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Abstract: In thiswork, a solution for robust motion segmentation
of mobile robots is presented. Motion segmentation is obtained
from the images acquired by a calibrated camera which is
located in a fixed position in the environment where the robots
are moving, and without incorporating invasive landmarks on
board the robots. The proposal is based on the minimization of
an objective function that depends on three groups of variables:
the segmentation boundaries, the 3D rigid motion parameters
(components of linear and angular velocity) and depth (distance
to the camera). For the objective function minimization, we use a
greedy algorithm which, after initialization, consists of three
iterative steps. The accuracy in the results and also the
processing time are closely related to the initial values of the
involved variables. GPCA technique is used for curve
initialization, comparing the reconstruction error with a
threshold. Two approaches (fixed and adaptive) are proposed to
set that threshold. The experimental tests carried out have
proved that the proposed adaptive threshold increases, notably,
the robustness of the system against lighting changes.

|. INTRODUCTION

Motion segmentation is a basic task for the analysi
image sequences. It can be defined as the tasértfigning
an image sequence into regions where the movemetttei
image plane is coherent along the sequence, withavihg

that explains temporal changes in that region [3][4
Alternative approaches for motion segmentationbaged on
clustering [5][6].

Finally, the works [7] and [8] propose to obtain 3iDid
motion segmentation through the minimization of an
objective function. This objective function deperals three
groups of variables which are related with motiangmeters.
Minimization is carried out using a greedy algamittwhich
consists of three iterative steps. After initiatiea, these
steps are repeated until convergence. As shown] iand [8],
this method allows to obtain 3D motion segmentation
However, this algorithm presents several limitagiohe
accuracy of the results and also the number adtitars until
convergence are closely related to the initialmatiand the
constants that weight the contribution of each teonthe
objective function. Moreover, the proposal in [8]a slow
algorithm. The number of iterations until convergenis
between 700 and 10.000.

This work has been structured as follows: sectibn |
presents the proposed system for 3D motion seghmmtnd
3D localization of mobile robots. In this sectiore wxplain
the need to initialize the involved variables (segtation
contours and depth). Curve initialization processléscribed
in section lll. In section 1V, the proposed adaptihreshold
is presented. Section V shows several experimeptallts
and, finally, section VI presents the main condunsi

I1. PROPOSED SYSTEM

prior knowledge about which pixels of the image ®ov This paper proposes a robust system that allowsngt@n

according to a specific motion model. Visual motamalysis

segmentation and 3D localization of mobile robdtation

in image sequences has a wide range of applications segmentation is obtained from the images acquirgdab

computer vision, such as visual surveillance, nehibotics,
traffic monitoring, etc.

There are several methods for motion segmentatioani
image sequence. Classical

calibrated camera which is located in a fixed posiin the
environment. Fig. 1 shows a general block diagrdnthe
proposed system.

approaches to 2D motionUsing the work in [7] as a starting point, the roati

segmentation are based on separating the image iffow segmentation and 3D localization are obtained tinothe

different regions by looking for flow discontinwgs [1][2] but
as well as the aperture problem, these technigaes tnouble
dealing with noisy flow estimations. Traditionallmotion

minimization of an objective function. This objeaifunction
(which is shown in equation (1)) is obtained frohe t3D
brightness constraint for rigid objects definedhe work of

segmentation has been connected with motion detecti Sekkati and Mitiche [7].

where each region corresponds to a particular matiodel
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projecting the points inside the robot from the gmalane to
the 3D space using the estimated defth (

[11. CURVE INITIALIZATION

In equation (1)¢, is the 3D brightness constraint for the

pixels inside the curvé (Jy,); A and y are positive, real
constants to weigh the contribution of the term&guation
(1) and 0=(0,,9,) is the spatial gradient operator. Thi
objective function depends on three groups of e

1. A set ofN-1 curves which defines thé-1 mobile robot

segmentation boundarie[sy },szxlt These curves divide

the image inN regions {ka}k;l (whereQy represents
the set of points of the image inside the cltyg.
The components of linear and angular velocityNofL]
mobile robots and backgrour{dk,mk}ﬂﬂ.
The depth (distance from each 3D poiR) ¢o the
camera) which is th&; coordinate of poinP.
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Fig. 1. Block diagram of the proposed system fotiomsegmentation of
mobile robots.

The objective function minimization is carried aiging a
greedy algorithm which consists of three iterasteps. After
curve and depth initialization, the three steps rageated
until algorithm convergence. The accuracy of theults and
also the processing time are closely related thalnturves
and depth.

In this work, depth Z) is initialized using the
measurements given by the odometric sensors ord libar
robots, if available. Otherwise, depth is initializ to a
constant over the image domain.

Regarding the curves, there are several alterrmatfoe
curve initialization. In [7], circumferences areedsfor curve
initialization. But this approach requires a highmber of
iterations until convergence. In order to reduaeribmber of
iterations (and, therefore, the processing time) thé
segmentation algorithm in this work, GPCA (Geneedi
Principal Components Analysis) technique is usgfL{(9 to
obtain the initial set ofN-1 curves which define the
segmentation boundaries. Curve initialization athan is
described in section Il

After motion segmentation, robot identification darried
out by comparing the estimated linear and angudwoities
in each region to the velocities measured by thenmedric
sensors on board the robot. Then, 3D position taioéd by

Curve initialization using GPCA [9] consists of two
different stages. In the first stage, GPCA is usedbtain the
Jackground model from\; images {| j}j.“;l without any
mobile robot. Background model is represented using
GPCA transformation matriced (and R). This stage is
carried out only once (because the camera is lddate fixed

position) and can be executed off-line.

In the second stage, each image is compared to
background model (that has been obtained previduastie
off-line stage). It allows to detect which pixels the image
belong to mobile robots (or other objects) thatehappear in
the scene after obtaining the background modehimstage,
each image is projected to the GPCA space usingitidces
L andR which have been obtained previously in the off-line
stage. The transformation equation is shown inTBgn, the
original image is reconstructed using equation {8the two
equationsM is the mean of th&|; images used to obtain the
background model.

I, =L"(I-M)R (2)
l=LI,R" +M 3)

The reconstruction error is defined as the diffeeen
between the reconstructed imagg @nd the original image
(I). Even though this error can be calculated suiing the
images pixel-to-pixel, this approach is not robasfainst
noise. Therefore, we use a set of pixels (windoargund
each pixel in the image and we obtain the recoottn error
for these windows. In this case, square windowsh wit
dimensiongxqg pixels have been defined. These windows are
called®,; in the original image arP,, in the reconstructed
image. The reconstruction error associated to ¢inéral pixel
in the window (whose coordinates amg, ()) is calculated
using equation (4).

o loa)

the

(4)

Pixels whose reconstruction error (calculated using
equation (4)) is higher than a threshold are caidido
belong to a mobile robot, because in those pixedsetis an
important difference between the actual image ahd t
background model. A block diagram that includes the
different stages involved in curve initializatiosing GPCA is
shown in Fig2.
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Fig. 2. Block diagram of the proposed method fawednitialization using
GPCA



In order to decide which pixels belong to mobiléats, it
is necessary to set correctly the threshold, becaitis
determinates the quality of initial curves. If thieeshold is
too high, some pixels on the robot can be consiie®
background pixels, as is shown in Fig. 3.a. Oncthr@trary, if
the threshold is too low, background pixels carniskided as
pixels of the mobile robot (this situation is shoimrfig. 3.b).
Finally, Fig. 3.c depicts the initial curve obtaihesing the
right threshold.

(a) (b)
Fig. 3. Initial curves obtained for different restruction error thresholds (a)
Threshold too high. (b) Threshold too low. (c) Ritiireshold.

Robot shadow is removed in a subsequent stage afte

projecting the image to a lighting invariant spaekich is
described by Finlayson et al in [11].

IV. THRESHOLD OF THE RECONSTRUCTION ERROR

Since the importance of using a correct threshakl heen
proved, in this work two approaches to set thesthodl are
proposed. In both proposals, the threshold is obthias a
function of the current image and, background image
features.

In order to set the threshold, two different imagguences

containing a mobile robot have been used. This é@nag

the reconstruction error is calculated using egua(d). The
maximum recovery error (for thi; background images) is
obtained for each pixel with coordinatésj). This maximum
error for each image pixel is defined in equatiéh for an
image with dimensionsmxn. Finally, the maximum
reconstruction error’ ) is obtained using equation (6).

r, fondo

o o) 1=12..,m
grz,background (I' J) = ma){{é‘rz’k (I' J)}L\‘:l) J = 1.2, ,N (5)
Ef,background = mw{{grzybackgmund (I’ j)}u::llnr: ) (6)

In a first approximation, the threshold is related the
maximum reconstruction error, obtained from thé
background images, through a constidntit means that the
fixed threshold is proportional to the maximum nestouction
error as shown in equation (7).

U, =K [E? KOO, K =21

r,background

)

Several experiments have been carried out to set th
optimum value ofK for any sequence (which belong the
images shown in Fig. 6.a and b). In these expetiahd¢@sts,

25 images of each sequence have been chosen.foheach
image, the optimum value of K has been obtaineduain

We have considered a value Kfoptimum when, using the
threshold defined in equation (7) all the pixelstba mobile
robot are inside the obtained initial curves, batkground
pixels are not included in them. Table | shows dp&mum
values ofK, and also the obtained threshold (using equation
(7)) for 5 images which belong to sequences 1 and 2

TABLE |

sequences have been acquired using a calibrate@r&am ooy vaLUE OF CONSTANTK AND FIXED THRESHOLDOBTAINED FORS

located in a fixed position. Fig. 4 shows one imbgbnging
to each sequence.

~

(b)

@
Fig. 4. Images belonging to the sequences usdttiadperimental tests.
(a) Sequence 1. (b) Sequence 2

A. Fixed threshold

The value of the fixed threshold depends on theevalf
the reconstruction error (4) calculated over thekgeound
pixels. It is realistic to assume that this recangton error
has similar values in background images and in eénafgat
contain mobile robots. Under this assumption, tho&tis set
up as a function of the reconstruction error calad for the
N; background images. These background images amtwe
that have been used to obtain the background masiab

IMAGES OF THESEQUENCESL AND 2.

Image Sequence 1 (Fig. 6Fig. 4.8] Sequence 2 (Fig. 4.b
K Threshold K Threshold
100 6.15 598.95 51 437.84
200 5.05 491.82 1.75 150.24
300 1.95 189.91 9.05 776.94
400 2.60 253.19 9.7 832.75
500 4.75 462.56 4.35 373.45

The curves which have been obtained manually are
compared with the curves obtained for differenueal ofK.
To compare the curves, the percentage of pixelsecty
initialized has been measured. In the experimemetsts, we
have proved that a value d€=10 is suitable for both
sequences. Table Il shows the percentage of pikatshave
been correctly initialized for 3 images belongirgy @¢ach
sequence. It can be seen that the percentage hierhigan
99% for all the test images.

It is worth highlighting that, if lighting is cordglied, the
value of K is not critical, because the reconstacerror in

GPCA. For that purpose, after obtaining the GPCARIXels that belong to the mobile robot is much kigthan in
transformation matriced (andR) that define the background Packground pixels. However, the fixed thresholdi(eel in
model, each of th&l background images is projected (usingtduation (7)) is not robust against lighting changghis is

equation (2)) and reconstructed (using equatioh. (Bhen, Pecause, as lighting conditions change, the irterddi the
image pixels also changes. For that reason, trenstaiction



error in the background pixels increases, and ffferednce percentage of pixels correctly initialized, andbaise range of
between the reconstruction error of the pixelshenrbbot and intensity values for which the initialized curve® aight. We

of background pixels decreases. consider that a curve is right if the percentagepodels
correctly initialized is greater than 98%. The fesobtained
TABLE Il for some values oft and3 are shown in Table Ill. All the
PERCENTAGE OFPIXELS THAT HAS BEENCORRECTLY INITIALIZED USING THE  results shown in this table have been obtainedgusie
THRESHOLD DEFINED INI.EQUATION (7) WITH K=10. images of the sequence 2 (Fig. 4.b).
Image % de pixels correctly initialized
Sequence 1 (Fig. 4.a) Sequence 2 (Fig. 4.b TABLE |l
120 99.4486 % 99.9808 % POSSIBLEVARIATIONS IN THE INTENSITY OF THEORIGINAL IMAGE WITHOUT
250 98.5384 % 99.9414 % DETERIORATING THEINITIAL CURVES FORDIFFERENTVALUES OF O AND f3.
: i B=1.0 B=1.2 B=1.4 B=16 B=18
400 99.4264 % 99.8675 % 0=0.6 70.6 72.4 75.2 72.8 81.8
Fig. 5 shows three images with different lighting a=0.8 66.6 72.0 69.4 72.8 81.2
conditions. It can be seen that, if lighting desea(Fig. 5.b)| a=1 70.6 85.0 53.8 43.2 38.4
or increases (Fig. 5.¢) the initial curves calcedatith a fixed | a=3 59.4 55.0 42.4 41.8 36.2
threshold are notably deteriorated. a=5 52.0 45.2 43.0 35.4 35.2
p a=7 39.4 36.0 41.2 33.8 29.0
a=9 32.4 35.2 40.2 33.4 28.6
a=11 32.2 35.6 39.6 32.6 27.8

As it was previously mentioned, shadows insideitlitgal
curves are removed in a subsequent stage. Foptinpgose,
the method proposed in [11] is used.

V. EXPERIMENTAL RESULTS

In order to validate the proposal in this work, exew
experimental tests have been carried out. In tggeriments
four different image sequences have been usedith&ke

y >4 - 4 image sequences have been acquired by a calibcatedra
() © located in a fixed position. Image sequences 1 Arthve
Fig. 5. Initial curves obtained for an image theloags to sequence 1. (a) DP€€N previously shown in Fig. 4. Fig. 6 shows omage
Original image. (b) Original image after subtragtmvalue of 50 to each  belonging to sequences 3 and 4. It is worth pogntint that
pixel in the original image. (c) Original imageexfadding a value of 50 to image sequences 3 and 4 have been acquired byathe s

each pixel in the original image. camera than image 2, but under different lightiogditions.

. [l W{:
B. Adaptive threshold L - .‘E'\

In order to improve the system robustness agaiigistirig g =
changes we propose to adjust the threshold if ttaaee
important changes in the intensity of the images.

As the fixed threshold, the proposed adaptive tioleksis
proportional to the maximum reconstruction error thé L dalh
background images (equation (5)). However, to obthe (a) (b)
adaptive threshold, this maximum error is multigliey a Fig. 6. Images belonging to the sequences usétbiaxperimental tests.
function that depends on the absolute value oftifference (2) Sequence 3. (b) Sequence 4.
between the mean intensity of the actual imagethadnean
intensity of thel; background images. The adaptive threshol
is defined in equation (8).

U2 =(a+ﬁ|| _I,?]a:ai;gmund
a,p00,a,8=20

In equation (8),a andf3 are real positive constants. The
optimum values of these constants have been obitaine
experimentally. The initial curves have been ol#din
manually and are compared to the curves obtaingth wi .
different values ofx and3 for images with lighting changes ] LA
in order to set the best values forand. We evaluate the  (2) Image 120 of the sequence 1 (b) Image 120ectéquence 2

Fig. 7 shows the initial curves obtained by applythe
ixed threshold defined in equation (7) to the mstouction
) error to two images belonging to sequences 1 gkig26.a y
[E? b).

r,background (8)
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(c) Image 250 of the sequence 1 (d) Image 250e$éyuence 2
Fig. 7. Initial curves obtained using the propose@d threshold defined in
equation (7) to the reconstruction error.

Fig. 7 shows that the initial curves obtained ushmey fixed
threshold are close to the real contours of theileabbots.
As it was previously mentioned, shadows inside ittigal
curves are removed in a subsequent stage usingétizod
proposed in [11]. Fig. 8 shows the initial curvésained after
removing the shadows. It is worth highlighting thawven
including the shadows, the initial curves obtainesing
GPCA are closer to the real contours than the wifetences
proposed in [7].
segmentation with a lower number of iterations [10]

(a)
Fig. 8. Initial curves obtained after removing #@dows (a) Image 120 of
the sequence 1 (Fig. 6.a) (b) Image 250 of thees®mpu2 (Fig. 6.b)

(b)

Fig. 9 shows the initial curves obtained for theagm 120
of the sequence 2 (Fig. 6.b). Lighting changes hbeen
simulated by adding (Fig. 9.b) or subtracting (Rig) a value
of 30 to each pixel of the original image (Fig.)9.a

r'._ v
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(b) Original Image -30 (c) Original Image +30
Fig. 9. Initial curves obtained for the image 126he sequence 2 (Fig. 6.b).
Obtained using the fixed threshold (7) (indicateded color), and obtained
using the adaptive threshold (8) (indicated in ldaker).

It allows to carry out the motion

In Fig. 9 we can observe that the proposed adaptive
threshold (equation (8)) has a better behaviorresgdighting
changes than the fixed threshold (equation (7)).

The initial curves obtained using the fixed thrddho
(equation (7)), and using the adaptive threshaijgigéon (8))
have been compared with the curves obtained manurdr
these experiments we have used 25 images belortging
sequences 1 and 2. Lighting changes have beenateduby
adding or subtracting a constant value to all tixelp in the
original image. Fig. 10 shows the percentage ofelpix
correctly initialized for each value added betweBf and
+50. The results obtained using the fixed threshatd
indicated in black color and the results obtainsthg the
adaptive threshold are indicated in red.
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Fig. 10. Percentage of pixels correctly initializetsing the fixed threshold
(7) (in black) and using the adaptive threshold(i{8yed).

In Fig. 10, we can observe that if the value added
subtracted) to the intensity of the original imagéwer than
25, both thresholds have similar results. Howeif¢he value
added to the intensity is higher than 25, the pdege of
pixels correctly initialized using the fixed thredth (equation
(7)) decreases notably, whereas the adaptive thlcesitiows
to obtain the right initial curves (the percentagfepixels
correctly initialized is greater 99%) even for aluea 50
added/subtracted to all the pixels of the originage.

Moreover, several experimental tests have beefedaout
to determine the effect of noise in the imagesthlt sense,
the original images have been modified by addingeadch
pixel a random value between 0 and 30 (Fig. 1T.8)and 50
(Fig. 11.b). The initial curves are shown in Fidl. Trhis
figure shows that the adaptive threshold is morbusb
against the noise than the fixed one.

/ - 1 A -,
(@) (b)

Fig. 11. Initial curves obtained applying the fixédeshold (indicated in red)
and the adaptive threshold (in blue) to the recansbn error in the presence
of noise. (a) After the addition of a random vabetween 0 and -30 to each
pixel. (b) After the addition of a random valueweén 0 and 50 to each

pixel.



is necessary to initialize th&l-1 curves that define the

In order to evaluate the robustness of the adaptheshold boundaries of the segmentation and also the deptthis
proposed in this work, the images belonging tosdguences work, initial curves are obtained using the GPCéhteque.
3 and 4 (which are shown in Fig. 6.a and b) hawnhesed. Two approaches have been proposed to set the thdesh
These image sequences have been acquired by the s&@®RCA reconstruction error in the curve initialipeti
camera than the sequence 2 (Fig. 4.b), but witfergiit algorithm.
lighting conditions. The images of sequence 4,shawobile Several experimental tests have been carried dutser
robot and a person moving in the intelligent spacand3 experiments have proved that the fixed thresholnppsed
values used for this sequences are the same Jhlaebave works correctly in controlled environments wherghting

been previously set using the sequence 2. conditions do not change. The proposed adaptivesiioid
Fig. 12 shows the initial curves for some imagdstiging increases notably the system robustness againktinkg
to the sequences 3 (Fig. 6.a) and 4 (Fig. 6.b). changes with respect to the fixed threshold. It bagn
J Y N proved with four different image sequences thatehbeen

acquired in different lighting conditions.
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