends about 3.5
ms, what implies a total processing speed of 74 frames/s.

As conclusions, we may note that the architecture presented in this work has
been designed to be used as base-platform for different artificial vision applica-
tions. The use of a high resolution and high frequency sensor, together with a
FPGA, allows this platform to be used for many different algorithms. Also, a

Architecture Based on FPGA’s for Real-Time Image Processing 157

very fast image-convolution system has been shown in this work. Finally, the
PCA (Principal Component Analysis) algorithm is currently being developed
based on this platform.

a) b)

Fig. 3. a) Image-size reduction by means of a 4×4 binning. b) Application of a 3×3
mask to the image on left side.

Acknowledgements

This work has been possible thanks to the project SILPAR project of Minis-
terio de Ciencia y Tecnoloǵıa (ref: DPI2003-05067) and ”Cátedra de control
electrónico en transportes” founded by LOGYTEL and RENFE.

References

1. Ratha N.K., Jain A.K.. Computer Vision Algorithms on Reconfigurable Logic Ar-
rays. IEEE Transactions on Parallel and Distributed Systems. Vol. 10, No. 1. (1999)
29-43.

2. Hamid G. An FPGA-Bases Coprocessor for Image Processing. IEE Colloquium on
Integrated Imaging Sensors and Processing, 1994, pp: 6/1 - 6/4.

3. Datasheets 1.3 Megapixel CMOS Active pixel digital image sensor: MT9M413.
4. Usselmann, R. USB Function IP Core Rev 1.5. www.opencores.org. 2002
5. Bravo, I.; Hernandez, A.; Gardel, A.; Mateos, R.; Lazaro, J.L.; Diaz, V.; Different

proposals to the multiplication of 3/spl times/3 vision mask in VHDL for FPGA’s
Proceedings of IEEE Conference on Emerging Technologies and Factory Automa-
tion, 2003. ETFA ’03. Vol 2, pp:208-211. 2003

	Introduction
	System Description
	Image Processor
	Results and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

