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Using PCA in Time-of-Flight Vectors for Reflector
Recognition and 3-D Localization

J. A. Jiménez, M. Mazo, Member, IEEE, J. Ureifia, A. Hernandez, F. Alvarez, J. J. Garcia, and E. Santiso

Abstract—This paper presents a reflector recognition and local-
ization technique in three-dimensional (3-D) environments, using
only times-of-flight (TOFs) data obtained from ultrasonic trans-
ducers. The recognition and localization technique is based on the
principal component analysis applied to the TOF vectors origi-
nating from a sensor that contains two emitting transducers and
several receivers. The two emitters simultaneously transmit two
coded pulses that are detected later on and discriminated by the
receivers, after being reflected in the environment. The proposed
technique allows for the possibility of not only recognizing the re-
flectors, but also estimating approximately its localization referred
to the sensor. This technique has been tested with three types of
reflectors in 3-D environments: planes, edges, and corners. The
achieved results are very satisfactory for reflectors located in the
range 50-350 cm.

Index Terms—Principal component analysis (PCA), reflector
classification, three-dimensional (3-D) localization, times-of-flight
(TOFs), ultrasonic sensors.

I. INTRODUCTION

AST research about ultrasonic applications for mobile

robots has focused on the classification of some basic re-
flectors. The more interesting basic reflectors in mobile robotics
are planes, edges, and corners, since these three types of natural
marks are usually found in indoor environments where robots
move [1]-[4]. The reflector identification and localization
constitutes a fundamental task inside mobile robotics, since
this information contributes in a decisive way to other higher
level tasks, such as the generation of environment maps and the
mobile robot’s localization.

Using the received echoes, different characteristics can be ob-
tained: times-of-flight (TOFs), width of the echo signal, length
of the echo, frequency components, etc. [5], [6]. The reflector
classification can be carried out using one or several of these
characteristics. The most common alternatives are those that ex-
clusively analyze the TOFs [4], [7]-[10], those that exclusively
measure the amplitude of the received echoes [2], [11]-[13],
those that combine both [6], [14]-[17], and those that combine
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different characteristics such as amplitude, frequency, phases,
TOFs, etc. [18], [33]. Among the different alternatives, the one
most often used in mobile robotics is the one that uses TOFs
exclusively, since these have a more reduced dependence from
the environmental variations (temperature, humidity, air flows,
etc.), and the execution times are smaller, mainly compared with
other alternatives that use a high number of characteristics. In
this paper, only TOFs are used to carry out the reflector classi-
fication and localization.

Another important aspect related to the reflector recognition
is the possibility of obtaining two-dimensional (2-D) or three-
dimensional (3-D) information about them. In the first case (2-D
classification), reflectors in the environment are projected on the
plane where the transducers are. This simplification has the in-
convenience that false interpretations can take place, since some
reduced information about the reflectors is obtained. The 3-D
recognition systems provide realistic information about reflec-
tors in the environment, which implies an improvement in the
mobile robot’s positioning tasks, and they also make easier the
possible fusion with other types of sensors that also provide 3-D
information from the environment.

For classification tasks, several ultrasonic transducers are
often grouped, forming an ultrasonic sensor. The design and
configuration of the sensor also requires a careful study, since
the obtained information depends on it. This information is
closely related to the spatial configuration of the transducers
forming the sensorial structure, to the emission/reception
functions assigned to the different transducers (emitters, re-
ceivers, and emitter/receivers), to the possibility of carrying
out simultaneous emissions by several transducers without
crosstalk problems, and to the number of transducers used as
receivers. In this way, for example, the capacity to classify
different reflector types and the possibility of obtaining 2-D or
3-D information depends on the spatial sensor configuration. In
mobile robot applications, it is also very important to carry out
simultaneous measurements of different TOFs that allow, after
each measurement and without stopping the robot, carrying out
the reflector classification.

For the classification in 2-D, sensorial structures, formed by
linear arrays of two, three, or four transducers, are usually used.
One of the first contributions on the classification of 2-D re-
flectors was developed by Peremans et al. [7], where a linear
triaural array was used. Here, the central transducer operated as
emitter/receiver, and both lateral ones only as receivers. With
this structure and using the TOFs obtained after only one emis-
sion, it is possible to discriminate between edge and plane re-
flector types, and to obtain their position (angle and distance).
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With this same sensorial structure, carrying out two measure-
ments from different positions, reflectors can be discriminated
between plane, edge, and corner types [19]. If a sensor formed
by three transducers is used, one operating as emitter/receiver,
other as emitter, and the third as receiver, it is possible to carry
out the classification of reflector types plane, edge, and corner
from only one localization of the sensor [4], but with sequential
emissions. In this way, Urefia [20] proposes a sensorial struc-
ture formed by four transducers. With respect to the process
of reflector classification, the techniques more broadly used are
based on geometric considerations obtained from the TOFs for
every reflector type. The classification algorithms proposed by
other authors are also diverse. For example, Kleeman [4] pro-
poses a maximum-likelihood estimator (MLE), and Urefia [20]
proposes a Bayesian statistical classifier. An important inconve-
nience of the systems based on geometric considerations is their
high dependence on the precision with which the measurements
of the TOFs are carried out, and consequently, the classification
results are strongly influenced by noise.

In the field of 3-D reflector recognition, using only TOFs, and
oriented to applications in mobile robotics, there is not much
research activity. In this way, Akbarally and Kleeman [21] pro-
pose a sensor formed by two structures such as those described
by Kleeman and Kuc [4], one mounted in the horizontal di-
rection, and the other one in vertical. The combination of the
TOFs obtained by the two structures allows the classification to
be carried out. In Hong and Kleeman [22] a sensorial structure
is proposed, with the shape of an equilateral triangle in which
the vertices have three transducers that are operating as emit-
ters/receivers. In this case, the proposed classification algorithm
is an MLE, similar to the one proposed by Kleeman and Kuc [4].
Even though emissions in these papers are not simultaneous, in
later ones [9], [31], [32], Kleeman has developed techniques for
simultaneous emission.

In this paper, a novel classification and localization technique
for 3-D reflectors is presented, only using TOFs and a classi-
fier based on principal components analysis (PCA). The PCA
technique can be used in several application fields, such as face
recognition [34], voice processing [35], handwritten-characters
recognition [36], and sonar-signal classification [37]. In ultra-
sonic sensor applications, the recent codification and processing
techniques [30] allow simultaneously obtaining multiple TOFs,
which justify the use of PCA techniques, since they are strongly
correlated.

The proposed classification technique has been called Iden-
tification and Localization based on PCA (ILPCA). A new
sensorial structure composed of two transducers emitters/re-
ceivers and 12 receivers is also proposed; it allows 18 TOFs
to be obtained in a simultaneous way. The signals transmitted
simultaneously by the two emitters are coded by orthogonal
complementary sequence pairs [23], [24], which avoids the
crosstalk problems among emissions. The sensor and the pro-
posed technique ILPCA have been used for the classification
and localization of three types of reflectors (planes, edges, and
corners) in 3-D environments. The obtained results improve
upon the previous work, not only in the improved success in the
classification, but also in processing time. The obtained results
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Fig. 1.

Proposed sensorial structure.

demonstrate the correctness of the sensorial structure and the
classification method proposed in mobile robot applications.

This paper has been organized in the following sections. In
Section II, the proposed sensor is described; in Section III, the
proposed ILPCA classification method is explained; Section IV
presents the obtained results; and finally, in Section V, the more
important conclusions and future work are provided.

II. SENSOR

The proposed sensor is formed by 14 transducers, two oper-
ating as emitter/receiver and the other twelve only as receivers.
In Fig. 1, the geometrical disposition of the different transducers
is shown, Eg /R and E; /R being those working as emitters/re-
ceivers, and the remaining ones (Ro to Ry3) as receivers. In the
proposed sensor, all the transducers are located in the plane
x — z, with the axial axis in the y direction.

As a remarkable characteristic of the proposed sensor, the
possibility of simultaneous emission at emitter Eg/Ro and
E;/R; is found. This is possible because a Golay comple-
mentary-sequence pair codes the signal transmitted by each
emitting transducer. The Golay sequence pairs [A1, B;] and
[Ag, Bo] used for each emitter are orthogonal between them,
Ca,B, +Ca,B, =0, Ca,p, and Cy, g, being the cross-cor-
relations for A; and B, and A, and B, respectively. The
possibility of using Golay complementary-sequence pairs to
determine TOFs has been demonstrated in previous work [23].
In order to allow the discrimination of echoes, depending on the
emission source, there exists a low-level electronic system in
every receptor for the detection of two different and orthogonal
Golay sequence pairs [23] (see Fig. 2). Here, the block diagram
for emitter/receiver 1 can be observed: its emission is coded by
the pair [A1, B1], and it discriminates echoes from itself or from
other emitters (whose emission is coded by the pair [A3, Ba]).
The implementation of the system is described in detail in [24].

The pulses emitted by Eq/Rq are processed, not only by it-
self, but also by transducers E1/R; and Ry through Rg. The
pulses emitted by E;/R; are processed by itself (E; /R;) and
by transducers E(]/I{(]7 R5, R7., R97 ]E{m7 I{n7 R12, and R13 (see
Table I). Therefore, 18 TOFs are computed in every measure-
ment cycle.

The improvement of the proposed sensorial structure, re-
garding previous work in this field, resides in its capacity
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TABLE 1
EMISSION/RECEPTION CONFIGURATION FOR TRANSDUCERS
IN THE SENSORIAL STRUCTURE

Receivers
E¢/Rg, Ei/Ry, Ry, Rs, Ry, Rs, Rg, Ry, Rg
Ey/Rg, Ei/R}, Rs, Ry, Ro, Ryo, Ryj, Ry, Rys

Emitters/Receivers
E(]I‘R()
Ei/R,

to obtain 3-D information, and also in the high redundancy
provided when obtaining a total of 18 TOFs in a simultaneous
way. This implies a higher reliability when carrying out the
classification. Also, using the 18 TOFs obtained after every
emission, the 3-D reflector classification and localization can
be carried out, so this solution is specially suitable for appli-
cations in robotics, since all the information to carry out the
reflector classification can be obtained from only one robot’s
position, and with reduced processing times. On the other
hand, the geometrical distribution of the transducers presents a
great symmetry, which facilitates possible modifications in the
number of transducers.

The distance d (see Fig. 1), between transducers, is con-
strained by their physical dimensions and by the echo cor-
respondence [4], [20]. In this case, d = 17 cm has been
configured.

III. REFLECTOR RECOGNITION AND LLOCALIZATION.
ILPCA ALGORITHM

A. Previous Considerations

A classical feature-extraction and data-representation tech-
nique, widely used in the areas of pattern recognition and
computer vision, is PCA [25]-[29]. PCA techniques, also
known as the Karhunen-Loeve expansion, choose a dimen-
sionality-reducing linear projection that maximizes the scatter
of all projected samples.

In this paper, the usage of PCA is proposed to carry out the re-
flector classification using the measurements of TOFs provided

Simplified scheme of the processing system for an emitter/receiver transducer.

by ultrasonic sensors. For that, suppose a sensor that allows sev-
eral simultaneous emissions to be carried out from several emit-
ting transducers, obtaining n TOFs. This set of n TOFs forms
an n-dimensional column TOF vector identified by T

tn]” ey

where ty, to, . . ., t, are the TOFs associated with every receiver,
and the index 7" means transposed. In the next paragraphs, vec-
tors T will be referred to as TOF vectors, and their associated
space as TOF space.

Let us consider a training set of s samples of TOF vectors
{T0,7T1,.-.,Ts—1}, taking values in an n-dimensional TOF
space. The averaged TOF vectors of the set are defined by

1 s—1
v = - ;
ST
7=0
where ¥ € ™. The difference between each TOF vector and

the mean value, known as ®; with (j = 0,1,2,...,s — 1), 1s
obtained as

T = [tl t2

@)

®;=71,-¥, j=01,2.. .51 3)

Let us also consider a linear transformation mapping the orig-
inal n-dimensional TOF space into an m-dimensional feature
space, where m < n. The new feature vectors §1; € R™ are
defined by the following linear transformation:

9

2 = [wjr Wjm]"

=UT®;, j=0,1,2...,5-1

wi2
“

where U € R™™ is a matrix with orthonormal columns (U is
the transformation matrix).
If the total scatter matrix St is defined as
s—1
T
Sr=>) (®,)(®))

i=0

)

then, after applying the linear transformation U7, the scatter
of the transformed feature vectors {€g,€1,...,Qs_1} is
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UTS;U. In PCA, the transformation matrix is chosen to
maximize the determinant of the total scatter matrix of the
projected samples, i.e.,

Uopt = argmax [UTSyU| = [w u, u,] (6

where {uy|k = 1,2,...,m} is the set of n-dimensional eigen-
vectors of St corresponding to the m largest eigenvalues.

Once the transformation matrix Uy, is determined and
given a new TOF vector 7 to be classified, it is transformed into
the feature space through (4), using the transformation matrix
shown in (6). In this way, the new vector in the feature space
will be

Q=[w w wn]f =UT® =UT(r-®) (7)

where, simplifying the notation, the index “opt” in U has been
removed, ¥ is the averaged vector for the TOF vectors deter-
mined in (2), and ® is the TOF vector with null mean value
=70,

The reconstruction of ® from the feature space, identified as
®, is carried out by the inverse transformation given by

d-—7-¥=UQ (8)

where 7 is the TOF estimation after the reconstruction.
The Euclidean distance between ® and @, given in (9), is
called the reconstruction error

e_||® — B 9)

The Euclidean distance in the feature space between the fea-
ture vector for the projected object €2, and the one for each one
of the s training samples projected ; (withj = 0,1,2,...,s—
1), is given by

dj:”Q—QjH, jZO,l,Z,...,S—l. (10)

Regarding the classification, for the new feature vector 7,
if ¢ < 7., in the case of a small enough reconstruction error
threshold 7., T will have a great similarity with any of the s
training TOF vectors {7¢,71,...,Ts—1} used when obtaining
the transformation matrix U.

Furthermore, if there exists j so that d; < -4, considering
vq yields a small enough Euclidean distance threshold in the
transformed space, this will imply that 7 is close to one of the
samples from the training set 7;(j = 0,1,2,...,s — 1).

B. Proposed Classification and Localization Algorithm
(ILPCA Algorithm)

In this section, a technique is presented based on the use of the
PCA for the identification of reflectors (edge, corner, and plane
types), as well as their approximated position (distance, angles
in azimuth and elevation) with regard to the sensorial structure.

Before carrying out the description of the ILPCA algorithm,
some parameters associated with the sensor will be defined,
using Fig. 3: a) the emission/reception cone is defined by the az-
imuth (@min < @ < Amax) and elevation (Bmin < 0 < Bmax)
angles; b) the measurement range p is defined by pnin and prax;
¢) inside the perception cone of the sensor, the vector 7, which
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P{s-l)- Pmax i

s distances

Fig. 3. Perception cone of the proposed sensor.

Fig. 4. Position definition for the three reflector types. (a) Corners. (b) Planes.
(c) Edges.

defines the position of a reflector, is defined by (p, a, 8); d) in-
side the perception cone, ¢ directions are defined («, 3) [these
directions are identified by i(: = 0,1, ...,q — 1)]; e) for every
direction ¢, s distances are defined, so they will be referred to
as pj, withj =0,1,...,5s — 1.

In Fig. 4, the three considered reflector types and the defini-
tion of the vector 7 are shown. Next, the position vector 7, for
q directions and s distances inside the perception cone of the
sensor, is determined by (4, 7). In the case of corners, the po-
sition vector is the one leaving the point (4, j) that is normal to
the intersection of the two planes forming it inside their bisector
plane, and passing by the coordinate origin of the sensor.

The goal pursued by the ILPCA algorithm is to identify the
reflector type, determine the direction ¢, and to make an approx-
imate estimation of the distance p. For that, a class for every
reflector type and direction ¢ is defined. The ILPCA algorithm
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Fig. 5. Example of the localization of training samples for reflectors. (a) Plane type. (b) Edge type. (c) Corner type.

TABLE 1I
CONSIDERED DIRECTIONS ¢ DEFINED IN FUNCTION OF
AZIMUTH AND ELEVATION ANGLES

ELEVATION

-12 |-10)|-8 | -6 [-4|-2 |0 [+2[+4 | +6|+8 [+10+12
-12( 0O 1123 |4 |56 |7 [8]|9]10|11]12
-10) 13 |14 |15|16 (17|18 |19|20 |21 |22|23 |24 |25
-8 | 26 [27(28|29(30|31[32[33|34|35|36([37][38

‘2 -6 [ 39 [40 (41 (42|43 |44 45|46 |47 |48|49|50|51

-4 | 52 [53[54|55]|56|57|58|59|60|61|62[63|64
1 2| 65 |66 (6768|6970 |71 |72|73|74|75(76 |77
M 0| 78 |79|80 (81 82|83 |84 |85|86|87|88|89|920
U 2] 01 [92]93]94[95 06|97 |08]99 [100[101[102[103
T 4] 104 [105[106[107]108[102]110[111[112|113[114[115[116
H +6] 117 [118[119[120[121|122[123]124[125]126[127(128]129

+8| 130 [131|132]133]134|135|136|137|138(139(140(141|142
+10[ 143 [144(145|146|147(148[149|150|151|152|]153|154[155
+12| 156 |157[158|159|160(161|162|163|164|165/]166|167|168

associates a transformation matrix with each class. The trans-
formation matrix will be referred to as U, U, and U¢ for
plane, edge, and corner reflectors, respectively, ¢ being the di-
rection of the position vector for the reflector.

The transformation matrices UF, UF, and U are gen-
erated offline using sets of TOF measurements obtained a
priori, called training samples. So, for every ¢ considered
direction and for every reflector type, s training TOF vectors
are obtained in an n-dimensional space of TOFs (in this case,
n = 18). These n-dimensional TOF vectors obtained in each
2= [t tF P

position (i,j) are referred to as 7;; = [tj;1,li0,-- st

D,'Shq
Nogs, o] =0
“ . =
./h&l
, T
E_[,E ,E E
T’J‘ - ["{rl”ml""’ Ijju]
b)
-~
172}
Z
=
E_.
3
4]
&
a
¢ c |7
r]'lltr:fl 30y tl’jn]
for planes, 75 = [t5;,t5,,... 5] for edges, and
¢ = [t5,, 1 t&..] for corners; where the indexes
iy 1710 Y4920 -t Vgn ’

P, E, and C mean the reflector types plane, edge, and corner,
respectively. In Fig. 5, a graphical presentation is provided
on how the three reflector types have been located to obtain
the training TOF vectors. In the case of planes and edges, due
to their geometrical characteristics, the pitch angle does not
affect the classification. For corners, it has also been tested in
simulations that the classification is correct as long as the pitch
angle is in the range of +4°.

The classes o, o, o withi = 0,1,...,q— 1 are obtained

for ¢ directions and three reflector types, where o, aF | af rep-
resent the ¢ classes for every reflector type, plane, edge, and

corner, respectively.

Every class af’, aF af is characterized by s training TOF
vectors

af:{T%,Tﬁ,...,Tﬁs_l)}, i=01,...,q-1

afz{rg,rﬁ,...,rﬁs_l)}, i=01,... -1

af:{T%,Tﬁ,...,Tf’Es_l)}, 1=0,1,...,q—1. (14

If, for every class, the optimum transformation matrix
U is obtained according to (6), and identifying them as
UP UE U¢,i=0,1,...,q — 1, itis concluded that

UP=[f o ... W], i=01,....q-1
UFP=[uf uf ... ul], i=0,1,...,¢—1
US=mu§ us ... uf), i=0,1,....q—1 (15
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TABLE III
RECONSTRUCTION ERRORS OBTAINED AFTER PROJECTING INTO SPACES CORRESPONDING TO PLANE-TYPE REFLECTORS ¢’ (i = 1,2,...,128). (a) NEGATIVE
ELEVATION ANGLES. (b) POSITIVE ELEVATION ANGLES

ELEVATION

-12 -10 -8

I 4 2 ]

-12 | 0.0008363 | 0.0008279 | 0.00082244

0.00082008 | 0.0008209 | 0.00082492 | 0.00083212

-10 | 0.00073084 | 0.00071937 | 0.00071156

0.00070765 | 0.00070778 | 0.000712 0.00072025

-8 | 0.00062515 | 0.00060982 | 0.00059902

0.00059314 | 0.00059245 | 0.00059703 | 0.00060678

-6 | 0.00052077 | 0.00050037 | 0.00048555

0.00047702 | 0.00047528 | 0.00043051 | 0.00049251

0.00042042 | 0.00039303 | 0.00037237

0.0003599 | 0.0003567 | 0.00036315 | 0.00037882

-2 | 0.0003296 | 0.00029217 | 0.00026218

0.00024287 | 0.00023719 | 0.00024631 | 0.0002688

0 | 0.00026003 | 0.00020939 | 0.00016376

0.00012942 | 0.0001175 | 0.00013452 | 0.00017223

+2 | 0.00023253 | 0.00017408 | 0.00011525

5.6753¢-05 | 1.6787e-05 | 6.7622¢-005 | 0.00012705

DR —-N

+4 | 0.0002607 | 0.00021143 | 0.00016762

0.00013549 | 0.00012507 | 0.00014162 | 0.00017788

+6 | 0.00032993 | 0.00029424 | 0.00026606

0.00024835 | 0.00024372 | 0.00025308 | 0.00027509

+8 | 0.00041939
+10 | 0.00051759
+12 | 0.00061917

0.00039378
0.00049894
0.00060354

0.00037479
0.00048568
0.00059622

0.0003637
0.00047842
0.00059153

0.00036144
0.00047757
0.00059169

0.0003683 | 0.00038383
0.00048325 | 0.00049526
0.00059673 | 0.00060657

a)

ELEVATION

+2
0.00084239

+4
0.00085559

+6
0.00087155

+8
0.00089002

+10
0.00091078

+12
0.00093356

0.0007324 | 0.00074821

0.00076738

0.00078957 | 0.00081442 | 0.00084157

0.00062146 | 0.00064068

0.00066394

0.00069072 | 0.00072049 | 0.00075274

0.00051079
0.0004026

0.00053465
0.00043309

0.00056327 |
0.00046883

0.0005958
0.00050854

0.00063148
0.00055114

0.00066961
0.0005958

0.00030167 | 0.00034182

0.00038682

0.00043495 | 0.00048502 | 0.00053624

0 | 0.00022021 | 0.00027297

0.00032799

0.00038405 | 0.00044049 | 0.00049687

0.000187 0.00024695

0.00030667

0.00036601 | 0.00042484 | 0.00048305

0.00022447
0.00030701

0.00027607
0.00034601

0.00033014
0.0003898

| 0.00038539
0.00043673

0.00044112
0.00048566

0.00049687
0.0005358

0.00040702 | 0.00043658

0.00047117

0.00050961 | 0.0005509 | 0.00059422

+10 | 0.00051314 [ 0.00053624

0.00056383

0.00059514 | 0.00062946 | 0.00066616

+12 | 0.00062095 | 0.00063953

0.00066187

0.0006875 | 0.00071594 | 0.00074674

b)

where {uf |k = 1,2,...,m}, {uf|k = 1,2,...,m}, and
{u$ |k = 1,2,...,m} are three n-dimensional eigenvector
sets of the scatter matrices ST, SE. S$. for every 4, respec-
tively. Since these eigenvectors have the same dimension as
the original TOF vectors, {ul |k = 1,2,...,m} are referred
to as eigenplanes, {uf |k = 1,2,...,m} as eigenedges, and
{u§|k = 1,2,...,m} as eigencorners. The scatter matrices
SF.,SE. SS. are given by
s—1 T
P o_ P P
Sri=>_ (®]) (®5)
7=0
s—1 T
B _ B B
Sri=>_ (®5) (®5)
=0
s—1 T
c _ c c
ST = (®5) (®F)

=0

(16)

where

P__P P E _ _E E c _ _cC c
(I)ij_Tij_‘I’i7 ‘I’ij—Tij_‘I’m 'I’ij_Tij_‘I’i

(17)
P 1 = P E 1 = E C 1 = C
v, =- ZTz’j7 v =- Tijs v =- ZTz’j'
5 =0 5 5=0 5 5=0
(18)

Once the transformation matrices U, UF, and U with
1 =0,1,...,q — 1 are obtained and a new n-dimensional TOF
vector 7 to be classified is given, first the corresponding linear
transformations given by (7) are carried out, obtaining 3¢ new
feature vectors in the transformed spaces. The feature vectors
in the transformed spaces, known as QL QL QS € R™, are
determined by

Qf = (UP)" ®F, i=0,1,2...,q—1
QF = (UP)"®E, i=0,1,2....q-1
Q% =(U9) 8%, i=01,2...,¢q-1 (19
being
oL =7 WP i=01,...,¢-1
L =7 -WE i=0,1,...,¢—-1
¢ =7-0¢ i=01,...,q—1 (20)
where QL QE Q¢ € ®™.
After that, the vectors ®L, ®L &C. are recovered from

every transformed space through the inverse transformation

O HE HC
o —¢—wlr=vurQl, i=01,...,q—1
L =7 —WF =UFQE, i=0,1,...,q-1
¢ =7 -0 =UY0QS, i=0,1,....q—1. Q2D
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TABLE 1V

RECONSTRUCTION ERRORS OBTAINED AFTER PROJECTING INTO SPACES CORRESPONDING TO EDGE-TYPE REFLECTORS £ ¥ (i = 1,2,. ..

,128). (a) NEGATIVE

ELEVATION ANGLES. (b) POSITIVE ELEVATION ANGLES

ELEVATION
O T 2 0
-12 | 0.00084924 | 0.00084065 | 0.00083501 | 0.00083249 | 0.00083316 | 0.00083707 | 0.00084418
-10 | 000074522 | 0.00073344 | 0.00072534 | 0.00072117 | 0.0007211 | 0.00072518 | 0.00073336
o |8 | 0.0006399 | 0.00062404 | 0.00061274 | 0.00060644 | 0.00060542 | 0.0006098 | 0.0006195
z | 6 | 0.00053507 | 0.00051381 | 0.00049817 | 0.00048895 | 0.00048669 | 0.00049162 | 0.00050358
w [ -4 [0.00043388 | 0.00040519 | 0.00038326 | 0.00036967 | 0.00036563 | 0.00037163 | 0.00038728
T | 2 | 0.00034244 | 0.00030325 | 0.00027141 | 0.0002503 | 0.00024321 | 0.00025159 | 0.00027416
0 | 0.00027326 | 0.0002208 | 0.00017305 | 0.00013618 | 0.00012156 | 0.00013708 | 0.00017506
+2 | 0.00024727 | 0.00018772 | 0.00012826 | 7.1176e-05 | 6.6186¢-05 | 7.2989¢-005 | 0.00013108
+4 | 0.0002768 | 0.00022664 | 0.00018197 | 0.00014881 | 0.00013665 | 0.00015113 | 0.00018629
+6 | 0.00034689 | 0.00031036 | 0.00028124 | 0.00026253 | 0.00025689 | 0.00026541 | 0.00028692
+8 | 0.0004369 | 0.00041065 | 0.00039099 | 0.00037924 | 0.00037639 | 0.00038277 | 0.00039802
+10 | 0.00053506 | 0.00051601 | 0.00050232 | 0.00049465 | 0.00049344 | 0.00049882 | 0.00051064
+12 | 0.00063575 | 0.00062187 | 0.00061228 | 0.00060734 | 0.00060726 | 0.00061211 | 0.00062179
a)
ELEVATION
+2 +4 +6 | 48 +H0 [ +12
-12 | 0.00085439 | 0.00086756 | 0.00088349 | 0.00090195 | 0.00092269 | 0.00094544
-10 [ 0.0007455 | 0.00076136 | 0.00078061 | 0.00080292 | 0.00082788 | 0.00085512
A -8 [0.00063425 | 0.00065365 | 0.00067718 | 0.00070428 | 0.00073438 | 0.00076693
Y -6 | 0.00052206 | 0.00054631 | 0.00057546 | 0.00060861 | 0.00064492 | 0.00068365
U 4 [0.00041146 | 0.00044265 | 0.00047929 | 0.00052 0.00056362 | 0.00060922
B 2 | 0.00030776 | 0.00034908 | 0.00039546 | 0.00044503 | 0.0004965 | 0.000549
0 | 0.00022432 | 0.00027876 | 0.00033558 | 0.0003934 | 0.00045148 | 0.00050933
+2 | 0.00019197 | 0.00025344 | 0.00031483 | 0.00037584 | 0.00043624 | 0.00049586
+4 | 0.0002329 | 0.00028522 | 0.00034036 | 0.00039681 | 0.00045374 | 0.00051061
+6 | 0.00031877 | 0.00035807 | 0.00040242 | 0.00045007 | 0.00049977 | 0.00055064
+8 | 0.00042113 | 0.0004508 | 0.00048566 | 0.00052447 | 0.00056616 | 0.00060989
+10 | 0.00052843 | 0.00055154 | 0.0005792 | 0.00061065 | 0.00064513 | 0.00068197
+12 | 0.00063607 | 0.00065458 | 0.0006769 | 0.00070252 | 0.00073097 | 0.00076176
b)

Finally, the reconstruction errors defined in (9) are computed

el = |®f —®L|, i=0,1,...,q—1
zE_H¢ 1[?‘1”7 Z:0>1>7q_1
ef = @5 - @5, i=0,1,....q—1. (22

The new TOF vector T will be classified as belonging to the
class associated with the transformation matrix with the smallest
reconstruction error, whenever this error is inferior to a certain
threshold ., as is shown in

C .
Plane if : { {min < elmm and 6lmm < € min Vi
1m1n — ’75
C .
Edge if : { imin < 61mm and E1m1n < € min Vi
1m1n — ’76
E‘ .
Corner if : { imin < El min and 61m1n < € min Vi
1mm S ’YE
Other cases — Indeterminate. (23)

The value of the index ¢ with the minimum reconstruction
error indicates the most approximated direction in which the
reflector to be classified will be. This value 7 is referred to as
iq.

Once known, the reflector type (plane, edge, or corner) and
the direction 7, at which it is pointed, as well as its distance
pi, (0 < j < s — 1) referred to the sensorial structure, can
be determined in an approximate way. For that, the Euclidean
distances in the transformed space between the feature vector
for the object T to be classified, and every feature vector
of the training samples of the class to which this reflector
belongs, are calculated. For example, if the object 7 was
classified as a plane in the direction i,, the TOF vector set
used offline to generate the transformation matrix will have
been {17, 77,,... ,Ti(s_l)}. Therefore, it is only necessary
to compute the Euclidean distance in the transformed space
among the feature vector corresponding to the TOF vector 7,
and the feature vectors corresponding to the training samples,
as is shown in

dij =95, —Q ||, i=01...,s—1 (24
being
Qr, = (UF)" (r—wl)
Q= (UR) («F, —®F), j=0,1,...,s—1. (25)
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TABLE V
RECONSTRUCTION ERRORS OBTAINED AFTER PROJECTING INTO SPACES CORRESPONDING TO CORNER-TYPE REFLECTOR =€ (i = 1,2, ..., 128). (a) NEGATIVE
ELEVATION ANGLES. (b) POSITIVE ELEVATION ANGLES

ELEVATION
12 -10 8 -6 4 2 0
-12 | 0.00085642 | 0.00084707 | 0.00084087 | 0.00083795 | 0.0008384 | 0.00084226 | 0.00084948
10 | 0.00074866 | 0.00073626 | 0.0007277 | 0.00072323 | 0.00072299 | 0.00072702 | 0.00073529
A -8 | 0.00064059 | 0.0006243 | 0.00061274 | 0.00060628 | 0.00060519 | 0.00060956 | 0.0006193
4 -6 [0.00053386 | 0.00051245 | 0.00049681 | 0.00048765 | 0.00048547 | 0.00049045 | 0.00050241
Y -4 [ 0.00043141 | 0.0004029 [ 0.00038132 | 0.00036811 [ 0.00036438 | 0.00037051 [ 0.0003861
E 3 1 0.00033907 | 0.0003004 | 0.00026934 | 0.00024911 | 0.00024269 | 0.00025134 | 0.0002737
0 | 0.00026912 | 0.00021733 | 0.00017073 | 0.0001355 | 0.00012247 | 0.0001384 | 0.0001757
42 0.0002427 | 0.00018363 | 0.00012509 | 6.9772¢-005 | 5.8902¢-005 | 7.5319¢-005 | 0.00013187
+4 | 0.00027267 | 0.00022284 | 0.00017885 | 0.0001467 | 0.0001356 | 0.00015057 | 0.00018551
+6 | 0.0003439 | 0.00030744 | 0.00027863 | 0.00026034 | 0.00025509 | 0.00026381 | 0.00028529
+8 | 0.00043554 | 0.00040907 | 0.00038935 | 0.00037766 | 0.00037488 | 0.00038133 | 0.00039659
+10 | 0.000536 | 0.00051646 | 0.00050245 | 0.0004946 | 0.00049329 | 0.00049866 | 0.00051052
+12 | 0.00063982 | 0.00062526 | 0.00061518 | 0.0006099 | 0.00060963 | 0.00061442 | 0.00062417
a)
ELEVATION
+2 +4 +6 +8 +10 +12
-12 | 0.00085998 | 0.00087361 | 0.0008902 | 0.00090951 | 0.00093131 | 0.00095535
10 | 0.00074763 | 0.00076383 | 0.0007836 | 0.00080659 | 0.00083246 | 0.00086083
5 -8 | 0.00063416 | 0.00065374 | 0.00067758 | 0.00070515 | 0.00073593 | 0.0007694
w -6 | 0.00052085 | 0.00054508 | 0.00057429 | 0.00060764 | 0.00064436 | 0.00068375
Y "4 |0.00041005 | 0.00044095 | 0.00047735 | 0.00051796 | 0.00056169 | 0.00060769
52 | 0.00030678 | 0.00034746 | 0.00039325 | 0.00044242 | 0.00049375 | 0.00054644
0 | 0.00022392 | 0.00027732 | 0.00033328 | 0.0003905 | 0.00044829 | 0.00050623
+2 | 0.00019145 | 0.00025183 | 0.00031237 | 0.00037281 | 0.00043296 | 0.00049269
+4 | 0.00023154 | 0.00028321 | 0.00033779 | 0.0003939 | 0.00045076 | 0.0005079
+6 | 0.00031694 | 0.00035598 | 0.00040015 | 0.00044776 | 0.00049765 | 0.00054901
+8 | 0.0004197 | 0.00044939 | 0.00048436 | 0.00052343 | 0.0005656 | 0.00061006
+10 | 0.00052843 | 0.00055176 | 0.00057978 | 0.00061174 | 0.00064695 | 0.00068475
+12 | 0.00063866 | 0.00065754 | 0.00068038 | 0.00070673 | 0.0007361 | 0.00076803
b)
TABLE VI

EUCLIDEAN DISTANCE IN TRANSFORMED SPACE BETWEEN FEATURE VECTORS FOR THE PATTERN REFLECTORS OF THE PLANE CLASS WITH AZIMUTH +2° AND
ELEVATION —4°, AND FEATURE VECTOR FOR THE REFLECTOR TO BE CLASSIFIED, CONSIDERING MEASUREMENTS WITH TYPICAL NOISE DEVIATION OF 5 ps

Piy

(cm)

50 80 110 140 170

200 230 260 | 290 320 350

0.0272 | 0.0198 | 0.0124 | 0.0049 | 0.0024

inl

0.0099 1 0.0174 | 0.024 | 0.0324 | 0.0399 | 0.0473

fa

d

i J

Pii= Distances at which reflectors have been placed in cm.
1.

= Euclidean distances in the transformed space between the feature

vectors of the pattern reflectors and the vector of the object to be
classified. 4, =||ij ~0f, “ with (j=0,1,2, .., 11).

The value p;_ ; corresponding to the value 7, that provides the
minimum d; ,;, will be the approximate reflector distance, in the
direction 7.

It has been proven empirically that the relationship among
the distances of the reflectors to the sensorial structure, and the
Euclidean distances of their feature vectors in the transformed

space, is approximately linear. In this way, considering the dis-
tance interval, where the reflector is, and the Euclidean distances
in the transformed space, a correct estimation can be obtained
by means of a linear interpolation in the distance at which the
reflector is positioned. For instance, if the feature vector for the
reflector to be classified in the transformed space, referred to as
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min

between reconstruction errors and

/5] ... for plane-type reflector.

@ ef  /ef

“min “min

Q;,, is inside the interval between €2;_ ;. and Qia(ja+1)’ the

approximated distance at which the reflector is, is defined by
Pia(jat1) ~ Pia(da)

194G 1) — P

P = Pinj. + 19271, — il 27

pi.j. being the distance to the nearest pattern reflector, and
Pia(j.—1) and p;, (;,4+1) the previous and following distances to
Pi, . Tespectively.

IV. RESULTS

With the purpose of checking the efficacy of the algorithm de-
scribed in the previous section, diverse experimental tests have
been realized. As a previous step to these, while trying to verify
the behavior of the algorithm, several simulations have been car-
ried out. In order to carry out the simulations, a simulator has
been used; this allows TOFs to be obtained in 3-D environments,
based on the rays technique. Concerning the number of prin-
cipal components to be used, with two principal components
(the most significant eigenvalues), good results are obtained;
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(byef . /ef . foredge-type reflector.

“min

and

nevertheless, these are significantly improved when three prin-
cipal components are considered. Using more than three com-
ponents does not improve the results too much. Anyway, a large
number of components implies a higher computation load, thus
three components were used as a commitment between accu-
racy and computation time. In these conditions, the computation
time, using a TI 6701 DSP, to carry out a whole classification
over a set of 507 classes (169 spatial directions for each three
reflector kinds) is 11 ms.

A. Simulated Results

The training samples for every reflector type have been ob-
tained, as was noted previously, which were located at different
distances and directions. Every considered direction ¢ is defined
by the values of the azimuth and elevation angles. In partic-
ular, the reflectors have been located at distances from 50 to
350 cm, with 30-cm intervals. Therefore, the transformation ma-
trices UP, UF, and UY, in every direction i, are obtained from
s = 11 patterns. With regard to the directions, azimuth angles
from —12° to +12°, with 2° intervals, have been considered,
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and for every azimuth angle, elevation angles have been evalu-
ated in the same range and with the same interval. Under these
conditions, a total of 169 directions for every reflector type have
been evaluated. In Table II, the considered directions are shown,
depending on the azimuth and elevation angles.

Once obtained, the transformation matrices UY, UF, and
U¢(0 < i < 168) in the 169 directions for every considered
reflector, classification can be carried out. For instance, some
results are presented, obtained when classifying a plane-type
reflector located at 160 cm away from the sensorial structure,
with azimuth and elevation angles of +2° and —4°, respectively.
TOF measurements have been considered with typical noise de-
viations of 5 ys.

In Tables III, TV, and V, the reconstruction errors e, ¢F, and
¢ are shown (withi = 0,1,.. ., 168), obtained after projecting
in all the spaces corresponding to the three considered reflector
types: planes, edges, and corners, respectively.

As derived from Tables III, IV, and V, the smallest reconstruc-
tion error is obtained for the case of plane-type reflectors for az-

P

&g
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Fig. 9. Success percentage in the classification depending on the distance for
plane, edge, and corner-type reflectors placed at distances from 50 to 350 cm,
with intervals of 20 cm, an azimuth angle of 7.5°, and TOF measurements with
typical noise deviations of (a) 5 ps and (b) 15 ps.

imuth and elevation angles of +2° and —4°, respectively. There-
fore, according to the ILPCA algorithm, the reflector belongs to
the plane class with azimuth of +2° and elevation of —4°, which
is exactly the case of the analyzed reflector.

A similar reasoning can be made for the cases where the re-
flector to be classified is an edge or a corner.

Once classified, the distance between the reflector and the
sensor is estimated. The Euclidean distances d;_ ; are calculated
in the transformed space, among the feature vectors €2;_; for the
pattern reflectors from the class to which the classified reflector
belongs; in this case, plane class with +2° azimuth and —4°
elevation, and the feature vector €2,; of the reflector that is
being classified. This distance first allows knowing the nearest
pattern reflector which is being classified. As 11 patterns have
been used per class, 11 Euclidean distances are obtained, as is
presented in Table VL.

In order to obtain the distance p at which the reflector is, the
interval of distances where the reflector is placed is obtained.
From Table VI, it is deduced that the reflector is in the interval
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of 2.5 us, reflectors placed at 150 cm, and azimuth angles from —12 to 412
degrees (elevation angle is zero here).

from 140 to 170 cm, since the smaller Euclidean distances have
been obtained in this interval. Finally, the most accurate ap-
proach to the distance is obtained by carrying out the linear in-
terpolation according to (27). In this case, keeping in mind the
obtained interval, the value p can be determined by means of the
following expression:

140 — 170
1140 — Q170

With the result obtained in (28), it is shown how the relation-
ship among Euclidean distances in the transformed space, and
the distances at which the reflectors are with regard to the sen-
sorial structure, follows an approximately linear variation, since
the obtained distance r = 159.99 cm coincides with the distance
at which the classified reflector is (160 cm).

When repeated, this analysis for different types of reflectors
and in different distance locations, azimuth, and elevation, gives
successful results, as well.

p =170+ 192, — Q170 = 159.99 cm. (28)

919

0; =25 s

o
N
T

-

=
=)
T

=
=

=
_

=
[

| 1 1 | 1 I |
32—11-10 987654321012
ELEVATION ANGLE

1 | | I —
3456738 9101112

RATIO BETWEEN RECONSTRUCTION ERROR (:-:Ef'x-:c)

a)

G, =25 us

=
n

=y

=
©
o

I T i i I T
-q2-11-10-9 876543210123
ELEVATION ANGLE

b)

RATIO BETWEEN RECONSTRUCTION ERROR (EEI'EP)
g
o
ol
-
|
0
-
=)
-
ry
-
N

Fig. 11. Ratios between reconstruction errors (a) e  /e€

Jes . and
B P s . min’ ~*min
(b)eE /el | considering measurements with standard noise deviations of
0

2.5 ulsljureﬂeé?bnrs placed at 150 cm, and elevation angles from —12 to +12
degrees (azimuth angle is zero here).

During the experimental tests, due to problems in practical
implementation, all the measurements have been carried out on
reflectors with null elevation, only keeping in mind their dis-
tance and azimuth with regard to the sensorial structure. Several
simulations have been carried out to check the behavior of the
ILPCA algorithm, depending on variations in distance and az-
imuth. In order to verify their behavior at a distance, reflectors
located at intervals of 20 cm have been considered, in the range
from 50 to 350 cm, with a fixed azimuth angle of 7.5°. The re-
flectors have been located at 20-cm intervals with the purpose
of not being exactly the same as the pattern reflectors located in
the same range, but at 30-cm intervals. In this way, more crit-
ical classification situations can be proposed, which allows the
robustness of the algorithm to be checked in a more intensive
way. In order to check their sensitivity with regard to the az-
imuth angle variations, reflectors have been located at a fixed
distance of 150 cm, whereas this angle has been varied from
+12° to —12°, with intervals of 1°. The classification errors
have been calculated in every position. All the simulations have



920

been carried out for TOF measurements with Gaussian noise of
null mean and typical deviations of 2.5 us, 5 us, and 15 pus.

When considering null elevation, the number of directions
to be considered in order to obtain the transformation matrices
Uf, U1E, and Uic isreduced to 13 (¢ = 0,1, ...,12), keeping
in mind that angles are evaluated from —12 to +12 degrees, at
intervals of 2°.

After computing the corresponding reconstruction errors,
the ratios afni lE s 651“ c iim P E ¢ and
af LN Fm . are obtained for every distance, and
represented in Figs. 6, 7, and 8, respectively. These results have
been obtained after carrying out 500 measurements considering
variations in reflector distance, and measurements with typical
noise deviations of 2.5 us. The zig-zag shape of the curves in
these figures is because the further the reflectors to be classified
(online process) are situated from the pattern reflector positions
used during the training process (offline computing of principal
components), the more affected by noise the reconstruction
errors are.

As can be observed in Figs. 6-8, in any case, the limit value of
the unit is overcome, so the success percentage is 100% for any
reflector type and for any distance inside the considered range.
In the same figures, it is shown that as the the distance increases,
the ratios approach the decision threshold, so the classification
becomes more critical. This occurs because increasing the dis-
tance results in more similar measurements obtained for any
reflector type, and they are determined with smaller precision,
making the classification difficult.

On the other hand, the worst behavior takes place for the
ratios Ef:ﬁn 65:1;" ’ f:ﬂn C 'f;in : 'f;in ¢ ’ and

ZC . In these cases, values taken by the
ratios are nearer than in others, mainly in the last two cases.
Therefore, as the noise level increases in the measurements, a
larger classification error appears in these cases.

In Fig. 9(a) and (b), the success percentages are shown for
edge, corner, and plane-type reflectors, located at different dis-
tances, and with an azimuth angle of 7.5°, considering typical
noise deviations of 5 us and 15 us, respectively.

As is derived from Fig. 9(a), when the noise in a typical de-
viation in the measurements is 5 us, the success percentage for
plane-type reflectors is 100%, causing errors to appear in the
classification for edge and corner-type reflectors. Whenever the
noise has a typical deviation of 15 us [Fig. 9(b)], the likelihood
of success drops significantly. It should be remarked that these
so-high typical deviations seldom appear in practice. The pur-
pose of obtaining results with such high levels of noise is to
check the behavior of the algorithms in extreme situations.

In order to test the ILPCA algorithm sensitivity to variations
in the azimuth and elevation angles, reflectors were placed at
a fixed distance, whereas the azimuth or elevation angles were
varied. These variations were taken in the range from —12 to
412 degrees, with a step of one degree. This test shows that
the percentage of successful classifications, for every tested dis-
tance, is similar in the whole range of azimuth or elevation an-
gles. Therefore, it can be concluded that the azimuth or elevation
angle of the reflector does not have a significant influence on the
classification process. Thus, the percentage of successful clas-
sifications depends mainly on the distance.

2min’ tmin’ “tmin/ " ?min

= S =
Tmin Tmin Tmin

2min? “?min/ ~?min
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Fig. 12.  Sensorial structure used for the experimental tests.

Fig. 13.

Test scenario for an edge-type reflector.

As an example, Figs. 10 (variations in azimuth) and 11 (vari-
ations in elevation) show values obtained for the following re-
lations: 6{”;;“ F and EF afz .. after carrying out 500 mea-
surements with standard noise deviations of 2.5 us, reflectors
placed at 150 cm, and angles from —12 to +12 degrees with a
step of one degree. As can be observed in the figures, there is
no case in which the decision threshold (the ratio between re-
construction errors equals one) is overcome. The reason for the
maximum peaks shown in the graphics of Figs. 10 and 11 for
odd angles, is that in those positions, there were no reflectors
placed during the offline process to obtain the transformation
matrices (during the offline process, the training reflectors were
placed in the range +12 to —12° with a two-degree step).

The same conclusions are obtained for all the other relations,
P E P C  and € P c E

tmin/ “tmin’ %min/ " %mi tmin/ “tmin’ ?min/ ~min’

Regarding the separation of the transducers, it is important to
remark that the distance reduction, which provides a better be-
havior of the echo correspondence, also reduces the maximum
classification distance. For instance, with a transducer separa-
tion of 10 cm, the classification success percentages start to
degrade considerably for reflectors located at distances further
away than 110 cm.
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Fig. 14. Position of the three reflector types, (a) edges, (b) planes, and (c) corners, for the experimental tests.

Although all the results presented come from simulations
done with noncorrelated noise, tests with correlated noise have
been carried out. It has been verified that the proposed algo-
rithm is very robust against that kind of noise. In these tests, the
classification is successful, even when the correlated noise has
higher standard deviations than the noncorrelated noise.

B. Experimental Results

In order to obtain experimental results, the following re-
sources have been used: a sensor formed by eight transducers

(see Fig. 12), where only the two central transducers work as
emitters/receivers, whereas the others work as receivers; an
edge-type reflector (PVC cylindrical tube of 9-cm diameter);
one plane-type (244x122 cm wooden board); and another
corner-type (two 244x122 cm wooden boards forming an
angle of 90°). Fig. 13 shows the test scenario for an edge-type
reflector. The transducers used to build up the sensor system
are by Polaroid. This choice is justified by the low cost,
high distance range, and bandwidth capabilities (allowing the
signal codification). Concerning the measurement system, the
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TABLE VII
SUCCESS PERCENTAGE FOR THE ILPCA CLASSIFIER, OBTAINED FOR AN
EDGE-TYPE REFLECTOR (CYLINDER WITH A DIAMETER OF 9 cm)
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TABLE VIII
SUCCESS PERCENTAGE FOR THE ILPCA CLASSIFIER, OBTAINED FOR A
PLANE-TYPE REFLECTOR (244 x 122-cm WOODEN BOARD)

LOCATION | EDGE CORNER | PLANE | INDETERMINATE LOCATION EDGE PLANE | CORNER | INDETERMINATE
x=70 cm x=70 cm
100% 0% 0% 0% 0% 100% 0% 0%
o=0° o=(°
=70 x=70 cm
e 99% 1% % 0% 0% 100% 0% 0%
q=+40 o= +7D
=150 =150 em
s 94% 6% 0% 0% 1% 99% 0% 0%
o=0° a=0°
=150 =150 cm
i 929 8% 0% 0% 2% 98% 0% 0%
a=+4° a=+7°
- =300
e 859% 14% 1% 0% S % 96% 1% %
o=0° o=0°
x=300 cm x=300 ecm L ) .
84% 15% 1% 0% 5% 94% 1% 0%
a=-4° o=+7°
TABLE IX

standard deviation of the TOF measurements is approximately
3 us for 300-cm distances. More detailed characteristics of
the measurement system can be found in [30].

The fact of using a sensor formed by eight transducers for
the experimental tests, instead of the 14 transducers originally
proposed, is due to the constraint imposed by the number of
channels in the acquisition system used. This fact influences
the quality of the results, since the effectiveness of the PCA
techniques increases as the amount of available data does.

For the experimental tests, the three reflector types have been
located at different distances and with different orientations in
azimuth, with regard to the sensor. The position of every re-
flector is determined by two variables, as can be observed in
Fig. 14: the distance (module of the vector 7) and angle in az-
imuth «. In these tests, the elevation of the reflectors has not
been taken into account, due to the problems in physical loca-
tion for the used reflectors.

The measurements considered correspond always to the first
echo received. A correspondence analysis (taking the readings
two by two) [4], [20] is carried out previous to the application
of the ILPCA algorithm. The measurements not passing the cor-
respondence condition are updated to the averaged value from
the ones meeting this condition. Only isolated reflectors have
been considered, although in future work, more realistic sce-
narios will be studied. The field of view for the whole senso-
rial system depends on the view angle from a transducer (20°
for the Polaroid transducer), but there is a dead zone of 75 cm
approximately just in front of the sensor.

In Tables VII-IX, the success percentages are shown, ob-
tained for every reflector type after carrying out 200 measure-
ments from every location.

From the obtained results, it can be concluded that the classi-
fication is degraded as the distance between the reflector and the
sensor increases, as happens in simulations. This is due to the
greater similarities among the measurements for the three types
of reflectors, and to the greater margin of error that appears in the
TOF determination. On the other hand, it can be demonstrated
that the best results are obtained for the plane-type reflectors.
This feature is due to the larger amount of energy that this re-
flector bounces back, which allows a more accurate TOF to be
determined.

SUCCESS PERCENTAGE FOR THE ILPCA CLASSIFIER, OBTAINED
FOR A CORNER-TYPE REFLECTOR (TWO 244 % 122-cm
WOODEN BOARDS FORMING 90°)

LOCATION EDGE PLANE CORNER INDETERMINATE
¥=70 cm ) i
_ 1% 0% 99% 0%
e
x=150 cm . ) i )
5 % 1% 92% 0%
a=0°
%=300 cm ) } i
- 14% 3% 83% 0%
Ve

It has also been verified that the results obtained in simula-
tions and in practical tests with the eight-transducer sensor have
a high degree of similarity when typical noise deviations of 5 us
are considered in simulations (the practical system presents de-
viations next to 3 us). Therefore, the practical results obtained
using a sensor with 14 transducers should be similar to those
obtained in simulations, shown in Section IV-A.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a sensorial structure and a classification algo-
rithm based on the PCA techniques have been proposed, with
which three types of basic 3-D reflectors can be classified:
planes, corners, and edges.

Regarding the sensorial structure, it is necessary to remark
the features different from other proposals carried out by other
authors in previous work in the same line: their capacity to ob-
tain 3-D information from the environment, the high redundancy
provided, and their capacity for simultaneous emission/recep-
tion. These characteristics make it suitable for use as a sensorial
system in mobile robot applications.

When considering the classification algorithm, it should be
noted that the classification is carried out using only TOFs
measured by the different transducers in the sensorial structure.
The excellent behavior of the proposed classification algorithm
(ILPCA) for a wide range of distances has been demonstrated
by means of simulations and experimental tests, even under
extreme noise conditions in measurements.

In this system, even with a success rate in reflector classifi-
cation similar to other algorithms proposed in the literature, the
robustness against false readings is improved. Furthermore, the
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ILPCA algorithm is a compact process of information integra-
tion for all the readings determined in only one measurement
cycle. Also, it can be easily adapted to any number of trans-
ducers in the sensorial system. In this case, the redundancy is
considered at the level of measurements (simultaneously ob-
tained), and not in high-level algorithms which integrate the in-
formation from successive readings.

As future work, the sensorial system will be adapted and
tested on a mobile robot in real scenarios. Obviously, in these
complex scenarios, it is necessary to implement high-level
tasks: correspondence analysis of echoes, reflector segmenta-
tion, SLAM algorithms, etc.
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