Title | Control of a robotics wheelchair using recurrent networks |
Publication Type | Journal Article |
Año de publicación | 2005 |
Autores | Boquete, L, Barea Navarro, R, Garcia, R, Mazo, M, Sotelo, MA |
Idioma de publicación | English |
Journal | Autonomous Robots |
Volumen | 18 |
Número | 1 |
Páginas | 5-20 |
Fecha de publicación | 01/2005 |
Lugar de publicación | Netherlands |
Editorial | Springer Netherlands |
Rank in category | 2/11 |
JCR Category | ROBOTICS |
Palabras clave | adaptive control, dynamics, identification, neurocontrol, radial basis function, recurrent neural networks, stability |
JCR Impact Factor | 1.246 |
ISSN | 0929-5593 |
URL | http://www.springerlink.com/content/r9k255l110j7w855/ |
DOI | 10.1023/B:AURO.0000047285.40228.eb |
Abstract | This paper describes an adaptive neural control system for governing the movements of a robotic wheelchair. It presents a new model of recurrent neural network based on a RBF architecture and combining in its architecture local recurrence and synaptic connections with FIR filters. This model is used in two different control architectures to command the movements of a robotic wheelchair. The training equations and the stability conditions of the control system are obtained. Practical tests show that the results achieved using the proposed method are better than those obtained using PID controllers or other recurrent neural networks models |
Attachment | Size |
---|---|
controlof_robotic.pdf | 332.55 KB |