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Abstract: In this work, a solution for robust motion segmentation 
of mobile robots is presented. Motion segmentation is obtained 

from the images acquired by a calibrated camera which is 
located in a fixed position in the environment where the robots 
are moving, and without incorporating invasive landmarks on 

board the robots. The proposal is based on the minimization of 
an objective function that depends on three groups of variables: 
the segmentation boundaries, the 3D rigid motion parameters 

(components of linear and angular velocity) and depth (distance 
to the camera). For the objective function minimization, we use a 
greedy algorithm which, after initialization, consists of three 

iterative steps. The accuracy in the results and also the 
processing time are closely related to the initial values of the 
involved variables. GPCA technique is used for curve 

initialization, comparing the reconstruction error with a 
threshold. Two approaches (fixed and adaptive) are proposed to 
set that threshold. The experimental tests carried out have 

proved that the proposed adaptive threshold increases, notably, 
the robustness of the system against lighting changes. 

 
I. INTRODUCTION 

 
Motion segmentation is a basic task for the analysis of 

image sequences. It can be defined as the task of partitioning 
an image sequence into regions where the movement in the 
image plane is coherent along the sequence, without having 
prior knowledge about which pixels of the image move 
according to a specific motion model. Visual motion analysis 
in image sequences has a wide range of applications in 
computer vision, such as visual surveillance, mobile robotics, 
traffic monitoring, etc.  

There are several methods for motion segmentation in an 
image sequence. Classical approaches to 2D motion 
segmentation are based on separating the image flow in 
different regions by looking for flow discontinuities [1][2] but 
as well as the aperture problem, these techniques have trouble 
dealing with noisy flow estimations. Traditionally, motion 
segmentation has been connected with motion detection, 
where each region corresponds to a particular motion model 

that explains temporal changes in that region [3][4]. 
Alternative approaches for motion segmentation are based on 
clustering [5][6].  

Finally, the works [7] and [8] propose to obtain 3D rigid 
motion segmentation through the minimization of an 
objective function. This objective function depends on three 
groups of variables which are related with motion parameters. 
Minimization is carried out using a greedy algorithm which 
consists of three iterative steps. After initialization, these 
steps are repeated until convergence. As shown in [7] and [8], 
this method allows to obtain 3D motion segmentation. 
However, this algorithm presents several limitations. The 
accuracy of the results and also the number of iterations until 
convergence are closely related to the initialization, and the 
constants that weight the contribution of each term to the 
objective function. Moreover, the proposal in [8] is a slow 
algorithm. The number of iterations until convergence is 
between 700 and 10.000.  

This work has been structured as follows: section II 
presents the proposed system for 3D motion segmentation and 
3D localization of mobile robots. In this section we explain 
the need to initialize the involved variables (segmentation 
contours and depth). Curve initialization process is described 
in section III. In section IV, the proposed adaptive threshold 
is presented. Section V shows several experimental results 
and, finally, section VI presents the main conclusions.    

 
II. PROPOSED SYSTEM 

 
This paper proposes a robust system that allows the motion 

segmentation and 3D localization of mobile robots. Motion 
segmentation is obtained from the images acquired by a 
calibrated camera which is located in a fixed position in the 
environment. Fig. 1 shows a general block diagram of the 
proposed system.  

Using the work in [7] as a starting point, the motion 
segmentation and 3D localization are obtained through the 
minimization of an objective function. This objective function 
(which is shown in equation (1)) is obtained from the 3D 
brightness constraint for rigid objects defined in the work of 
Sekkati and Mitiche [7]. 
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In equation (1) kψ  is the 3D brightness constraint for the 
pixels inside the curve k ( kγ ); λ and µ are positive, real 
constants to weigh the contribution of the terms in equation 
(1) and ),( yx ∂∂=∇  is the spatial gradient operator. This 
objective function depends on three groups of variables: 

1. A set of N-1 curves which defines the N-1 mobile robot 
segmentation boundaries { } 1

1

−
=

n

kkγ . These curves divide 
the image in N regions { } 1

1

−
=Ω N

kk  (where Ωk represents 
the set of points of the image inside the curve k γk).  

2. The components of linear and angular velocity of (N-1) 
mobile robots and background { }n

kkk 1, =ωv . 
3. The depth (distance from each 3D point (P) to the 

camera) which is the Zc coordinate of point P. 
 

 
Fig. 1. Block diagram of the proposed system for motion segmentation of 

mobile robots. 
 
The objective function minimization is carried out using a 

greedy algorithm which consists of three iterative steps. After 
curve and depth initialization, the three steps are repeated 
until algorithm convergence. The accuracy of the results and 
also the processing time are closely related to initial curves 
and depth.  

In this work, depth (Zc) is initialized using the 
measurements given by the odometric sensors on board the 
robots, if available. Otherwise, depth is initialized to a 
constant over the image domain.  

Regarding the curves, there are several alternatives for 
curve initialization. In [7], circumferences are used for curve 
initialization. But this approach requires a high number of 
iterations until convergence. In order to reduce the number of 
iterations (and, therefore, the processing time) of the 
segmentation algorithm in this work, GPCA (Generalized 
Principal Components Analysis) technique is used [9][10] to 
obtain the initial set of N-1 curves which define the 
segmentation boundaries. Curve initialization algorithm is 
described in section III.  

After motion segmentation, robot identification is carried 
out by comparing the estimated linear and angular velocities 
in each region to the velocities measured by the odometric 
sensors on board the robot. Then, 3D position is obtained by 

projecting the points inside the robot from the image plane to 
the 3D space using the estimated depth (Zc) 

 
III. CURVE INITIALIZATION 

 
Curve initialization using GPCA [9] consists of two 

different stages. In the first stage, GPCA is used to obtain the 
background model from Ni images iN

jj 1}{ =I  without any 
mobile robot. Background model is represented using two 
GPCA transformation matrices (L and R). This stage is 
carried out only once (because the camera is located in a fixed 
position) and can be executed off-line. 

In the second stage, each image is compared to the 
background model (that has been obtained previously in the 
off-line stage). It allows to detect which pixels in the image 
belong to mobile robots (or other objects) that have appear in 
the scene after obtaining the background model. In this stage, 
each image is projected to the GPCA space using the matrices 
L and R which have been obtained previously in the off-line 
stage. The transformation equation is shown in (2). Then, the 
original image is reconstructed using equation (3). In the two 
equations, M is the mean of the Ni images used to obtain the 
background model.  

RMILI )( −= T
T  (2) 

MRLII += T
TR  (3) 

The reconstruction error is defined as the difference 
between the reconstructed image (IR) and the original image 
(I). Even though this error can be calculated subtracting the 
images pixel-to-pixel, this approach is not robust against 
noise. Therefore, we use a set of pixels (windows) around 
each pixel in the image and we obtain the reconstruction error 
for these windows. In this case, square windows with 
dimensions qxq pixels have been defined. These windows are 
called Фwi in the original image an wiΦ̂  in the reconstructed 
image. The reconstruction error associated to the central pixel 
in the window (whose coordinates are (w, i)) is calculated 
using equation (4).  

wiwiwi ΦΦ ˆ−=ε  (4) 

Pixels whose reconstruction error (calculated using 
equation (4)) is higher than a threshold are candidate to 
belong to a mobile robot, because in those pixels there is an 
important difference between the actual image and the 
background model. A block diagram that includes the 
different stages involved in curve initialization using GPCA is 
shown in Fig. 2.  

 
Fig. 2. Block diagram of the proposed method for curve initialization using 

GPCA 
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In order to decide which pixels belong to mobile robots, it 
is necessary to set correctly the threshold, because it 
determinates the quality of initial curves. If the threshold is 
too high, some pixels on the robot can be considered as 
background pixels, as is shown in Fig. 3.a. On the contrary, if 
the threshold is too low, background pixels can be included as 
pixels of the mobile robot (this situation is shown in Fig. 3.b). 
Finally, Fig. 3.c depicts the initial curve obtained using the 
right threshold.  

   
(a) (b) (c) 

Fig. 3. Initial curves obtained for different reconstruction error thresholds (a) 
Threshold too high. (b) Threshold too low. (c) Right threshold.  

 
Robot shadow is removed in a subsequent stage after 

projecting the image to a lighting invariant space which is 
described by Finlayson et al in [11].  

 
IV. THRESHOLD OF THE RECONSTRUCTION ERROR 

 
Since the importance of using a correct threshold has been 

proved, in this work two approaches to set the threshold are 
proposed. In both proposals, the threshold is obtained as a 
function of the current image and Ni background image 
features.  

In order to set the threshold, two different image sequences 
containing a mobile robot have been used. This image 
sequences have been acquired using a calibrated camera, 
located in a fixed position. Fig. 4 shows one image belonging 
to each sequence.  

  
(a) (b) 

Fig. 4. Images belonging to the sequences used in the experimental tests.   
(a) Sequence 1. (b) Sequence 2 

 
A. Fixed threshold 

The value of the fixed threshold depends on the value of 
the reconstruction error (4) calculated over the background 
pixels. It is realistic to assume that this reconstruction error 
has similar values in background images and in images that 
contain mobile robots. Under this assumption, threshold is set 
up as a function of the reconstruction error calculated for the 
Ni background images. These background images are the ones 
that have been used to obtain the background model using 
GPCA. For that purpose, after obtaining the GPCA 
transformation matrices (L and R) that define the background 
model, each of the Ni background images is projected (using 
equation (2)) and reconstructed (using equation (3)). Then, 

the reconstruction error is calculated using equation (4). The 
maximum recovery error (for the Ni background images) is 
obtained for each pixel with coordinates (i, j). This maximum 
error for each image pixel is defined in equation (5) for an 
image with dimensions mxn. Finally, the maximum 
reconstruction error (2

, fondorΕ ) is obtained using equation (6). 
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In a first approximation, the threshold is related to the 
maximum reconstruction error, obtained from the Ni 
background images, through a constant K. It means that the 
fixed threshold is proportional to the maximum reconstruction 
error as shown in equation (7).  

1,2
,1 ≥ℜ∈Ε⋅= KKKU backgroundr  (7) 

Several experiments have been carried out to set the 
optimum value of K for any sequence (which belong the 
images shown in Fig. 6.a and b). In these experimental tests, 
25 images of each sequence have been chosen. Then, for each 
image, the optimum value of K has been obtained manually. 
We have considered a value of K optimum when, using the 
threshold defined in equation (7) all the pixels on the mobile 
robot are inside the obtained initial curves, but background 
pixels are not included in them. Table I shows the optimum 
values of K, and also the obtained threshold (using equation 
(7)) for 5 images which belong to sequences 1 and 2.  

 
TABLE I 

OPTIMUM VALUE OF CONSTANT K AND FIXED THRESHOLD OBTAINED FOR 5 

IMAGES OF THE SEQUENCES 1 AND 2.  
Sequence 1 (Fig. 6Fig. 4.a) Sequence 2 (Fig. 4.b) 

Image 
K Threshold K Threshold 

100 6.15 598.95 5.1 437.84 

200 5.05 491.82 1.75 150.24 

300 1.95 189.91 9.05 776.94 

400 2.60 253.19 9.7 832.75 

500 4.75 462.56 4.35 373.45 

 
The curves which have been obtained manually are 

compared with the curves obtained for different values of K. 
To compare the curves, the percentage of pixels correctly 
initialized has been measured. In the experimental tests, we 
have proved that a value of K=10 is suitable for both 
sequences. Table II shows the percentage of pixels that have 
been correctly initialized for 3 images belonging to each 
sequence. It can be seen that the percentage is higher than 
99% for all the test images.  

It is worth highlighting that, if lighting is controlled, the 
value of K is not critical, because the reconstruction error in 
pixels that belong to the mobile robot is much higher than in 
background pixels. However, the fixed threshold (defined in 
equation (7)) is not robust against lighting changes. This is 
because, as lighting conditions change, the intensity of the 
image pixels also changes. For that reason, the reconstruction 



 

 

error in the background pixels increases, and the difference 
between the reconstruction error of the pixels on the robot and 
of background pixels decreases.  

 
TABLE II 

PERCENTAGE OF PIXELS THAT HAS BEEN CORRECTLY INITIALIZED USING THE 

THRESHOLD DEFINED IN EQUATION (7) WITH K=10. 

% de pixels correctly initialized 
Image 

Sequence 1 (Fig. 4.a) Sequence 2 (Fig. 4.b) 

120 99.4486 % 99.9808 % 

250 98.5384 % 99.9414 % 

400 99.4264 % 99.8675 % 

Fig. 5 shows three images with different lighting 
conditions. It can be seen that, if lighting decreases (Fig. 5.b) 
or increases (Fig. 5.c) the initial curves calculated with a fixed 
threshold are notably deteriorated.  

 
(a) 

   
(b) (c) 

Fig. 5. Initial curves obtained for an image that belongs to sequence 1. (a) 
Original image. (b) Original image after subtracting a value of 50 to each 

pixel in the original image. (c) Original image after adding a value of 50 to 
each pixel in the original image. 

 
B. Adaptive threshold 

In order to improve the system robustness against lighting 
changes we propose to adjust the threshold if there are 
important changes in the intensity of the images.  

As the fixed threshold, the proposed adaptive threshold is 
proportional to the maximum reconstruction error of the 
background images (equation (5)). However, to obtain the 
adaptive threshold, this maximum error is multiplied by a 
function that depends on the absolute value of the difference 
between the mean intensity of the actual image and the mean 
intensity of the Ni background images. The adaptive threshold 
is defined in equation (8).  

( )
0,,,

2
,2

≥ℜ∈

Ε⋅−+=

βαβα

βα backgroundr
background
meanIIU

 (8) 

In equation (8), α and β are real positive constants. The 
optimum values of these constants have been obtained 
experimentally. The initial curves have been obtained 
manually and are compared to the curves obtained with 
different values of α and β for images with lighting changes 
in order to set the best values for α and β. We evaluate the 

percentage of pixels correctly initialized, and also the range of 
intensity values for which the initialized curves are right. We 
consider that a curve is right if the percentage of pixels 
correctly initialized is greater than 98%. The results obtained 
for some values of α and β are shown in Table III. All the 
results shown in this table have been obtained using the 
images of the sequence 2 (Fig. 4.b).  

 
TABLE III 

POSSIBLE VARIATIONS IN THE INTENSITY OF THE ORIGINAL IMAGE WITHOUT 

DETERIORATING THE INITIAL CURVES FOR DIFFERENT VALUES OF α AND β. 
 β = 1.0 β = 1.2 β = 1.4 β = 1.6 β = 1.8 

α=0.6 70.6 72.4 75.2 72.8 81.8 

α=0.8 66.6 72.0 69.4 72.8 81.2 

α = 1 70.6 85.0 53.8 43.2 38.4 

α = 3 59.4 55.0 42.4 41.8 36.2 

α = 5 52.0 45.2 43.0 35.4 35.2 

α = 7 39.4 36.0 41.2 33.8 29.0 

α = 9 32.4 35.2 40.2 33.4 28.6 

α = 11 32.2 35.6 39.6 32.6 27.8 
 

As it was previously mentioned, shadows inside the initial 
curves are removed in a subsequent stage. For this purpose, 
the method proposed in [11] is used.  

 
V. EXPERIMENTAL RESULTS 

 
In order to validate the proposal in this work, several 

experimental tests have been carried out. In these experiments 
four different image sequences have been used. All these 
image sequences have been acquired by a calibrated camera 
located in a fixed position. Image sequences 1 and 2 have 
been previously shown in Fig. 4. Fig. 6 shows one image 
belonging to sequences 3 and 4. It is worth pointing out that 
image sequences 3 and 4 have been acquired by the same 
camera than image 2, but under different lighting conditions.  

  
(a) (b) 

Fig. 6. Images belonging to the sequences used in the experimental tests.   
(a) Sequence 3. (b) Sequence 4. 

 
Fig. 7 shows the initial curves obtained by applying the 

fixed threshold defined in equation (7) to the reconstruction 
error to two images belonging to sequences 1 and 2 (Fig. 6.a y 
b). 

  
(a) Image 120 of the sequence 1 (b) Image 120 of the sequence 2 



 

 

  
(c) Image 250 of the sequence 1 (d) Image 250 of the sequence 2 

Fig. 7. Initial curves obtained using the proposed, fixed threshold defined in 
equation (7) to the reconstruction error. 

 
Fig. 7 shows that the initial curves obtained using the fixed 

threshold are close to the real contours of the mobile robots. 
As it was previously mentioned, shadows inside the initial 
curves are removed in a subsequent stage using the method 
proposed in [11]. Fig. 8 shows the initial curves obtained after 
removing the shadows. It is worth highlighting that, even 
including the shadows, the initial curves obtained using 
GPCA are closer to the real contours than the circumferences 
proposed in [7]. It allows to carry out the motion 
segmentation with a lower number of iterations [10].  

 

  
(a) (b) 

Fig. 8. Initial curves obtained after removing the shadows (a) Image 120 of 
the sequence 1 (Fig. 6.a) (b) Image 250 of the sequence 2 (Fig. 6.b)  

 
Fig. 9 shows the initial curves obtained for the image 120 

of the sequence 2 (Fig. 6.b). Lighting changes have been 
simulated by adding (Fig. 9.b) or subtracting (Fig. 9.c) a value 
of 30 to each pixel of the original image (Fig. 9.a). 

 
(a) Original Image 

  
(b) Original Image -30 (c) Original Image +30 

Fig. 9. Initial curves obtained for the image 120 of the sequence 2 (Fig. 6.b). 
Obtained using the fixed threshold (7) (indicated in red color), and obtained 

using the adaptive threshold (8) (indicated in blue color).  
 

In Fig. 9 we can observe that the proposed adaptive 
threshold (equation (8)) has a better behavior against lighting 
changes than the fixed threshold (equation (7)).  

The initial curves obtained using the fixed threshold 
(equation (7)), and using the adaptive threshold (equation (8)) 
have been compared with the curves obtained manually. For 
these experiments we have used 25 images belonging to 
sequences 1 and 2. Lighting changes have been simulated by 
adding or subtracting a constant value to all the pixels in the 
original image. Fig. 10 shows the percentage of pixels 
correctly initialized for each value added between -50 and 
+50. The results obtained using the fixed threshold are 
indicated in black color and the results obtained using the 
adaptive threshold are indicated in red.  
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Fig. 10. Percentage of pixels correctly initialized. Using the fixed threshold 

(7) (in black) and using the adaptive threshold (8) (in red). 
 
In Fig. 10, we can observe that if the value added (or 

subtracted) to the intensity of the original image is lower than 
25, both thresholds have similar results. However, if the value 
added to the intensity is higher than 25, the percentage of 
pixels correctly initialized using the fixed threshold (equation 
(7)) decreases notably, whereas the adaptive threshold allows 
to obtain the right initial curves (the percentage of pixels 
correctly initialized is greater 99%) even for a value 50 
added/subtracted to all the pixels of the original image.  

Moreover, several experimental tests have been carried out 
to determine the effect of noise in the images. In that sense, 
the original images have been modified by adding to each 
pixel a random value between 0 and 30 (Fig. 11.a) or 0 and 50 
(Fig. 11.b). The initial curves are shown in Fig. 11. This 
figure shows that the adaptive threshold is more robust 
against the noise than the fixed one.  

  
(a) (b) 

Fig. 11. Initial curves obtained applying the fixed threshold (indicated in red) 
and the adaptive threshold (in blue) to the reconstruction error in the presence 
of noise. (a) After the addition of a random value between 0 and -30 to each 

pixel. (b) After the addition of a random value between 0 and 50 to each 
pixel. 



 

 

 
In order to evaluate the robustness of the adaptive threshold 

proposed in this work, the images belonging to the sequences 
3 and 4 (which are shown in Fig. 6.a and b) have been used. 
These image sequences have been acquired by the same 
camera than the sequence 2 (Fig. 4.b), but with different 
lighting conditions. The images of sequence 4,show a mobile 
robot and a person moving in the intelligent space. α and β 
values used for this sequences are the same values that have 
been previously set using the sequence 2. 

Fig. 12 shows the initial curves for some images belonging 
to the sequences 3 (Fig. 6.a) and 4 (Fig. 6.b).  

  
(a) Image 250 of the sequence 3 (b) Image 250 of the sequence 4 

  
(c) Image 300 of the sequence 3 (d) Image 300 of the sequence 4 

  
(e) Image 350 of the sequence 3 (f) Image 350 of the sequence 4 

Fig. 12. Initial curves obtained for different images of the sequences 3 and 4. 
These curves have been obtained using the adaptive threshold proposed in 

this work and defined in equation (8).  
 
Images in Fig. 12 show that the initial curves obtained 

using the proposed threshold are close to the real contour of 
the mobile robot in spite of the changes in the lighting 
conditions. This threshold increases the robustness of the 
motion segmentation algorithm against lighting changes.  

 
VI. CONCLUSIONS 

 
This work has presented a system for 3D motion 

segmentation, and 3D positioning of mobile robots using a 
calibrated camera that is placed in a fixed position in the 
environment.  

Motion segmentation and positioning is obtained 
minimizing an objective function. Before the minimization it 

is necessary to initialize the N-1 curves that define the 
boundaries of the segmentation and also the depth. In this 
work, initial curves are obtained using the GPCA technique.  

Two approaches have been proposed to set the threshold of 
GPCA reconstruction error in the curve initialization 
algorithm. 

Several experimental tests have been carried out. These 
experiments have proved that the fixed threshold proposed 
works correctly in controlled environments where lighting 
conditions do not change. The proposed adaptive threshold 
increases notably the system robustness against lighting 
changes with respect to the fixed threshold. It has been 
proved with four different image sequences that have been 
acquired in different lighting conditions.  
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