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Abstract: This paper presents a methodology for high resolution radar image generation 
and automatic target recognition emphasizing the computational cost involved in the 
process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain 
signal processing algorithms must be applied to the information sensed by the radar. From 
actual data collected by radar the stages and algorithms needed to obtain ISAR images are 
revised, including high resolution range profile generation, motion compensation and ISAR 
formation. Target recognition is achieved by comparing the generated set of actual ISAR 
images with a database of ISAR images generated by electromagnetic software. High 
resolution radar image generation and target recognition processes are burdensome and 
time consuming, so to determine the most suitable implementation platform the analysis of 
the computational complexity is of great interest. To this end and since target identification 
must be completed in real time, computational burden of both processes the generation and 
comparison with a database is explained separately. Conclusions are drawn about 
implementation platforms and calculation efficiency in order to reduce time consumption 
in a possible future implementation. 
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need to obtain higher spatial resolution has emerged. Consequently, radars have evolved into more 
flexible devices with the ability to generate high resolution imagery for mapping purposes or target 
identification [3]. Radars are the most suitable sensors for a rapid and reliable recognition of targets as 
they can operate in scenarios where visibility is very poor, such as bad weather conditions, smoky and 
dusty environments, etc. Their ability to resolve targets at a long range as well as  
their operation under any weather conditions makes them differ from other sensors like thermal or  
optical ones [2].  

Target recognition using radar sensors can be divided into two techniques: cooperative and  
non-cooperative [1]. Cooperative techniques, known as identification friend or foe (IFF), require the 
communication between target and radar, while non-cooperative techniques, so-called non-cooperative 
target identification (NCTI), do not establish any communication with them but rely on the comparison 
of the measured targets with a reference database. This database is usually populated with actual target 
measurements obtained in scheduled measurement campaigns [4]; however, it implies the collection of 
information from a great number of flying targets in different aspect angles and configurations and 
even so, the main problem lies in the fact that not all existing aircrafts may be measured. For this 
reason, other methods have been deployed to populate the database. These methods include 
measurements in anechoic chamber and electromagnetic simulations [5]. The latter is of great interest 
due to its low cost and the simplicity of obtaining a vast number of CAD aircraft models for 
electromagnetic simulations.  

In this paper a target recognition methodology based on high resolution radar imagery is presented. 
Algorithms related to high resolution radar image creation and the problems found are introduced, as 
well as a target recognition methodology based on image cross correlation. High resolution radar 
image generation and target recognition processes are complex and time consuming. The goal of a 
NCTI system is the reliable recognition of targets in real time; therefore, studies on the computational 
burden of the whole process are of great interest. These studies will make it easy to identify the 
computationally critical points of the system in order to previously choose an implementation platform 
that could perform these operations efficiently. Accordingly, the computational burden of the proposed 
system is revised distinguishing the complexity of image generation from the complexity of target 
recognition. With these results conclusions about implementation platforms and calculation efficiency 
are drawn in order to reduce time consumption in a possible future implementation. 

The article is organized as follows: Section 2 introduces high resolution radars as image sensors 
bringing into focus inverse synthetic aperture radars (ISAR). Section 3 presents the methodology used 
in this study for ISAR image generation from actual flying aircrafts data and its recognition, based on 
the previous work by [6]. The methodology presented requires complex computations implying a high 
computational burden as it is explained in Section 4. Finally, Section 5 discusses the results and 
conclusions, calling for further work and research in the area. 

2. High Resolution Radars 

To high resolution radars (HRRs) targets appear as comprised of individual scattering points, also 
called scattering centers, backscatter sources or scatterers [7]. Figure 2 shows an example of these 
scattering centers projected on the radar line of sight direction. At a given viewing angle (target aspect 



Sensors 2013, 13 5384 
 
angle), each scatterer reflects energy at a certain amplitude and phase. High resolution radars have the 
ability to discern the different scattering centers of a target in both the propagation and the transversal 
direction of the transmitted energy; being able, therefore, to identify the geometry of a target. Thus, 
resolution of these radars is defined in two dimensions, on the one hand there is the slant-range 
resolution which depends on the radar bandwidth and is defined as the ability to resolve scatterers in 
the direction of the radar line of sight; on the other hand, there is the cross-range resolution which 
depends on the wavelength of the emitted signal and the angular sweep made during the illumination 
time. Cross-range resolution is defined as the ability to resolve scatterers in the normal direction to the 
plane containing the radar line of sight and the target rotation angle. 

Figure 2. Example of scattering centers in a target. 

 

There exist mainly two different types of HRR: synthetic aperture radars (SAR) and inverse 
synthetic aperture radars (ISAR). Both make use of the relative motion of target and radar to achieve 
high resolution in the cross-range direction.  

SAR radars achieve high resolution in the cross-range dimension by taking advantage of the motion 
of the vehicle carrying the radar to synthesize the effect of a large antenna aperture [2,7,8]. These 
sensors are usually used for imaging the Earth’s surface to provide maps for military or civilian 
reconnaissance, measurements of sea state, geological and mineral explorations and other sensing 
applications. SAR requires coherence between signals and the means necessary for the storing and 
subsequent processing of the received echoes. ISAR imagery is based on the same principle as SAR 
imagery, but in contrast it is the target rotational motion which will generate the necessary information 
for obtaining the image while the radar remains stable [8,9].  
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2.1. Inverse Synthetic Aperture Radar  

High resolution radar imagery obtained by ISAR radars can be 1-dimensional or 2-dimensional. On 
the one hand, 1D images present the scatterers of a target projected on the dimension of the radar line 
of sight (LOS) that is in slant-range, or the scatterers of a target projected on the cross-range 
dimension. 1D images projected on slant-range are called high resolution range profiles (HRRP) while 
those projected on the cross-range dimension are called cross-range profiles [7,9]. 

Usually the stop & go assumption is held, which means that the target is assumed stationary during 
the transmission and the reception of a pulse. Sometimes however, this statement cannot be assumed 
valid because the pulse repletion time is too long or because the target moves very fast. In such cases 
an autofocusing technique is also needed to form HRRP [10,11]. The cross-range profiles are obtained 
by exploiting the target motion with respect to the radar and by using the aspect angle changes to 
synthesize the aperture. Obviously an auto-focusing step is needed first. This paper works with range 
profiles (HRRP) instead of cross-range profiles and the stop & go approximation is assumed to be 
valid so no autofocusing technique is needed to obtain HRRP. 

HRRP represent the energy reflected by every scatterer in a moving target as a function of distance. 
Each profile is comprised of range bins that can contain energy from different scattering centers. 
Figure 3 depicts how high resolution range profiles present the energy reflected by the scatterers of a 
target in the dimension of the radar line of sight. Signal processing needed to obtain the HRRPs  
of a target is not very complex; however, they are very sensitive to the target viewing angle (aspect  
angle) due to occlusion of scatterers or other unwanted effects such as speckle or rotational range  
migration (RRM) [4]. 

Figure 3. High resolution range profile. 

 
The resolution of a range profile is dependent on the bandwidth of the emitted signal; the shorter the 

emitted pulse, the wider the bandwidth and the finer the resolution [2,7]. Unfortunately, there are 
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limitations in the reduction of the width of the emitted pulse since it is limited by the energy the radar 
is capable of transmitting. Most radars are not able to transmit the power needed to achieve high 
resolution with a pulse waveform. Nevertheless, the pulse compression [8] technique allows radars to 
obtain high resolution using long pulse widths. This technique consists of modulating the frequency of 
the emitted waveform along the total pulse width. The receiver is in charge of the quadrature 
demodulation of the received signal using a matched filter to maximize the Signal-to-Noise  
Ratio (SNR). Typical waveforms used in pulse compression techniques are chirp [12] and  
stepped-frequency [13]. Radars using pulse compression technique sense the total radar returns in the  
frequency domain; hence, HRRPs are obtained by applying an inverse Fourier transform to the radar  
complex returns [9]. 

On the other hand, 2D images, named ISAR images, represent the geometry of a target in both 
slant- and cross-range. ISAR images contain information of consecutive HRRPs with small angular 
variation; these images display the distribution of scattering centers within a target in the perpendicular 
direction of the target’s rotation plane [14]. Figure 4 depicts the fact that ISAR images present the 
scattering centers of a target in two dimensions. The aircraft displayed in this figure correspond to  
a Fokker-100.  

Figure 4. Scattering centers in an ISAR image. 

 

Signal processing needed to achieve ISAR images is complex and implies higher computational 
burden than that needed for the generation of HRRPs. There are several methods used in literature to 
form ISAR images including back-projection methods [15] or range-instantaneous Doppler algorithms 
(RID), such as Radon-Wigner transform (RWT) method [16], joint time-frequency analysis 
method [17], reassigned smoothed pseudo Wigner-Ville distribution [18], fractional Fourier 
Transform [19], etc. The algorithm used in this paper for the creation of ISAR images is called range-
Doppler algorithm (RDA) [7,9]. This technique is the most common since it is the simplest one. It 
mainly consists in the application of a double Fourier transformation; first, an inverse Fourier 
transform is applied to the quadrature demodulated data (I/Q samples) in order to obtain a matrix filled 
with high resolution range profiles and second, a Fourier transform is applied to every range bin of 
these profiles in order to acquire information of the scatterers in the cross-range dimension. The basic 
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approach of this algorithm is depicted in Figure 5 where A denotes the profiles matrix and AT is  
its transpose.  

Figure 5. RDA Algorithm. 

 

Target motion with respect to the radar makes it possible to achieve ISAR images; nevertheless, not 
every movement is desired and this may cause blurring in the obtained images. In order to avoid this 
defocusing, motion compensation techniques must be applied [9,20].  

Generally speaking, target motion can be decomposed into translational and rotational [14,21,22]. 
In order to get focused images both the translational and rotational motion must be compensated. 
Translational motion causes consecutive HRRPs to be misaligned, so in order to compensate it an 
alignment of profiles must be completed, this procedure is also called range bin alignment. In addition 
to profile alignment, a phase adjustment procedure must be applied in order to refer every 
measurement to the same origin [9]. In the past decades, translational motion compensation has been 
of great interest and now it has become a well-established technology. Range bin alignment methods 
are rather standard, including centroid tracking [23,24], envelope correlation [14], contrast/entropy 
based methods [25], prominent point processing or dominant scatterer algorithm [26], etc.  

On the other hand, rotational motion causes motion through resolution cells (MTRC) [27] which 
produces the scatterers to move from bin to bin in slant- or cross-range. However, it can be ignored 
provided that the target is small or the required resolution is coarse [22]. 

Many algorithms have been proposed in the literature for motion compensation in ISAR imaging. 
What is presented here is the computational complexity analysis of a combination of translational 
motion compensation methods (envelope correlation and dominant scatterer algorithm) in order to get 
a focused ISAR image. The driving idea is to achieve an affordable processing chain, in terms  
of computational burden which is the mandatory requirement for a future possible implementation in  
real time. 

3. ISAR Generation and Target Recognition System 

The complete system under study is implemented in Matlab® (R2008a) and consists, firstly, of the 
generation of an ISAR image from a dataset of flying aircrafts. To that end, motion compensation of 
high resolution range profiles must be implemented. Secondly, after an ISAR image is obtained, the 
comparison with a database of ISAR images is carried out with the final purpose of aircraft 
recognition. This database is populated with ISAR images generated synthetically with 
electromagnetic software. Figure 6 depicts the flowchart of this procedure.  
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Figure 6. System identification flowchart. 

 

3.1. Data Set 

The use of actual data in the generation of ISAR images is of great importance since it is possible to 
obtain realistic images that could not be obtained by any other means. However, it must be noted that 
actual data is not usually accessible and not easy to measure since the use of high level technology 
resources is required.  

The North Atlantic Treaty Organization (NATO) performs different activities under its Research 
and Technology Organization (RTO). Data used in this work comes from the ORFEO civilian airliner 
measurement campaign, held in 1995 and obtained with the FELSTAR radar. FELSTAR is a  
stepped-frequency S-band radar owned by TNO-FEL and located in The Hague, The Netherlands [28]. 
This measurement campaign was carried out as part of the RTO-SET-040 Task Group activity and up 
to 17 different civilian aircrafts were measured as targets of opportunity. By using actual data from the 
ORFEO campaign and applying the RDA algorithm explained in previous sections, ISAR images of 
different civilian aircrafts are obtained.  

3.2. ISAR Image Formation 
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This section describes the algorithm used for the generation of an ISAR image from actual data 
using Matlab®; this procedure is based on the flowchart in Figure 7. As mentioned above, for the 
generation of a focused ISAR image, in addition to the implementation of RDA the implementation of 
a motion compensation method is also necessary. 

Figure 7. ISAR image formation flowchart. 

 

In order to acquire a more focused image a Hamming window [4,29] is first applied to the samples 
since it reduces sidelobes in 43 dB. In case a Hamming window was not employed, with the inverse 
Fourier transform needed to obtain the profiles, a rectangular window would be automatically applied 
which has high sidelobes that can produce the occlusion of scattering centers [30]. 

The next step after windowing and application of inverse Fourier transformations (using the IFFT 
algorithm) is the translational motion compensation of the obtained HRRPs. To align the profiles an 
algorithm based on the envelope correlation method [14,31] is applied first. In the case covered in this 
article, a reference profile is first established defined as a sum of six aligned profiles after applying 
correlation between them. The remaining profiles will then be aligned by correlating them to the 
reference one. Note that the reference profile must be updated after a new profile is aligned by 
including the new one to the reference profile and discarding the oldest one. After pre-alignment using 
envelope correlation (coarse alignment), a fine alignment is applied. This fine-alignment comprises 
three steps: first, a prominent scatterer must be selected; second, profiles are re-aligned by tracking the 
prominent scatterer along the profiles matrix; to do so, profiles maxima are found within a small band 
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from the prominent scatterer and, when necessary, profiles are realigned. Finally, phase adjustment is 
carried out by using the dominant scatterer algorithm (DSA) [26,32] where the phase of the dominant 
scatterer previously selected is subtracted from the phase of the rest of the profiles already aligned. 
Figure 8 shows the whole translational motion compensation process; Figure 8(a) presents the initial 
10 HRRPs of a measured Boeing-767, and as can be seen, these profiles are completely misaligned. By 
employing envelope correlation profiles are pre-aligned as shown in Figure 8(b). Lastly, after phase 
adjustment profiles are finally aligned as in Figure 8(c). 

Figure 8. Profile alignment process; (a) initially misaligned HRRP; (b) pre-aligned HRRP; 
(c) aligned HRRP after translational motion compensation.  

 
(a) (b) (c) 

Figure 9(a) shows the initially misaligned profiles as in Figure 8(a), but in a 2D plot. This figure 
presents the whole set of profiles of a measured Boeing-767 in the ORFEO campaign. Figure 9(b) 
shows the resulting aligned profiles as in Figure 8(c) in 2D. With this last figure it is easy to observe 
the evolution from a misaligned set of HRRPs to an aligned set. 

Regarding rotational motion compensation [9,33], it has already been noted that it would only be 
necessary when the resolution needed is very fine or target rotation is very high. Neither case is present 
in this study; hence, this step is omitted.  

Finally, application of Fourier Transformation (using the FFT algorithm) to the range bins of the 
aligned profiles is applied and an ISAR image is obtained. Examples of different ISAR images 
obtained by means of the procedure described in this section are displayed in Figure 10. As expected, 
ISARs obtained are not of great quality if compared to a video or an IR sensor image although they 
have enough quality to discern the existence of an aircraft with certain geometry and dimensions.  

As observed in Figure 10, a blurred band exists approximately in the middle of every image. This 
blurring is due to the fact that these images were produced using actual data and some noise and clutter 
could not have been completely removed. This will probably affect in the identification stage, resulting 
in a degradation of the final result. 
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Figure 9. Profile alignment process—2D; (a) initially misaligned HRRP; (b) aligned 
HRRP after translational motion compensation. 

 
 (a)                 (b) 

Figure 10. ISAR images obtained from the ORFEO measurement campaign; (a) ISAR 
image of a Boeing 767; (b) ISAR image of a Fokker 100; (c) ISAR image of a Boeing 747. 

 
(a) 

 
(b) 

 
(c) 
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3.3. ISAR Image Comparison (Target Recognition) 

Target recognition is accomplished by applying a template-matching technique where targets are 
recognized based on the template that best matches the reconstructed ISAR images. The recognition is 
carried out by comparing ISAR images obtained from actual data to a database populated with 
synthetic ISAR images, that is to say images obtained with electromagnetic software. FASCRO is the 
tool employed in this paper in order to generate the synthetic images that will populate the database. 
The software is based on the work by [34,35]. Its operation lies in a combination of two high 
frequency techniques, physical optics (PO) and physical theory of diffraction (PTD) applied to targets 
modelled as non-uniform rotational B-splines surfaces (NURBS) [36,37]. Figure 11 displays some of 
the synthetic images that populate the database.  

Figure 11. Examples of ISAR images populating the synthetic database; (a) Synthetic 
ISAR image of a Boeing 767; (b) Synthetic ISAR image of a Fokker 100; (c) Synthetic 
ISAR image of a Boeing 747. 

 
(a) 

 
(b) 

 
(c) 

As can be easily noticed, synthetic ISAR images are in many ways different from those obtained 
from actual data; the images obtained synthetically are much clearer; this is due to the fact that 
electromagnetic software runs an ideal scheme, without considering any noise or clutter. Synthetic 
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ISAR images do not suffer from measurement noise, and also application of translational motion 
compensation to HRRPs is not needed for their generation. Moreover, all the aircrafts are considered 
PEC (perfect electric conductors) in the simulations and also CAD models are approximations of 
aircraft geometry. Thus, electromagnetic software cannot simulate all the effects present in a real 
environment. Additionally, for the construction of a good database of synthetic aircrafts the image 
projection plane (IPP) must be taken into account since the target reflectivity is strongly dependent on 
the aircraft aspect angle and can affect the recognition process. Moreover, the estimation of the angular 
velocity of target rotation should be carried out since cross-range scaling of the ISAR image depends 
on it. In [38,39] an attempt to solve the question of building a robust database can be found taking into 
account the image projection plane. In [40] an iterative method to estimate the angular parameters of 
non-cooperative targets using the estimates of the range and radial velocity of two prominent 
scatterers as inputs is addressed. 

 In the study presented here the flight plans of the different aircrafts are known and the database has 
been built according to them. This implies that the image projection plane and the angular velocity of 
the targets in the database used in this paper for recognition are the same as the ISAR images 
generated from actual data; this means that their estimation is not necessary. However, in a real 
application of non-cooperative target recognition flight plans are unknown and the aspect angle of the 
aircrafts as well as their angular velocity should be estimated. Consequently, the database should be 
populated with ISAR images of aircrafts in different aspect angles and trajectories and the ISAR 
images of the targets should only be compared to those with the same resolution and image projection 
plane in order to reduce computational burden. The proposed template-matching technique to compare 
ISAR images is the normalized cross-correlation between them [41–43] although there is no generally 
accepted way of performing this task. Normalized cross correlation (NCC) is one of the most robust 
measures for determining similarity between points in two or more images providing an accurate 
result. However, this method can be computationally intense, especially for large images [44]. 
Equation (1) presents the formula of the NCC: 

 (1) 

where A and B are images of size N × N and M × M respectively, and  and denote their mean 
value. In the present case, both images have the same size. Table 1 summarizes some of the results 
obtained using normalized cross-correlation for target identification. 

Table 1.Target identification results 

 Synt.-B747 Synt.-Fokker 100 Synt.-B767 
B-767 from actual data 0.1927 0.2473 0.3129 

Results of the identification method show low correlation between images, even though the highest 
value is obtained for the aircraft to be recognized. The reason why these results are obtained lies in the 
fact that synthetic images are much clearer than those obtained from actual data. To improve these 
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correlation results further image processing should be applied to either image set. Note that this 
additional image processing does not have to do with RDA or motion compensation but with 
noise/clutter rejection techniques; however, that is not the purpose of the present work but the study  
of the computational cost of the generation of ISAR images from actual data and the comparison with  
a database. 

4. Computational Burden Results 

One of the requirements in an automatic target recognition method is to obtain a result in real time. 
Real time can be considered as the time needed to process a result sufficiently rapid in order for the 
radar operator to be able to make decisions. For this purpose high performance devices are usually 
needed to achieve these time requirements.  

Prior to the selection of a device to implement a system it is of high interest to study the 
computational burden by means of analyzing the order of magnitude of the calculations. Matlab® 
Profiler [45] is an excellent tool for a preliminary study on computational cost, it was first developed 
to provide information for the debugging and optimization of code but it also provides information 
about execution time of functions, the number of times a function is called, computing time in CPU 
and even the memory consumed by each function. Consequently, a study of computational burden of 
both the generation and the comparison process is carried out using Matlab® Profiler (R2008a) in order 
to identify critical computational points.  

In the next subsection the computational complexity of ISAR image formation is studied, 
establishing for each stage in which the process can be decomposed into the number of  
operations needed. Finally, computational complexity of ISAR image comparison for target 
recognition is revised. 

4.1. ISAR Generation Process Computational Cost 

ISAR generation process, as noted in previous sections, is comprised of the subsequent stages: 

 HRRP Generation 
 Motion Compensation 
 ISAR Formation 

Each stage comprises operations dependent on the number of high resolution range profiles (N) and 
the number of different frequencies in a burst of the transmitted stepped-frequency signal (M). 
According to the results given by Matlab® Profiler, Table 2 and Figure 12 show the operations needed 
and the percentage of time spent in each stage of the process. The operations grouped under “Others”  
in Figure 12 are those needed to plot images, load/save data or display Matlab® Profiler main  
window. The ISAR image generation process was run in an Intel Xeon @ 2.66GHz and 3.50 GB RAM  
PC and the average total time spent for the generation of an image of size 361 × 324 pixels  
(N = 361 profiles × M = 324 frequencies in a burst) was approximately 40 seconds. 
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Table 2. Operations needed to obtain an ISAR image. 

Stage Substage Number of Operations % Time 

HRRP Generation 
Windowing N products of M complex samples 3.24% 
HRRP Formation N IFFTs of M complex samples 0.05% 

Motion Compensation 
Range Bin Alignment (N-1) circular correlation of M real samples 86.81% 
Scatterer Selection N circular shifts 0.39% 
Phase Adjustment N products of M complex samples 0.10% 

ISAR Formation  M FFTs of N complex samples 2.48% 

According to Table 2 and Figure 12 the most expensive (computationally speaking) stage is the 
motion compensation, and more specifically the process of the range bin alignment which involves the 
realization of (N − 1) circular correlation of M real samples and needs an 86.81% of the total time. 

Figure 12. Time spent in the generation of an ISAR image.  

 

Being x[m] and y[m] two profiles of M samples, circular cross correlation is accomplished by 
applying Equation (2), where the term x[m+k]M denotes x[(m+k) mod M], that is to say, the circular 
shift of x[m]: 

 (2) 

Analysis of Equation (2) reveals that for every circular correlation of M samples a total of M2 
products, M·(M − 1) sums and M circular shifts are employed. These operations will be complex or 
real depending on the nature of data. In this particular case, operations needed for circular correlations 
in the range bin alignment stage are real. Moreover, the normalization of the correlation is not needed 
since all profiles will be scaled by the same factor and it will not have effect in the alignment. It should 
be noticed that another technique to perform correlation between signals is through the use of FFT, 
which converts correlations into a product of transforms. 
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The method revised here for range bin alignment, based on the envelope correlation, requires the 
creation of an initial reference profile made up of the first six aligned HRRPs. The alignment and 
creation of this reference profile implies the execution of five correlations out of the (N − 1) needed to 
accomplish the whole alignment process. Next step is the correlation with the following profile, the 
alignment with it and the update of the reference profile. This process will be repeated until all profiles 
are aligned, therefore, it will be repeated (N − 6) times. The update of the reference profile implies 5M 
sums. The total number of operations needed for range bin alignment of a total number of N profiles 
made up of M samples is summarized in Table 3. 

Table 3. Operations needed for range bin alignment. 

Real Products (N − 1)·M2

Real Sums (N − 1)·M·(M − 1) + 5M·(N − 6)
Shifts M·(N − 1) + 2(N − 1)

From Table 3 it can be deduced that this operation has an order of magnitude of O(N·M2). That 
means, for an image of size 361 × 324 pixels, 37,791,360 real products, 38,249,820 real sums and 
117,360 circular shifts. With the implementation of the range bin alignment process in a parallel 
device, the computational burden could be reduced to a magnitude of order O(N·M), or even further to 
a magnitude of O(N) in cases where the implementation device has enough resources.  

This order of magnitude could not be further reduced, at least initially, since parallelization of more 
operations could not be applied due to the dependence of correlations. This means that only one 
correlation is done at a time because the reference profile must be computed before the next correlation 
can be executed. 

Although FFTs/IFFTs have not been very time consuming operations compared to the range bin 
alignment stage, it should be noted that a high number of operations are also required. Matlab® FFT 
algorithm is based on a library called FFTW [46] which has a computational complexity of 
O(N·log2(N)), where N is the number of samples. Only if the magnitude of the range bin alignment 
was reduced to O(N), would FFT computational cost and alignment process cost be comparable.  

4.2. ISAR Image Comparison (Target Recognition) Computational Cost 

The method proposed to compare ISAR images is the normalized cross-correlation between them 
showed in Equation (1). It is worth noting that template-matching techniques like the one proposed 
here are computationally expensive since ISAR images are normally of large dimensions. To speed  
up the recognition process other approaches have been proposed in the literature based on the  
comparison between a set of features extracted from the ISAR image to be recognized and a database  
of features [38,39,47]. 

In the present case both images will be squared of the same size N × N, so by using normalized  
cross-correlation one can deduce that a computational complexity of order O(N2) is needed. 
Nevertheless, images are not centered at the same point so image matching should be additionally 
applied. This matching implies the increase of the computational complexity to an order of O(N4), 
since additional N2 comparisons are executed, one per pixel image. This high burden leads to an 
average time of 10 minutes to complete one comparison of two images of size 256 × 256 in an Intel 
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Figure 14. Computational complexity of normalized cross correlation. 

  

Another relatively efficient way of calculating the NCC is by using the FFT to compute the 
numerator of Equation (1), however, the denominator of the NCC in Equation (1) does not have a 
correspondingly efficient frequency domain expression [44,41]. In order to simplify computation of 
the denominator a sum-table of precomputed data acting as a lookup table should be used, resulting in 
a reduction of the computational complexity. Other methods to compute the NCC include the 
utilization of basis functions to approximate the image template [41].  

In the method studied in this paper, as Figure 14 shows, a great reduction in the number of 
operations executed is achieved with this approach and hence, running time has been lowered from an 
average of 10 minutes to an average of 25 seconds. However, by selecting a more suitable 
implementation platform operations could be parallelized and execution time could be further reduced.  

As already stated, in the study presented in this paper the estimation of the angular velocity of the 
targets is not done since the simulated aircrafts have the same trajectories than the actual 
measurements. However, in a real application of non cooperative target recognition angular velocity of 
targets should be estimated resulting in an increase of the computational complexity. As an example of 
how much the computational burden could be increased can be found in [40] where an iterative 
process to estimate the angular parameters of an aircraft is presented. That iterative method is of order 
O(L3) per iteration, with L belonging to the interval (50,150) and the iterations being a maximum of 
15. Hence, considering the estimation of the angular parameters is needed, an additional computational 
burden of O(L3) should be added to the order of O(C·N2) found in the realization of the image 
comparison. However, the order of magnitude in the estimation of the angular parameters is lower than 
the computational burden of the ISAR image comparison based on the NCC studied in this paper. 

5. Conclusions 

The use of radar sensors for non-cooperative target identification purposes is of great interest in 
civilian and military schemes. To this end a methodology for target recognition from ISAR images and 
the signal processing needed has been presented. It is always interesting the study of the computational 
complexity of any system with the aim of selecting the best implementation platform to achieve system 
requirements. In order to find the critical points in the target recognition system proposed in this paper, 
computational burden of ISAR image generation and comparison with a synthetic ISAR image have 
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been analyzed using Matlab® Profiler (R2008a). Results have revealed two critical points in the system 
presented here. On the one hand, in the ISAR generation process the bottleneck has been found in the 
profiles alignment. This alignment was based on the envelope correlation algorithm and had a 
computational complexity of O(N·M2), with N and M being the number of profiles and the number of 
frequencies in a stepped-frequency waveform respectively. On the other hand, in the target recognition 
process the bottleneck is found in images cross-correlation; it has been proved that by applying a 
certain shifting grid the computational complexity of the normalized cross-correlation could be 
reduced from O(N4) to O(C·N2) with the corresponding decrease in execution time. 

According to the results obtained the main bottlenecks of the whole system lie in the high amount 
of correlations needed in both the alignment and recognition procedures. These operations can be 
decomposed into sums and products that can be efficiently executed in high performance parallel 
devices due to their high speed, internal resources and parallel execution. In conclusion, tools like 
programmable logic devices (FPGAs) or GPUs could be good candidates to implement and perform 
the system presented in this paper in real time with the additional advantage of fast reconfiguration and 
low cost. 

Nonetheless, further investigation is being considered in the identification process where the 
resemblance between generated ISAR images and database images is very low resulting in poor 
reliable target recognition. In future work the target recognition process must be improved by adding a 
decision procedure based on image features which are present in both synthetic and real ISAR images. 
Additionally, computational burden of other recognition methods based on the comparison between 
image features should also be studied in order to contrast results.  
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