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Abstract: This paper presents a novel system capable of solving the problem of tracking 

multiple targets in a crowded, complex and dynamic indoor environment, like those typical 

of mobile robot applications. The proposed solution is based on a stereo vision set in the 

acquisition step and a probabilistic algorithm in the obstacles position estimation process. 

The system obtains 3D position and speed information related to each object in the robot’s 

environment; then it achieves a classification between building elements (ceiling, walls, 

columns and so on) and the rest of items in robot surroundings. All objects in robot 

surroundings, both dynamic and static, are considered to be obstacles but the structure of 

the environment itself. A combination of a Bayesian algorithm and a deterministic 

clustering process is used in order to obtain a multimodal representation of speed and 

position of detected obstacles. Performance of the final system has been tested against state 

of the art proposals; test results validate the authors’ proposal. The designed algorithms and 

procedures provide a solution to those applications where similar multimodal data 

structures are found. 

Keywords: 3D tracking; Bayesian estimation; stereo vision sensor; mobile robots 
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1. Introduction 

Visual tracking is one of the areas of greater interest in robotics as it is related with topics such as 

visual surveillance or mobile robots navigation. Multiple approaches to this problem have been 

developed by research community during last decades [1]. Among them, a sorting can be done 

according to methods used to detect or extract information from the image about objects in the scene: 

 With static cameras: background subtraction is generally applied to extract image information 

corresponding to dynamic objects in the scene. This method is wide spread among the research 

community [2-4], mainly in surveillance applications. 

 With a known model of the object to be tracked: this situation is very common in tracking 

applications, either using static cameras [3,4] or dynamic ones [5,6]. The detection process is 

computational more expensive, but the number of false alarms and the robustness of the detector 

are bigger than if looking for any kind of objects. 

All the referred works solve the detection problem quite easily, thanks to the application of the 

mentioned restrictions. However, an appropriate solution is more difficult to find when the problem to 

be solved is the navigation of a mobile robot in complex and crowded indoor environments (Figure 1), 

like museums, railway stations, airports, commercial centers, etc. In those scenarios there is any 

number of dynamic obstacles around and the robot has to detect and track all of them in order to find a 

suitable path. 

Figure 1. Framework and typical scenario: mobile robot navigation through complex and 

crowded indoor environments.  

 

In this kind of scenario, both of the standard methods have important drawbacks. When models are 

used to detect the obstacles, there are problems with the execution time (obstacles can be far away 

before being identified) and with the modeling of any of the possible objects that could be found in the 

environment. By the other way, it is not possible to use background subtraction because its visual 

appearance changes continuously; this is because any element in the visual environment of the robot 

may be an obstacle, apart from objects that belong to building structures in which the robot is located.  

Because the complexity of the information available from a visual sensor, it is convenient to 

organize first the visual data in the images at least into two classes: measurements coming from 

obstacles (obstacles class); and measurements coming from the environment (structural features class). 

Navigation commands 

Complex indoor environment  

Mobile robot Vision sensor 
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Once this information is available, data classified in the environment class can be used to make a 

reconstruction of robot surroundings structure. This process is especially interesting for robot 

navigation, as it can be used in a SLAM (Simultaneous Localization and Mapping [7]) task. 

At the same time, data assigned to the obstacles class can be used as an input for any of the tracking 

algorithms proposed by the scientific community. Taking into account the measurements 

characteristics, the position tracker has to consider the noise related to them in order to achieve reliable 

tracking results. Probabilistic algorithms, such as particle filters (PFs, [8-10]) and Kalman filters  

(KFs, [11,12]), can be used to develop this task as they include this noisy behavior in the estimation 

process by means of a probabilistic model.  

Anyway, the objective is to calculate the posterior probability (also called belief, ) of the 

state vector  and upon the output one , which informs about the position of the target, by means of 

the Bayes rule, and through a recursive two steps estimation process (prediction-correction), in which 

some of the involved variables are stochastic. 

Most solutions to this multi-tracking problem use one estimator for each object to be tracked [12,13]. 

These techniques are included in what is called MHT (Multi-Hypothesis Tracking) algorithm. It is also 

possible to use a single estimator for all the targets if the state vector size is dynamically adapted to 

include the state variables of the objects’ model as they appear or disappear in the scene [14,15]. 

Nevertheless, both options are computationally very expensive in order to use them in real  

time applications.  

Then, the most suitable solution is to exploit the multimodality of the probabilistic algorithms in 

order to include all needed estimations in a single density function. With this idea, a PF is used as a 

multimodal estimator [16,17]. This idea has not been exploited by the scientific community adducing 

to the inefficiency of the estimation, due to the impoverishment problem that the PF suffers when 

working with multimodal densities [18,19]. 

Anyway, an association algorithm is needed. The association problem is easier if a single 

measurement for each target is available at each sample time [20]. In contrast, the biggest the amount 

of information from each model is, the most reliable the estimation will be.  

In the work presented here, the source of information is a vision system in order to obtain as more 

position information from each tracked object as possible. Thus, the needed association algorithm has 

also a high computational load but the reliability of the tracking process is increased.  

The scientific community has tested different alternatives for the association task, including 

Maximum Likelihood (ML), Nearest Neighbor (NN) and Probabilistic Data Association (PDA) [20]. 

In our case, we have selected the NN solution due to its deterministic character. Finally, not all 

proposals referred to in this introduction are appropriate if the number of objects to track is variable: it 

is necessary an extension of the previously mentioned algorithms. 

In our work, the multimodal ability of the PF is used, and its impoverishment problem is mitigated 

by using a deterministic NN clustering process that, used as association process, is combined with the 

probabilistic approach in order to obtain efficient multi-tracking results. We use an extended version of 

a Bootstrap particle filter [9], called XPFCP (eXtended Particle Filter with Clustering Process), to 

achieve the position estimation task with a single filter, in real time, and for tracking a variable number 

of objects detected with the on-board stereo vision process. Figure 2 shows a functional description of 

the whole tracking application.  
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Figure 2. General description of the global stereo vision based tracking system. 

 

Data classified as belonging to the structural features class can be used by standard SLAM 

algorithms for environmental reconstruction tasks; however, this question is out of the scope of present 

paper as well as a detailed description of the stereo vision system. 

This paper will describe the functionality of the two main processes of the multi-tracking proposal: 

Section 2 will detail the object detector, classifier and 3D locator; Section 3 will describe the multiple 

obstacles tracker, the XPFCP algorithm. Section 4 will show the obtained results under a set of testing 

scenarios. Finally, the paper ends with conclusions about the whole system behavior and the  

obtained results. 

2. Detection, Classification and Localization Processes 

A stereo vision subsystem is considered as one of the most adequate ways to acquire important 

information about the different elements found in a dynamic environment. That is because: 

 The amount of information that can be extracted from an image is much bigger than the one that 

can be obtained from any other kind of sensor, such as laser or sonar [21].  

 As the environmental configuration changes with time, with a single camera is not possible to 

obtain the depth coordinate of the objects’ position vector, and thus a stereo vision arrangement 

is needed. 

An alternative to this visual sensor configuration could be to use a Time-Of-Flight (TOF) camera that 

provides depth information. However, currently these cameras are not available at an affordable price 

and the information obtained with this sensor is still far from versatile (not valid for long distances) and 

accurate (post-acquisition process is normally needed in order to compensate reflection effects). 

A matching process based on the stereo vision system epipolar geometry allows obtaining the 

desired 3D position input information  of a point Pt from its projections, pl,t and pr,t, 

in a pair of synchronized images ( , ), as shown in Figure 3.  

 Ttptptp zyx ,,,

 Ttpltpltl vuI ,,,,,   Ttprtprtr vuI ,,,,, 

Stereo Vision System 

Object Detection. 

Classification: Obstacle/ Environment. 

3D Localization 

Local Environmental 

Reconstruction 

Multiple Obstacles’ Tracker: 

the XPFCP 

Structural features class 

Obstacle class 

Input measurements 



Sensors 2010, 10                            

 

 

8869 

Figure 3. Functional description of the stereo vision data extraction process.  

 

In this work, the left-right image matching process is solved with a Zero Mean Normalized Cross 

Correlation (ZNCC), due to its robustness [22]. Each sampling time, t, for every pixel of interest (i.e., 

in the left image ), this process consists on looking for a similar gray level among the 

pixels in the epipolar line at the paired image (the right one ). 3D location of paired pixels can be 

found if, after a careful calibration process of both cameras location, the geometric extrinsic 

parameters of rotation, , and translation, , are known. 

As it can be expected, this process is very time consuming. Therefore the 3D information to be 

obtained should be limited to set of points of interest in both images. In the case of this work, points 

coming from objects edges have enough information to develop the tracking task. Moreover, just the 

edges information will enable the possibility of partially reconstructing the structure of the 

environment in which this tracking is carried out. The global data acquisition process proposed in this 

paper includes the following main tasks: detection and classification; and 3D localization. Details of 

these two tasks are shown in Figure 4. 

2.1. Detection and Classification 

The detection and classification process (top group in Figure 4) is executed with each pair of frames 

(  and ) synchronously acquired in sampling time, t, from the stereo-camera set. This process is 

developed through the following steps.  

2.1.1. Detection 

Edges information is extracted from the pair of cameras with a Canny filter [23]. This information 

is enough both to track all the objects in the wandering robot environment and partially reconstruct the 

environment structure.  

Left image  is used to extract those pixels that may be interesting in the 

tracking process. Image edges from human contour, tables, doors, columns, and so on are visible and 

distinguishable from the background (even in quite crowded scenes) and can be easily extracted from 

the filtered image.  
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Figure 4. Flowchart of the data acquisition subsystem, based on a stereo vision process. 

Main tasks are: detection and classification (blocks at the top); and 3D localization (blocks 

at the bottom). Inner structure of each main task is highlighted and detailed. 

 

In order to robustly find structural features, the Canny image is zeroed in the Regions Of Interest 

(ROIs) where an obstacle is expected to appear. Therefore, the classification step is run over a partial 

Canny image , though the full image is recovered to develop the  

3D localization. 

2.1.2. Classification: Structural and Non-Structural Features 

Within the partial Canny image , edges corresponding with environmental structures have 

the characteristic of forming long lines. Thus, the classification process starts seeking structural shapes 

in the resulting image, through these typical features. Hough transform is used to search these long line 

segments in the partial Canny image.  

The function cvHoughLines2 [24] from OpenCV [25] library is used to accomplish the probabilistic 

Hough transform. This version of the Hough transform made by OpenCV allows finding line segments 
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instead of whole ones if the image contains few long linear segments. This is the case of present 

application when obstacles in front of the camera set may occlude the structural elements of the scene. 

This probabilistic version of Hough transform has five parameters to be tuned:  

 rho and theta are respectively the basic Hough transform distance and angle resolution 

parameters in pixels and radians.  

 threshold is the basic limit to overpass by the Hough accumulator in order to consider that a line 

exists. 

 length is needed in the probabilistic version of Hough transform, and is the minimum line 

length, in pixels, for the detector of segments. This parameter is very important in the related 

work as it allows taking into account a line made by very short segments, like those generated in 

scenes with many occlusions. 

 gap is also needed in the probabilistic version of Hough transform. This is the maximum gap 

in pixels between segment lines to be treated as a single line segment. This parameter is 

significant here, because it allows generating valid lines with very separated segments, due to 

occluding obstacles. 

Due to the diversity of conditions that may appear in the experimental conditions an analytical 

study cannot be performed and thus all parameters have been empirically set. As a result of the 

challenging situation of obstacles in present application, not all lines related to structural elements in 

the environment are classified as structural features. In any case, the algorithm detects well enough the 

structural features existing in the scene: walls, columns, ceiling, floor, windows and so on. In the same 

way, it can also generate an obstacles features’ class neat enough to be used in the tracking step. 

At the end of this classification step, two images are, therefore, obtained using the described process:  

  with the environmental structures, formed by the long lines 

found at the partial Canny image. 

  with the full Canny image zeroed at the environmental 

structures. 

2.2. 3D Localization of Structural and Obstacles’ Features 

Both images are the inputs to a 3D localization process to obtain the 3D coordinates of structural 

 and obstacles’ features . 

This is done in two phases by a matching process based on the epipolar geometry of the vision system; 

these phases are: 3D localization and obstacles’ features filtering. 

2.2.1. Phase 1: 3D Localization 

Features’ classes  and  are respectively obtained calculating the ZNCC value for 

each non-zero pixel at the corresponding modified left images,  and  and using the 

full right image . Those features whose ZNCC values reaches a threshold are validated and finally 

classified in the corresponding features’ classes,  or . 
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2.2.2. Phase 2: Obstacles’ Features Filtering 

Due to occlusions and repetitive patterns, correspondences between points in left and right images 

are often not correct and some outliers appear. This effect mainly affects to obstacles’ features. In 

order to reject these outliers, a neighborhood filter is run in the XZ plane over all points classified in 

the obstacles’ class . 

The heights coordinate (Y) in each 3D position vector  𝑥𝑖 ,𝑡   𝑦𝑖 ,𝑡   𝑧𝑖 ,𝑡 𝑖=1:𝑚𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠

𝑇
 is also used to 

filter the spurious noise. So, a feasible set of points that characterizes obstacles’ position in the scene is 

obtained in order to be used as measurement vector (observation model) at the posterior multiple 

obstacles’ tracking task (see Figure 2). Figure 5 and Figure 6 show some results obtained at the end of 

the whole detection, classification and 3D localization process. 

Figure 5. Results of the detection, classification and 3D location process in three frames of 

a real experiment. Detected structural features and related original images.  

 

Figure 5 shows a sequence of three frames belonging to a certain section of a single experiment. It 

is organized in two rows: the one at the top shows the results of the classification  over the 

input Canny image  while the one at the bottom shows them over the original images. Those 

elements identified as members of the structural features class  have been highlighted in both 

rows of images in order to show the behavior of the algorithm: in colors at the Canny image, and in 

yellow at the original image if their 3D localization  𝑥𝑖 ,𝑡   𝑦𝑖 ,𝑡   𝑧𝑖 ,𝑡 𝑖=1:𝑚𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

𝑇
 has been found. 

By the way, Figure 6 shows a different section of the same experiment. There are four frames in 

sequence from left to right organized in three rows. The row at the top shows the Canny image 

 input to the classification process; the central row shows the set of original images, where 

those 3D points ( 𝑥𝑖 ,𝑡   𝑦𝑖 ,𝑡   𝑧𝑖 ,𝑡 𝑖=1:𝑚𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠

𝑇
) assigned to the obstacles’ features class  are 

then projected back in colors according to their height in the Y coordinate (light blue for lower values, 

dark one for middle ones and green for higher ones). Finally, the row at the bottom is a 2D projection 

over the ground (XZ plane) of the set of points of the obstacles’ features class . The clouds of 
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points in the 2D projection allow perform the tracking task of the four persons found in the  

original sequence. 

Figure 6. Results of the detection, classification and 3D location process in four frames of 

a real experiment. Top row, detected edges; middle row, original images; bottom row, 2D 

ground projection of points classified as obstacles. 

 

In this last figure, it can be noticed that obstacles’ features  related to the legs of the 

persons in the scene do not include all edge points related to them in the preliminary Canny image 

Icanny,l,t Nevertheless, the multi-obstacles’ tracker works perfectly in any situation as it is demonstrated 

in the video MTracker.avi (see supplementary materials) from the experiment shown in Figure 6. In all 

the frames there are enough edge points in all obstacles, from 115 to 150 features per person to be 

tracked; the total amount of them are displayed at the bottom of each column in Figure 6 (parameter 

nPtosObs, text in red).  

The difference between the points found in the Canny image and the final obstacles’ features class 

is related to the probabilistic Hough transformed used. As described in a previous section, the Hough 

algorithm is tuned to detect short segments of lines and classify them as structural features, in order to 

find them even in situations of high level of occlusion such the one displayed in Figure 6. Then, some 

linear features belonging to people arms or legs are sorted out to the structural class. 

3. The Multiple Obstacles’ Tracker 

As discussed in the introduction, a probabilistic algorithm is the best solution in order to implement 

the multi-obstacles tracking task. The XPFCP (eXtended Particle Filter with Clustering Process) an 

extended version of the PF has been chosen to develop this process in order to exploit  

its multimodality.  

The combination of both techniques (probabilistic estimation and deterministic association) 

increases the robustness of the PF multimodality, a behavior which is difficult to develop when this 

combination is not used, as seen in [18]. In fact, the idea of combining probabilistic and deterministic 

tobstaclesY ,
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techniques for tracking multiple objects has been proposed in different previous works, such as [6]  

or [26]. However none of them faced the idea of reinforcing the PF multimodality within the 

deterministic framework. 

Figure 7 shows a functional description of the multiple obstacles’ tracking algorithm proposed. As 

it can be noticed in the upper left corner of the figure, the input of the XPFCP is the obstacles’ features 

class : the set of measurements, unequally distributed among all obstacles in the scene, are 

clustered in a set of  groups  to work as observation density . 

Figure 7. Functional diagram of the multiple objects’ tracker based on a XPFCP. 

Deterministic tasks have a blue background while probabilistic tasks have a different color. 

Modified or new PF steps are remarked with dashed lines. 

 

On the other hand, the image at the lower left corner in Figure 7 shows the output of the XPFCP 

based multi-obstacles tracking: a set of  objects  identified by colors with their 

corresponding location, speed and trajectory followed in the XYZ space.  

The three standard steps of Bootstrap PF (prediction, correction and association) can also be seen in 

Figure 7. As shown in the figure, the PF implements a discrete representation of the belief  

with a set of  weighted samples  (generally called particles) 

to develop the estimation task. Thanks to this kind of representation, different modes can be 

implemented in the discrete belief generated by the PF, which applied to the case of interest allow to 

characterize different tracked objects. 

Besides, a new re-initialization step prior to the prediction one has also been included in the loop 

(dashed lines in Figure 7) in order to ease the generation of new modes in the  modified belief 

 output by this step. As shown in this figure, this new re-initialization step is executed 
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using the clusters segmented from the XPFCP input data set of obstacles’ features , therefore 

including in the tracking task a deterministic framework (blocks in blue in Figure 7). 

The set  is also used at the correction step of the XPFCP, modifying the standard step of the 

Bootstrap PF, as displayed in Figure 7 (dashed lines). At this point, the clustering process works as a 

NN association one, reinforcing the preservation of multiple modes (as many as obstacles being 

tracked at each moment) in the output of the selection step: the final belief . 

The deterministic output  is obtained organizing in clusters the set of particles 

 that characterizes the belief  at the end of the XPFCP selection step. This 

new clustering process discriminates the different modes or maximum probability peaks in , 

representing the state  of all  objects being tracked by the probabilistic filter at that moment. 

The following subsections extend the description of XPFCP functionality. 

3.1. The Tracking Model  

The application of the XPFCP to the position estimation problem requires a model definition. In the 

application of interest, a Constant Velocity (CV) model is used [27], where the actuation and 

observation models are defined by equation (1) and equation (2), respectively: 

As shown in equation (1), the estimation vector  will define the position and speed state of the 

obstacle being tracked. In addition, the state noise vector  (empirically characterized as Gaussian 

and white) is included in the actuation model both to modify the constant speed of the obstacle, and to 

model the uncertainty related to the probabilistic estimation process.  

Furthermore in equation (2),  defines the observable part of the state , that in this case 

matches with the 3D position information ( ) extracted by the 

stereo vision process described in section 2. An observation noise vector  has also been included to 

model the noise related to that vision process, and so, it is characterized in an off-line previous step. 

This noise model makes possible to keep tracking objects when they are partially occluded.  

Empirical studies over tests results, including different environmental and tracking conditions, were 

used to identify the standard deviation of all components in  and in , resulting that 
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 and . Besides, the study of sensibility 

concluded that a modification of a 100% in any of  generates an increase in the tracking error of 

around 24%, while the same modification in any of  generates ten times lower figures. This result 

indicates the importance of the observation noise vector in the multi-obstacles’ tracking task. 

3.2. Steps of the XPFCP 

3.2.1. Clustering Measurements 

The clustering process is done over the 3D position data set  extracted by the stereo vision 

process. The output set of groups  generated by this process is then used in the re-initialization 

and correction steps of the XPFCP. 

We propose an adapted version of Extended K-Means [28] to solve this clustering task, called 

Sequential K-Means with Validation; a general description of it is presented in Figure 8. The simplicity 

and reliability of this clustering process ensures a correct re-initialization and association tasks in the 

XPFCP, within a low computational load that makes possible a real time execution of the global 

tracking task, as reveal the results obtained in our tests. 

Figure 8. Functional diagram of the modified version of the Extended K-Means (second 

step, white background), used in the correction step of the XPFCP: the Sequential  

K-Means with Validation. New steps of this clustering algorithm are highlighted in yellow 

and green.  

 

The main characteristics of this clustering proposal are listed below; while a deeper description of it 

can be found in [28]: 

 The clustering algorithm adapts itself to an unknown and variable number kin,t clusters, as needed 

in this application. 

 A preliminary centroid g  1:k,t 𝑖𝑛   prediction is included in the process in order to make fast and 

sure its convergence (the execution time of the proposal is decreased in 75% related to the 

standard K-Means’s one). This centroid prediction is possible thanks to the first and third steps 

of the blocks diagram in Figure 8: predicting an initial value for each centroid g  0,1:k,t 𝑖𝑛  , and 

computing each centroid updating vector 𝑢  1:k,t 𝑖𝑛  . 
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 A window based validation process is added to the clustering proposal in order to increase its 

robustness against outliers in almost a noise rejection rate of 70%. Besides, this process provides 

the inclusion of an identifier  for each cluster obtained, with a 99% success rate 

meanwhile the cluster keeps appearing among the input data set . Thanks to this 

functionality, the validation process (last step, remarked in green in Figure 8) helps keeping track 

of temporal total occlusions of objects in the scene, as it is demonstrated in the video sequence 

MTracker.avi (see supplementary materials). 

With these characteristics the set  comprises a robust, filtered, 

compact and identified representation of the corresponding input data, which strengths the PF 

reliability in the multimodal estimation task pursuit. 

3.2.2. Re-Initialization 

The main aim of adding the re-initialization step to the standard Bootstrap PF, is to insert  

new particles to the discrete belief  from time . So, new tracking events 

(inclusion or loss of any object in the scene) are quickly updated in the estimation process. 

Particles inserted in this new step are obtained randomly sampling among the members of all  

clusters G1:k,t-1 in , segmented from the input data set of obstacles’ features . Therefore, the 

re-initialization step generates the discrete density , which is a modification of 

 described by equation (3): 

This process ensures that all observation hypotheses modeled by the density  are 

considered equally in the re-initialization process. 

In order to increase the probability of newly sensed objects in , a specific number of particles 

 is defined for each cluster  to be inserted at this step, as shown in equation (4): 

where  is a boolean parameter informing about the novelty of the cluster  in the set 

;  is the number of particles to append for each new cluster;  is the minimum number 

of particles per cluster to be included; and  is the total amount of particles inserted at this step in 

 to get .  

Besides,  relates the number of particles inserted at re-initialization step  with 

the number n of them obtained at the output of this step. Using  a continuous version of equation (3) 

can be expressed as shown in equation (4) and in Figure 7:  
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The deterministic specification of  for each helps shortcoming the 

impoverishment problem of the PF in its multimodal application. This process ensures the particles 

diversification among all tracking hypotheses in the density estimated by the PF and increases the 

probability of newest ones, that otherwise would disappear along the filter evolution. Results included 

in section 4 demonstrates this assertion for a quite low value of , that maintains the mathematical 

recursive rigor of the Bayesian algorithm. 

This re-initialization step has a similar behavior that the one of the MCMC step (used i.e., in [15]) 

which moves the discrete density  towards high likelihood areas in the probability space. 

In order to maintain constant the number of particles in  along the time (and thus the XPFCP 

execution time), the  of them that are to be inserted at the re-initialization step at time  are 

wisely erased at the selection step at time .  

3.2.3. Prediction 

The set of n particles generated by the re-initialization step  is updated through 

the actuation model, to obtain a discrete version of the prior .  

In this case, the actuation model used  is defined in section 3.1, and so, the last 

expression in equation (6) can be replaced by equation (1).  

Thus, the state noise component  is included in the particles’ state prediction with two main 

objectives: to create a small dispersion of the particles in the state space (needed to avoid degeneracy 

problems of the set [9]); and a slight modification of the speed components in the state vector (needed 

to provide movement to the tracking hypothesis when using the CV model [27]). 

The simplicity of the CV model proposed eases its use for all objects to be tracked, no care its type 

or dynamics and without the help of an association task. Each particle  

evolves according to the object’s dynamics that represents in the belief, as the related state vector 

includes the object speed components.  

3.2.4. Correction and Association 

Particles’ weights  are computed at the correction step, using the expressions at 

equation (7), including a final normalization:  
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where  is the shortest distance in the observation space (XYZ in this case), for particle , 

between the projection in this space of the predicted state vector represented by the particle , 

and all centroids  in the cluster set , obtained from the objects’ observations set . 

The use of cluster centroids guarantees that the observation model applied is filtered, robust and 

accurate whatever the reliability of the observed object. 

As shown in equation (7), in order to obtain the likelihood  used to compute the 

weights array ,the observation model defined by (2) has to be utilized, as . Besides, 

 is the covariance matrix that characterizes the observation noise defined in the same model. This 

noise models the modifications of positions in the clusters  centroid , when tracking objects 

that are partially occluded. 

The equally weighted set  output from the prediction step is therefore converted 

in the set . 

The mentioned definition of  involves a NN association between the cluster , whose 

centroid  is used in the particle’s weight  computation and the tracking hypothesis 

represented by the particle  itself. In fact, this association means that  is obtained from the 

observations generated by the tracking hypothesis represented by . 

This association procedure and the re-initialization step remove the impoverishment problem that 

appears when a single PF is used to estimate different state vector values: all particles tend to be 

concentrated next to the most probable one, leaving the rest of its values without probabilistic 

representation at the output density. In [17], the approximate number of efficient particles  is used 

as a quality factor to evaluate the efficiency of every particle in the set. According this factor,  

should be above 66% in order to prevent the impoverishment risk at the particle set. This parameter is 

included among the results presented in next section in order to demonstrate how the XPFCP solves 

the impoverishment problem.  

3.2.5. Selection 

Each particle of the set  output from the correction step is 

resampled at the selection step (also called resampling step) according to the generated weight. As a 

result, an equally weighted particle set  is obtained, representing a 

discrete version of the final belief estimated by the Bayes filter . This final set  is formed 

by  particles, in order to have  inserted at the next re-initialization step. 

3.2.6. Clustering Particles 

From the discrete probabilistic distribution  output by the selection step, a 

deterministic solution has to be generated by the XPFCP. This problem consists on finding the 
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different modes included in the multimodal density  represented by the particle set ; it has 

not an easy solution if those modes are not clearly different in that distribution.  

Diverse proposals have been included in the XPFCP in order to achieve this differentiation. This is 

because keeping this multimodality in , while avoiding impoverishment problems in it, is the 

principal aim of all techniques proposed in this paper. Following section shows empirical results that 

demonstrates this. 

Once ensured the differentiation, a simple algorithm can be used to segment in clusters the belief 

 at the end of the XPFCP loop. Therefore, these groups  will become the 

deterministic representation of the multiple obstacles’ hypotheses  detected by the stereo 

vision algorithm described in Section 2.  

In this work, the same Sequential K-Means with Validation, described in Figure 8, is used in order 

to obtain  from . Therefore, the deterministic representation of each  tracked 

hypothesis will be a cluster  with centroid , with the same components as the state vector 

defined in (1), and an identification parameter . 

4. Results  

Different tests have been done in unstructured indoor environments, whose results are shown in this 

section. The stereo vision system used in the experiments is formed by two black and white digital 

cameras located in a static mounting arrangement, with a gap of 30 cm between them, and at a height 

of around 1.5 m from the floor. Vision processes have been developed using OpenCV libraries [25] 

and run on a general purpose computer (Intel DUO 1.8GHz).  

The global tracking algorithm described in this paper has been implemented on a mobile 4-wheeled 

robot platform. Specifically a Pioneer2AT from MobileRobots© [29] has been used for the different 

tests. The robot includes a control interface to be guided around the environment, which can be used 

within the Player Control GNU Software, from the Player Project [30]. 

Figure 9 displays the functionality of the multi-tracking process in one of the tested situations. 

Three instants of the same experiment are shown in the figure. Each column presents the results 

obtained from a single capture; upper row are the input images, while lower row are 2D 

representations of objects’ data over the XZ ground plane.  

Different data coming from the detected objects are found into each plot. According to the 

identification generated by the output clustering process, each group  has got a different and 

unique color. These groups are identified with a cylinder, thus this is shown as rectangles in the images 

and as circles in the ground projections. In both graphics, an arrow (with the same color than the 

corresponding group) shows the estimated speed of every obstacle being tracked at each situation, both 

in magnitude and in direction. 

Particles’ state  (taken from the final set  generated by the XPFCP) and 3D position of 

data set  are represented by red and green dots, respectively, in each plot. Besides, the 

estimated values of position and speed (if non zero) of each obstacle are also depicted below its 

appearance in top row images. 
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Figure 9. Results of the multi-tracking process in a real experiment. They are organized in 

columns, where the upper image shows the tracking results generated by the XPFCP for 

each object, projected in the image plane, and the lower one shows the same results 

projected into the XZ plane.  

 

Between any two plots in each column, a text row displays some information about the results 

shown; this is: the number of tracked obstacles (k); the execution time of the whole tracking 

application in ms (texe), the percent of  (neff) and the frame number in the video sequence (iter). As 

it can be noticed in Figure 9, the observation system proposed and described in section 2 performs 

correctly its detection, classification and 3D localization task. Every object not belonging to the 

environmental structure is detected, localized and classified in the obstacle data set , in order 

to be tracked afterwards.  

The multimodal algorithm also achieves the position estimation objective for all obstacles in the 

scene, regardless the number, shape, dynamics and type of the object. The XPFCP correctly tracks 

deformable and dynamic objects, such us persons, and static ones such us the paper bin, which can be 

seen besides the wall on the right. 

Moreover, each tracked object characterized by the corresponding particles’ cluster 𝐺1:𝑘 ,𝑡 𝑜𝑢𝑡   

maintains its identity 𝜏1:𝑘 𝑜𝑢𝑡   (shown with the same color in Figure 9) while the object stays in the 

scene even if it is partially or totally occluded (for a certain time) to the vision system. This is possible 

thanks to the particles’ clustering algorithm that includes a window based validation process.  

In order to show in detail the behavior of the identification task, Figure 10 shows the trajectories 

followed in the XZ plane by the four obstacles detected in another experiment. The robot stays stopped 

in front of the obstacles for the whole test. 

effn
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Figure 10. Trajectory followed in the ground plane (XZ) by four obstacles according to the 

XPFCP estimation results in a real experiment. 

 
Each colored spot represents during consecutive iterations the centroid position g  1:4 out  of the cluster 

related to the corresponding obstacle 𝐺1:4,𝑡 𝑜𝑢𝑡  ; each color reflects the cluster identity . A dashed 

oriented arrow over each g  1:4 out  trace illustrates the ground truth of the path followed by the real 

obstacles. It can be hence conclude, that the correct identification of each object  is maintained 

with a 100% of reliability, even when partial and total occlusions occur; this is the case shown on 

traces from obstacles three (in pink) and four (in light blue).  

Figure 11 demonstrates graphically the multimodal capability of the XPFCP proposal in a multi-

tracking task. In this figure, the XPFCP functionality is compared to that of another multimodal multi-

tracking proposal, described in [18].  

Figure 11. Results of the multi-tracking process in a real experiment: left column shows 

the results generated by the XPFCP; the right column shows the results of the proposal 

presented in [18]. 
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The bottom row of images in Figure 11 shows the same particles and observation data set 

projections, as well as the tracking parameters texe, neff and iter, as described for Figure 9. Besides, 

the top row includes a plot of the density represented by the set output from the correction step by the 

two algorithms.  

The information included in Figure 11 allows concluding that the XPFCP proposed (left column) 

generates well differentiated modes in the final belief, according to the different estimation 

hypotheses; this is shown with four clear peaks on the belief distribution (top row). However, the PF 

based multi-tracking proposal presented in [18] does not achieve the multimodality objective with the 

same efficiency than XPFCP, and therefore it cannot be used to robustly track multiple objects within a 

single estimator.  

As theoretically asserted in previous sections, the measurements clustering algorithm used as 

deterministic association process have better results in the multimodal estimation task. Moreover, the 

results presented in Figure 11 show that the multimodal density obtained with the XPFCP 

, can be easily segmented to generate a deterministic output , which is not the 

case with the results generated by the proposal in [18]. A fast clustering algorithm, like the K-Means 

based proposed in this work, is enough to fulfill this task robustly and with low execution time. As it 

can be seen in the figure, the execution time of the XPFCP (texe = 28 ms) is almost 17 times smaller 

than the one of the other algorithm (texe = 474 ms); therefore, the Bayesian proposal presented in this 

paper is more appropriate for a real time application than the proposal in [18]. 

Finally, the data shown in Figure 12 confirm that the impoverishment problem related to the 

Bootstrap filter is minimized using the observation data set  organized in clusters  at 

the re-initialization and correction steps. The bottom row of images in Figure 12 shows the same 

information and parameters than the corresponding one in Figure 11. By the other side, the upper row 

plots the weights array  output from the correction step. Analyzing the results included in 

Figure 12, it is concluded that if the proposed segmentation in  clases is not used (left column 

plots) the poorest sensed object in the scene (the paper bin besides the wall on the right), has a reduced 

representation in the discrete distribution output of the correction step . However, 

results generated by the XPFCP in the same situation (right column plots) are much better. A visual 

comparison between both discrete distribution plots (top row) show the claimed behavior. 

In order to analyze quantitatively this situation, Table 1 shows the number of particles in the set 

(output from the selection step) assigned to each object in the scene in Figure 12, numbered according 

its position in the image from left to right. 

From the figures shown in Table 1, It can be seen that particles are more equally distributed among 

all tracking hypotheses when using at the re-initialization and correction steps, avoiding the mentioned 

impoverishment problem. 
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Figure 12. Results of the multi-tracking process in a real experiment using the proposed 

XPFCP (left column of images), and the same results using an input data set not segmented 

in classes at the re-initialization and correction steps (right column of images).  

 

Table 1. Distribution percentage of particles in the set  among the tracked hypotheses in 

the situations shown in Figure 12. 

Algorithm 
Object 

1 2 3 4 

Using  (left column plots) 28.5 28.1 31.5 10.9 

Not using  (right column plots) 31.2 42.2 24.4 2.2 

As a final analysis, Table 2 resumes the results obtained with the proposed system (XPFCP with 

stereo vision data input) in a long experiment of 1,098 frames (video sequence of 1 min 13 s) with 

complex situations similar to the ones presented in Figure 9. The number of obstacles in the scene is 

changing from 0 to 5 along the sequence. 

Table 2 data allow concluding that the multi-tracking proposal achieves the proposed objective 

reliably and robustly: 

• The low computational load of the tracking application enables its real time execution. 

• The impoverishment problem has been correctly solved because the number of efficient 

particles involved in the PF is above the established threshold (66%). 

• The XPFCP shows high identification reliability and robustness against noise. 

• A detailed analysis of tracking reliability shows errors (missed, duplicated or displaced objects) 

in about a 13% of iterations. 

• Nevertheless, noticeable errors in the tracking application (those of more than three consecutive 

iterations) only reached a 5.3% of iterations in the whole experiment. 
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Table 2. Summary of the results obtained with the multi-tracking proposal in a long and 

complex experiment. The most relevant parameters in the XPFCP are tuned to the values:  

n = 600, γt = 0.2, , , . 

Parameter Value 

Mean execution time 40 ms (25 FPS) 

Number of efficient particles,  69.8% 

Mismatch identification (% frames) 0% 

Outliers rejection (% frames) 99.9% 

Missed objects (% frames) 9.2% 

Duplicated objects (% frames) 3.3% 

Displaced objects (% frames) 0.4% 

Reliability in long term errors 

(% frames) 

t > 0.6s  3.5%,  

t > 0.8s  1.8% 

5. Conclusions  

A robust estimator of the movement of obstacles in unstructured and indoor environments has been 

designed and tested. The proposed XPFCP is based on a probabilistic multimodal filter and is 

completed with a clustering process. The algorithm presented in this paper, provides high accuracy and 

robustness in the tracking task in complex environments, and obtains better figures than other up-to-

date proposals. 

As well, it has been developed a specific detection, classification and 3D localization algorithm for 

a stereo vision observation system. This algorithm is able to handle those tasks in a dynamic and 

complex indoor environment. The designed algorithm makes also a separation in real time of the 

measurements acquired from obstacles from those acquired from structural elements belonging to  

the environment. 

The input data to the detection and classification process are stereo vision images, coming from a 

pair of synchronized cameras. The vision system has demonstrated to be robust in different scenes and 

distances up to 20 m. 

Results obtained with the proposed algorithm are shown throughout this article. They prove that the 

exposed objectives have been achieved robustly and efficiently. The reliability shown by these results 

is especially important as the system is thought to be used in tracking applications for autonomous 

robot navigation. 

To track a variable number of objects within a single algorithm, an estimator called XPFCP has 

been specified, developed and tested. In order to achieve this multimodal behavior, a combination of 

probabilistic and deterministic techniques has been successfully used. 

The XPFCP includes a deterministic clustering process in order to increase the likelihood 

hypothesis of new objects appearing on the scene. This clustering improves the robustness of XPFCP 

compared with the behavior shown by other multimodal estimators.  

Most tests have been run with a fixed number of 600 particles. This figure is kept constant so the 

XPFCP execution time is also constant; this is a very important fact in order to achieve a real  

time performance. 
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The designed XPFCP is based on simple observation and actuation models, and therefore it can be 

easily adapted to handle data coming up from different kinds of sensors and different types of 

obstacles to be tracked. This fact demonstrates that our tracking proposal is more flexible than other 

solutions found in the related literature, based on rigid models for the input data set.  
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